PDF Linkchapter
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Integration of Geological and Seismological Data for the Analysis of Seismic Hazard: a Case Study of Japan
Bulletin of the Seismological Society of America, Vol. 74, No.2, pp. 687~708, April1984 INTEGRATION OF GEOLOGICAL AND SEISMOLOGICAL DATA FOR THE ANALYSIS OF SEISMIC HAZARD: A CASE STUDY OF JAPAN BY S. G. WESNOUSKY,* C. H. SCHOLZ, K. SHIMAZAKI, AND T. MATSUDA ABSTRACT Seismic hazard analyses are associated with large uncertainties when histor ical data are insufficient to define secular rates of seismicity. Such uncertainties may be decreased with geological data in areas where seismicity is shallow and produced by Quaternary faulting. To illustrate, we examine intraplate Japan. Large intraplate earthquakes in Japan characteristically produce surface ruptures along mappable Quaternary faults and show a systematic relation between seismic moment, Mo and rupture length I (log Mo = 23.5 + 1.94 x log l). It is observed that, within the bounds placed by geologically assessed slip rates, the mean regional moment release rate Mo resulting from slip on mapped Quaternary faults is in accord with estimates of M0 determined with the 400-yr record of seismicity. Recent work also shows that when the repeat timeT of earthquakes on Quaternary faults in southwest Japan is assumed to equal Mo/Mo 9 (where Mo is estimated for rupture extended over the entire fault length and Mo 9 is the geologically assessed moment release rate of each fault), the moment frequency distribution of earthquakes predicted from the geologic record is virtually identical to that seen with the 400-yr record of seismicity. These observations indicate that the geologic record of Quaternary fault offsets contains sufficient information to predict both the spatial and size distribution of intraplate earthquakes in Japan. -
19-20 March, 2018 Kobe, Japan Agenda Book Ver.2.0
#6 CHIKYU IODP BOARD MEETING 19-20 March, 2018 Kobe, Japan Agenda book Ver.2.0 #6 CIB Meeting Agenda Book ver.2 revision summary as of 16 March 2018 Agenda Item Sub Item Action taken Material 2 Revision List of Participants 2 Insertion Wireless LAN connection information 3 Revision Draft Agenda ver.1.5 6 Insertion CIB message to Riser proposal lead proponents 7 e Insertion MEXT Report 9 a Revision Overall Chikyu Operation 11 a Insertion Proposal 866-Full2_Strasser cover sheet 15 Revision Safety Review Committee Update 16 a Revision Main Points of JFY2017 Review Agenda Item 1 Welcome Remarks Agenda Item 2 Introductions and Logistics Welcome and meeting logistics 1)Meeting Logistics 2)List of Participants 3)Emergency Escape Route Chikyu IODP Board #6 Meeting Logistics 19-20 March 2018 Kobe, JAPAN MEETING DATES & TIMES: Monday, 19 March 09:00 - 17:30 Tuesday, 20 March 09:00 - 17:30 MEETING LOCATION: Chikyu IODP Board (CIB) will be held at the Takigawa Memorial Hall, Rokkodai Campus, Kobe University Access: http://www.kobe-u.ac.jp/en/campuslife/campus_guide/campus/rokkodai2.html SOCIAL EVENT: *Details to be announced later. 1) Field Trip: Sunday, 18 March 08:30- : Nojima Fault Preservation Museum 2) Ice breaker: Sunday, 18 March 19:00-21:00: TBD Not an official event 3) Reception: Monday, 19 March 18:30-20:30: ANA CROWNE PLAZA KOBE Lavender (9th floor of the Hotel) http://www.anacrowneplaza-kobe.jp/en/banquet/space/medium/ Free of charge RECOMMENDED HOTEL AND LODGING RESERVATIONS (Important Deadline Information): There is a block of rooms at “ANA CROWNE PLAZA KOBE” at a rate of ¥15,120 per night for 18, 19, 21 March, and ¥23,760 per night for 17, 20 March. -
Japan Geoscience Union Meeting 2009 Presentation List
Japan Geoscience Union Meeting 2009 Presentation List A002: (Advances in Earth & Planetary Science) oral 201A 5/17, 9:45–10:20, *A002-001, Science of small bodies opened by Hayabusa Akira Fujiwara 5/17, 10:20–10:55, *A002-002, What has the lunar explorer ''Kaguya'' seen ? Junichi Haruyama 5/17, 10:55–11:30, *A002-003, Planetary Explorations of Japan: Past, current, and future Takehiko Satoh A003: (Geoscience Education and Outreach) oral 301A 5/17, 9:00–9:02, Introductory talk -outreach activity for primary school students 5/17, 9:02–9:14, A003-001, Learning of geological formation for pupils by Geological Museum: Part (3) Explanation of geological formation Shiro Tamanyu, Rie Morijiri, Yuki Sawada 5/17, 9:14-9:26, A003-002 YUREO: an analog experiment equipment for earthquake induced landslide Youhei Suzuki, Shintaro Hayashi, Shuichi Sasaki 5/17, 9:26-9:38, A003-003 Learning of 'geological formation' for elementary schoolchildren by the Geological Museum, AIST: Overview and Drawing worksheets Rie Morijiri, Yuki Sawada, Shiro Tamanyu 5/17, 9:38-9:50, A003-004 Collaborative educational activities with schools in the Geological Museum and Geological Survey of Japan Yuki Sawada, Rie Morijiri, Shiro Tamanyu, other 5/17, 9:50-10:02, A003-005 What did the Schoolchildren's Summer Course in Seismology and Volcanology left 400 participants something? Kazuyuki Nakagawa 5/17, 10:02-10:14, A003-006 The seacret of Kyoto : The 9th Schoolchildren's Summer Course inSeismology and Volcanology Akiko Sato, Akira Sangawa, Kazuyuki Nakagawa Working group for -
Veourstofa Islands Report
VeOurstofa islands Report BarOi ~orkelsson (editor) The second EU-Japan workshop on seismie risk Destructive earthquakes: Understanding crustal proeesses leading to destructive earthquakes Reykjavik, Iceland, June 23-27, 1999 Vi-G99012..JA04 Reykjavik June 1999 r Vedurstofa Islands Report Baråi ~orkelsson (editor) The second EU-Japan workshop on seismie risk Destructive earthquakes: Understanding crustal proeesses leading to destructive earthquakes Reykjavik, Iceland, June 23-27, 1999 Vf-G99012-JA04 Reykjavik June 1999 THE SECOND EU-JAPAN WORKSHOP ON SEISMIC RISK DESTRUCTIVE EARTHQUAKES: Understanding Crustal Proeesses Leading to Destructive Earthquakes Reykjavfk, Iceland, June 23-27, 1999 Supported by: European Commission OG XII Organized by: Icelandic Meteorological Office Programme Abstracts List of participants Organizing committee: I I~,--------------------- Dr. R. Stefansson (Icelandic Meteorological Office), chairman Mr. B. Porkelsson (Icelandic Meteorological Office) Prof. P. Einarsson (University of Iceland) Scientific and technical advisory committee: Dr. R. Stefansson (Icelandic Meteorological Office) Dr. A. Ghazi (Europan Commission OG XII) Dr. N. Kamaya (Japanese Science and Technology Agency) Mr. R. Burmanjer (European Commission OG XII) Mrs. M. Yeroyanni (European Commission OG XII) Objectives of the workshop I I~,------------------------ The scientific objectives aim to reinforce EU-Japan cooperation in earthquake research. The main contribution of the earth sciences to mitigate seismic risks is to provide better understanding of where, how and when destructive earthquakes will strike. The better the scientists can answer such questions the better will be the basis for mitigating risks. It concerns actions taken by society, engineers, city planners and rescue teams. Multidisciplinary approach is necessary to answer the questions above, involving seismologists, geophysicists and geologists. Multinational approach is necessary for integration of experience and knowhow. -
Izu Peninsula Geopark Promotion Council
Contents A. Identification of the Area ........................................................................................................................................................... 1 A.1 Name of the Proposed Geopark ........................................................................................................................................... 1 A.2 Location of the Proposed Geopark ....................................................................................................................................... 1 A.3 Surface Area, Physical and Human Geographical Characteristics ....................................................................................... 1 A.3.1 Physical Geographical Characteristics .......................................................................................................................... 1 A.3.2 Human Geographical Charactersitics ........................................................................................................................... 3 A.4 Organization in charge and Management Structure ............................................................................................................. 5 A.4.1 Izu Peninsula Geopark Promotion Council ................................................................................................................... 5 A.4.2 Structure of the Management Organization .................................................................................................................. 6 A.4.3 Supporting Units/ Members -
Stress Orientations in the Nankai Trough Constrained Using Seismic and Aseismic Slip
RESEARCH ARTICLE Stress Orientations in the Nankai Trough Constrained 10.1029/2020JB019841 Using Seismic and Aseismic Slip Key Points: Tyler J. Newton1 and Amanda M. Thomas1 • Stress inversions of slow slip events imply the presence of intrinsically 1Department of Earth Sciences, University of Oregon, Eugene, OR, USA weak fault materials • The strength of the megathrust is similar to its surroundings in SSE source regions Abstract The strength of subduction thrust faults is key to understanding seismogenesis at the • Slow fault slip accommodates a large provenance of Earth's largest earthquakes. Earthquake focal mechanisms are routinely inverted to fraction of the total seismic moment constrain the stress state at seismogenic depths. However, on some megathrusts, deformation is in the Nankai Trough accommodated by both earthquakes and types of slow fault slip. We employ focal mechanisms of short‐term Supporting Information: slow slip events (SSEs), a type of slow fault slip, and earthquakes in a regional stress inversion to investigate • Supporting Information S1 the stress state of the Nankai Trough megathrust and interpret the results in the context of regional • Figure S1 tectonics Previous studies using earthquake‐only stress inversions found principal stress orientations in this • Figure S2 • Figure S3 region that are incompatible with thrust faulting on the megathrust. When both SSEs and earthquakes are • Figure S4 considered, the stress state of the central and eastern Nankai Trough megathrust is well oriented for thrust • Figure S5 faulting. Our results suggest that slow fault slip source regions may appear to have misoriented stress fields if slow fault slip constitutes a substantial proportion of fault slip and the stress field is not well constrained by earthquakes. -
Active Faults and Neotectonics in Japan1) Atsumasa OKADA2) And
第 四 紀 研 究 (The Quaternary Research) 30 (2) p. 161-174 July 1991 Active Faults and Neotectonics in Japan1) Atsumasa OKADA2) and Yasutaka IKEDA3) Wereview in this paperthe recent trend ofactive fault studies in Japan. The JapaneseIslands, includingthe continentalshelves and slopessurrounding them, form an activetectonic belt. The overalldistribution and regional characteristics of Quaternary faults have recently been clarified, and are nowbeing supplemented in detail. Some topics, including the studies of active faults on shallow sea and lake bottoms, the geomorphicand structural evolution of and the surface defromationassociated with thrust faults, and the excavationof active faults with or without historic activity, are also reviewed. brief review, see RESEARCH GROUP FOR ACTIVE I. Introduction FAULTS, 1980b). The earlier edition has The Japanese Islands, including the continen- provided basic data for earthquake prediction tal shelves and slopes surrounding them, form an research and earthquake-disaster-prevention active tectonic belt delineated on the southeast planning. This book was extensively revised in by oceanic subduction systems along the north- 1991, introducing the mass of new data obtained west rim of the Pacific Ocean. Being closely in the past decade. Active faults were mapped related to this physiographic setting, tectonic for the Japanese Islands and adjacent sea features such as Quaternary faults, folds, and bottoms, to a uniform standard, and compiled associated tectonic landforms develop in and into a set of sheet maps (originally on a scale around the islands. Studies on the neotectonics 1:200,000) with an inventory of faults for each or recent crustal movements have been sheet map. Two smaller-scale compiled maps conducted mainly by geodetic, seismological, of active faults (1:3,000,000 and 1:1,000,000) were geomorphological and geological methods. -
The 1St Workshop of Asia-Pacific Region Global Earthquake and Volcanic Eruption Risk Management (G-EVER1)
Open-File Report of Geological Survey of Japan, no. 557 The 1st Workshop of Asia-Pacific Region Global Earthquake and Volcanic Eruption Risk Management (G-EVER1) Abstracts Volume February 22-25, 2012 Auditorium, AIST Tsukuba Central, Tsukuba, Japan Hosted by Geological Survey of Japan (GSJ), National Institute of Advanced Industrial Science and Technology (AIST) Supported by Ministry of Economy, Trade and Industry (METI) Ministry of Education, Culture, Sports, Science and Technology (MEXT) Ministry of Foreign Affairs of Japan (MOFA) Japan Meteorological Agency (JMA) Geographical Information Authority of Japan (GSI) National Research Institute for Earth Science and Disaster Prevention (NIED) Building Research Institute (BRI) Earthquake Research Institute, University of Tokyo (ERI) Disaster Prevention Research Institute, Kyoto University (DPRI) United States Geological Survey (USGS) EuroGeoSurveys (EGS) The Institute of Geological and Nuclear Sciences Ltd. of New Zealand (GNS Science) Asian Disaster Reduction Center (ADRC) Coordinating Committee for Geoscience Programmes in East and Southeast Asia (CCOP) Circum Pacific Council (CPC) Global Earthquake Model (GEM) The International Union of Geodesy and Geophysics (IUGG) International Association of Seismology and Physics of the Earth’s Interior (IASPEI) International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) Geological Society of Japan (GSJ) Seismological Society of Japan (SSJ) Volcanological Society of Japan (VSJ) Japan Association for Quaternary Research (JAQUR) The 1st Workshop of Asia-Pacific Region Global Earthquake and Volcanic Eruption Risk Management (G-EVER1) Abstracts Volume Editors Eikichi Tsukuda, Yutaka Takahashi, Shinji Takarada, Akira Takada, Yasuto Kuwahara, Takashi Azuma, Naoji Koizumi and Yuzo Ishikawa Open-File Report of Geological Survey of Japan, no. 557 Published by the Geological Survey of Japan (GSJ), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8567, Japan. -
Terrestrial Fluids, Earthquakes and Volcanoes: the Hiroshi Wakita Volume II
Terrestrial Fluids, Earthquakes and Volcanoes: The Hiroshi Wakita Volume II Edited by Nemesio M. Pérez Sergio Gurrieri Chi-Yu King Yuri Taran Birkhäuser Basel · Boston · Berlin Reprint from Pure and Applied Geophysics (PAGEOPH), Volume 164 (2007) No. 12 Editors: Nemesio M. Pérez Sergio Gurrieri Environmental Research Division Istituto Nazionale di Geofisica e Instituto Tecnológico y de Energias Vulcanologia Renovables Sezione di Palermo Polígono Industrial de Granadilla s/n V. Ugo La Malfa, 153 38611 Granadilla, Tenerife 90146 Palermo Canary Islands Italy Spain e-mail: [email protected] e-mail: [email protected] Yuri Taran Chi-Yu King Volcanology Department Earthquake Prediction Research, Inc Institute of Geophysics 381 Hawthorne Ave. UNAM Los Altos, CA 94022 3000, Av. Universidad USA Mexico D.F., 04510 e-mail: [email protected] Mexico e-mail: taran@geofisica.unam.mx Library of Congress Control Number: 2006043001 Bibliographic information published by Die Deutsche Bibliothek: Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the Internet at <http://dnb.ddb.de> ISBN 978-3-7643-8719-8 Birkhäuser Verlag AG, Basel · Boston · Berlin This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustra- tions, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. For any kind of use permission of the copyright owner must be obtained. © 2008 Birkhäuser Verlag AG Basel · Boston · Berlin P.O. Box 133, CH-4010 Basel, Switzerland Part of Springer Science+Business Media Printed on acid-free paper produced from chlorine-free pulp. -
Shizuoka, Japan) and Its Responses During the Large Earthquakes Since 2003
Proceedings World Geothermal Congress 2010 Bali, Indonesia, 25-29 April 2010 A multi-parameter measurement system at Koseto (Shizuoka, Japan) and its responses during the large earthquakes since 2003 Ömer Aydan1, Hisataka Tano2 and Yoshimi Ohta3 1Tokai University, Dept. of Marine Civil Eng., Shizuoka, 2Nihon University, Dept. of Civil Eng., Koriyama, Japan , 3Tokai University, Graduate School of Science and Engineering, Shizuoka, Japan [email protected], [email protected], [email protected] Keywords: multi-parameter system, earthquake prediction, in the earth’s crust with time. The authors describe the temperature, AE, GPS, electric potential results of multi-parameter monitoring system installed in Koseto and its correlations with large earthquakes in Japan ABSTRACT and worldwide since 2003. The Koseto multi-parameter station is situated between Itoigawa-Shizuoka Tectonic Line (ISTL) and Sasayama 2. GEOLOGY AND TECTONICS OF THE SHIZUOKA Tectonic Line (STL) in Shizuoka prefecture of Japan, where. PREFECTURE four plate boundaries exist. The prefecture may experience Figure 2 shows the geology of the Shizuoka prefecture. The the anticipated Tokai earthquake in near future. The authors eastern region and Izu Peninsula of the prefecture mainly have continuously been measuring variations of hot-spring consist of volcanic sediments and volcanic rocks, while the temperature, temperature and pressure of air, electrical field, central region composed of Paleogenic and Neogenic pH, electrical resistivity and acoustic emissions as a part of sedimentary rocks. The western region consists of Paleozoic their multi-parameter monitoring system. This article sedimentary rocks, Cretaceous Shimanto belt and describes the responses of multi-parameters measured at this metamorphic rocks. -
Fault Scaling Relationships Depend on the Average Fault Slip Rate
Manuscript Click here to download Manuscript RL+SR_2MW_r16.tex 1 Fault Scaling Relationships Depend on the 2 Average Fault Slip Rate 3 John G. Anderson, Glenn P. Biasi, Steven G. Wes- 4 nousky 5 Abstract 6 This study addresses whether knowing the slip rate on a fault improves es- 7 timates of magnitude (MW ) of shallow, continental surface-rupturing earth- 8 quakes. Based on 43 earthquakes from the database of Wells and Coppersmith 9 (1994), Anderson et al. (1996) previously suggested that estimates of MW from 10 rupture length (LE)areimprovedbyincorporatingthesliprateofthefault 11 (SF ). We re-evaluate this relationship with an expanded database of 80 events, 12 that includes 57 strike-slip, 12 reverse, and 11 normal faulting events. When the 13 data are subdivided by fault mechanism, magnitude predictions from rupture 14 length are improved for strike-slip faults when slip rate is included, but not for 15 reverse or normal faults. Whether or not the slip rate term is present, a linear 16 model with M log L over all rupture lengths implies that the stress drop W ⇠ E 17 depends on rupture length - an observation that is not supported by teleseismic 18 observations. We consider two other models, including one we prefer because it 19 has constant stress drop over the entire range of LE for any constant value of 20 SF and fits the data as well as the linear model. The dependence on slip rate for 21 strike-slip faults is a persistent feature of all considered models. The observed 22 dependence on SF supports the conclusion that for strike-slip faults of a given 23 length, the static stress drop, on average, tends to decrease as the fault slip rate 24 increases. -
Title Hazards from Surface Faulting in Earthquakes Author(S) KOBAYASHI
Title Hazards from Surface Faulting in Earthquakes Author(s) KOBAYASHI, Yoshimasa Bulletin of the Disaster Prevention Research Institute (1976), Citation 26(4): 213-240 Issue Date 1976-12 URL http://hdl.handle.net/2433/124864 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University But Disas. Prey. rtes. Inst., Kyoto Univ., Vol. 26, Part 4, No. 244,Dec., 1976 213 Hazards from Surface Faulting in Earthquakes By Yoshimasa KOBAYASHI (Manuscriptreceived December 27, 1976) Abstract Well-knownearthquakes accompanied by surfacefaults since the 1891Nobi earthquake are reviewed,and hazardsfrom faulting are summarized. Morphologyof the hazardsas theoffset of groundsgrabens, mole tracks,tension cracks en echelon,gentle flexure or wavyswelling of land surfaceare described. Severalexamples of distributionof damage relative to faults shows that in earthquakesof M 7.0 to 7.5 the width of the endangeredarea where totally collapsedhouses wouldexceed 30% would be 5.5 to 7.5 km in mountaineousregions and someten kilometers in alluvialplains. Dimensionsand other featuresof faults are investigatedand the region at risk due-to faultingis discussed. The horizontaldisplacement is predominantin most earthquake faultsin Japan. Plural faultsgenerally move in an earthquake,and a belt 0.4 to 3 km wide on both sidesof a postulatedfault as well as conjugatedfaults crossed by the latter are at risk. 1. Introduction Surface faulting in earthquakes has caused severe damage in source regions of large earthquakes. The hazards from it, however, have not been paid much atten- tion to in Japan, while in the United States and other parts of North America the problem has been often treated and criteria for establishing Risk Zones or designing related to faulting are discussed actively”'2)•Tho.