406 Katarzyna Wojczulanis-Jakubas i współaut.

LITTLE — FLAGSHIP SPECIES OF THE Summary

Arctic is characterized by a simple structure of high metabolic rate (the highest of all seabirds), the its trophic web, where a single species of plants and little focus on energy rich zooplankton items play an important role in functioning of associated with cold, Arctic waters. For that reasons, the whole ecosystem. One of such keystone species both breeding and wintering distribution is associ- is the little auk (am. dovekie, Alle alle), a small sea- ated with distribution of cold, Arctic waters that are , colonially breeding exclusively in High Arctic. abundant in the preferred food items. In the light of The little auk, as a typical seabird foraging in the the ongoing changes in the Arctic environment, lit- sea and breeding in land, transport an enormous tle auk foraging might be challenged. Indeed, stud- organic matters from the sea to nutritionally poor ies show response to deteriorating conditions land ecosystem, what in turn positively affect tun- on feeding grounds by increasing their parental ef- dra vegetation. With global population size of ca 37 forts. No influence on the breeding success of birds mln breeding pairs little auk is probably the most have been observed yet, but the question how the numerous seabird of the world. Genetic differentia- birds can cope with the progressing environmental tion of the population is however very weak. Due to changes in the Arctic remains open.

LITERATURA

Callaghan T. V., Björn L. O., Chernov Y., Chapin T., Karnovsky N., Kwasniewski S., Weslawski J. M., Wal- Christensen T. R., Huntley B., Ims R. A., Johans- kuszW., Beszczynska-Möller A., 2003. The forag- son M., Jolly D., Jonasson S., Matveyeva N., Pan- ingbehaviour of little auks in a heterogeneous ikov N., Oechel W., Shaver G., Elster J., Hent- environment. Mar. Ecol. Prog. Ser. 253, 289–303. tonen H., Laine K., Taulavuori K., Taulavuori Kwasniewski S., Gluchowska M., Jakubas D., Woj- E., Zöckler C., 2004. Biodiversity, distributions czulanis-Jakubas K., Walkusz W., Karnovsky N., and adaptations of arctic species in the context Blachowiak-Samolyk K., Cisek M., Stempniewicz of environmental change. J. Human Environ. 33, L., 2010. The impact of different hydrographic 404–417. conditions and zooplankton communities on Gabrielsen G. W., Taylor J. R. E., Konarzewski M., provisioning little auks along the west coast of Mehlum F., 1991. Field and laboratory metabo- . Prog. Oceanogr. 87, 72–82. lism and thermoregulation in dovekies (Alleal- Kwasniewski S., Gluchowska M., Walkusz W., Kar- le). Auk 108, 71–78. novsky N. J., Jakubas D., Wojczulanis-Jakubas K., Grémillet D., Welcker J., Karnovsky N. J., Harding A. M. A. Goszczko I., Cisek M., Beszc- WalkuszW.,Hall M. E., Fort J., Brown Z.W., zynska-Möller A., Walczowski W., Weslawski J. Speakman J. R., Harding A. M. A.,2012. Little M., Stempniewicz L., 2012. Interannual changes auks buffer the impact of current Arctic climate in zooplankton on the West SpitsbergenShelf in change. Mar. Ecol. Prog. Ser. 454, 197–206. relation to hydrography and their consequenc- Harding A. M. A., Van Pelt T. I., Lifjeld J. T., Mehlum esfor the diet of planktivorous seabirds. ICES J. F., 2004. Sex differences in Little Auk Alleallepa- Mar. Sci. 69, 890–901. rental care: transition from biparental to pater- Moe B., Stempniewicz L., Jakubas D., Angelier F., nal-only care. Ibis 146, 642–651. Chastel O., Dinessen F., Gabrielsen G. W., Hans- Harding A. M. A., Welcker J., Steen H., Hamer K. C., sen F., Karnovsky N.J., Rønning B., Welcker J., Kitaysky A. S., Fort J., Talbot S. L., Cornick L. Wojczulanis-Jakubas K., Bech C., 2009. Climate A., Karnovsky N. J., Gabrielsen G. W., Grémil- change and phenological responses of twosea- let D., 2011. Adverse foraging conditions may bird species breeding in the high-Arctic. Mar. impact body mass and survival of a high Arctic Ecol. Prog. Ser. 393, 235–246. seabird. Oecologia 167, 49–59. Steen H., Vogedes D., Broms F., Falk-Petersen S., Jakubas D., Wojczulanis-Jakubas K., Walkusz Berge J., 2007. Little auks (Allealle) breeding W.,2007. Response of Dovekie to changes in in a High Arctic fjord system: bimodal foraging food availability. Waterbirds 30, 421–428. strategies as a response to poor food quality? Jakubas D., Głuchowska M., Wojczulanis-Jakubas Polar Res. 26, 118–125. K., Karnovsky N. J., Keslinka L., Kidawa D., Stempniewicz L., 1992. Manuring of tundra near Walkusz W., Boehnke R., Cisek M., Kwaśniewski a large colony of seabirds on . Land- S., Stempniewicz L., 2011. Foraging effort does scape, life world, and Man in High Arctic. In- not influence body condition and stress level in stitute of Ecology, Polish Academy of Science, little auks. Mar. Ecol. Prog. Ser. 432, 277–290. Warszawa, 255–269. Jakubas D., Iliszko L., Wojczulanis-Jakubas K., Stemp- Stempniewicz L., 2001. Allealle Little Auk. BWP Up- niewicz L., 2012. Foraging by little auks in the date. J. Birds Western Palearct. 3, 175–201. distant marginal sea ice zone during the chick- Welcker J., Harding A. M. A., Karnovsky N. J., Steen rearing period. Polar Biol. 35, 73–81. H., Strøm H., Gabrielsen G. W., 2009. Flexibility Jakubas D., Trudnowska E., Wojczulanis-Jakubas K., in the bimodal foraging strategy of a high Arc- Iliszko L., Kidawa D., Parecki M., Błachowsiak- tic alcid, the little auk Allealle. J. Avian Biol. 40, -Samołyk K., Stempniewicz L., 2013. Foraging 388–399. closer top the colony leads to faster growth in Welcker J., Beiersdorf A., Varpe Ø., Steen H., 2012. little auks. Mar. Ecol. Prog. Ser. 489, 263–278. Mass fluctuations suggest different functions of