Mouse Fa2h Knockout Project (CRISPR/Cas9)

Total Page:16

File Type:pdf, Size:1020Kb

Mouse Fa2h Knockout Project (CRISPR/Cas9) https://www.alphaknockout.com Mouse Fa2h Knockout Project (CRISPR/Cas9) Objective: To create a Fa2h knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Fa2h gene (NCBI Reference Sequence: NM_178086 ; Ensembl: ENSMUSG00000033579 ) is located on Mouse chromosome 8. 7 exons are identified, with the ATG start codon in exon 1 and the TGA stop codon in exon 7 (Transcript: ENSMUST00000038475). Exon 3~6 will be selected as target site. Cas9 and gRNA will be co-injected into fertilized eggs for KO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Homozygotes for a null allele show demyelination, axonal loss, and cerebellar dysfunction. Homozygotes for a different null allele show late onset axon and myelin sheath degeneration, delayed fur emergence, altered sebum composition, sebocyte hyperproliferation, and cyclic alopecia. Exon 3 starts from about 32.62% of the coding region. Exon 3~6 covers 60.57% of the coding region. The size of effective KO region: ~8290 bp. The KO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 3 4 5 6 7 Legends Exon of mouse Fa2h Knockout region Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot (up) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section upstream of Exon 3 is aligned with itself to determine if there are tandem repeats. Tandem repeats are found in the dot plot matrix. The gRNA site is selected outside of these tandem repeats. Overview of the Dot Plot (down) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 1409 bp section downstream of Exon 6 is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Page 3 of 8 https://www.alphaknockout.com Overview of the GC Content Distribution (up) Window size: 300 bp Sequence 12 Summary: Full Length(2000bp) | A(24.75% 495) | C(24.1% 482) | T(26.8% 536) | G(24.35% 487) Note: The 2000 bp section upstream of Exon 3 is analyzed to determine the GC content. No significant high GC-content region is found. So this region is suitable for PCR screening or sequencing analysis. Overview of the GC Content Distribution (down) Window size: 300 bp Sequence 12 Summary: Full Length(1409bp) | A(32.01% 451) | C(21.36% 301) | T(24.91% 351) | G(21.72% 306) Note: The 1409 bp section downstream of Exon 6 is analyzed to determine the GC content. No significant high GC-content region is found. So this region is suitable for PCR screening or sequencing analysis. Page 4 of 8 https://www.alphaknockout.com BLAT Search Results (up) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 2000 1 2000 2000 100.0% chr8 - 111356221 111358220 2000 browser details YourSeq 83 676 764 2000 98.9% chr12 - 62580980 62581106 127 browser details YourSeq 72 676 747 2000 100.0% chr15 + 91674471 91674542 72 browser details YourSeq 63 676 755 2000 89.1% chr3 + 123997594 123997769 176 browser details YourSeq 62 678 761 2000 75.7% chr1 - 113149509 113149582 74 browser details YourSeq 47 726 786 2000 94.6% chr17 + 30021391 30021475 85 browser details YourSeq 40 718 764 2000 95.6% chr8 - 60064910 60064960 51 browser details YourSeq 40 680 724 2000 97.8% chr4 - 143017428 143017492 65 browser details YourSeq 40 707 746 2000 100.0% chr16 - 54325786 54325825 40 browser details YourSeq 40 713 755 2000 97.7% chr12 + 105761960 105762003 44 browser details YourSeq 38 723 762 2000 100.0% chr3 - 99538134 99538264 131 browser details YourSeq 38 713 754 2000 97.7% chr2 + 39910871 39910919 49 browser details YourSeq 38 712 759 2000 77.3% chr18 + 78084460 78084503 44 browser details YourSeq 36 708 748 2000 95.0% chrX - 157647593 157647635 43 browser details YourSeq 35 714 754 2000 81.6% chr4 - 10907605 10907642 38 browser details YourSeq 34 745 780 2000 97.3% chr2 + 149542386 149542421 36 browser details YourSeq 33 708 748 2000 89.2% chr6 - 92640644 92640683 40 browser details YourSeq 33 340 779 2000 48.6% chr17 + 70504752 70504943 192 browser details YourSeq 30 716 748 2000 96.9% chr6 + 95239662 95239694 33 browser details YourSeq 30 716 748 2000 96.9% chr18 + 52829011 52829046 36 Note: The 2000 bp section upstream of Exon 3 is BLAT searched against the genome. No significant similarity is found. BLAT Search Results (down) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 1409 1 1409 1409 100.0% chr8 - 111346522 111347930 1409 browser details YourSeq 126 655 826 1409 89.4% chr2 + 38904612 38904784 173 browser details YourSeq 123 358 795 1409 78.5% chr5 + 110369386 110369771 386 browser details YourSeq 116 259 821 1409 85.1% chr5 - 123327508 123328103 596 browser details YourSeq 116 617 824 1409 81.0% chr9 + 56444269 56444437 169 browser details YourSeq 114 678 834 1409 85.3% chr11 - 34894039 34894176 138 browser details YourSeq 106 681 828 1409 89.7% chr10 + 61592840 61593000 161 browser details YourSeq 105 678 821 1409 89.0% chr7 - 27226804 27226959 156 browser details YourSeq 104 682 828 1409 88.9% chr8 + 87941540 87941699 160 browser details YourSeq 102 674 824 1409 88.7% chr5 - 149703646 149703810 165 browser details YourSeq 102 678 805 1409 91.2% chr5 + 125737764 125737892 129 browser details YourSeq 101 349 794 1409 86.9% chr16 + 94477569 94478082 514 browser details YourSeq 100 256 745 1409 75.8% chr11 - 61901802 61902012 211 browser details YourSeq 100 678 821 1409 88.0% chr8 + 46438913 46439054 142 browser details YourSeq 100 672 792 1409 91.8% chr15 + 12301083 12301204 122 browser details YourSeq 97 672 828 1409 84.9% chr12 - 102327991 102328149 159 browser details YourSeq 97 674 795 1409 90.2% chr1 - 180720882 180721004 123 browser details YourSeq 96 678 816 1409 86.7% chr17 - 34184868 34185003 136 browser details YourSeq 96 672 795 1409 85.8% chr10 - 82721467 82721586 120 browser details YourSeq 94 678 795 1409 89.9% chr7 + 30508956 30509073 118 Note: The 1409 bp section downstream of Exon 6 is BLAT searched against the genome. No significant similarity is found. Page 5 of 8 https://www.alphaknockout.com Gene and protein information: Fa2h fatty acid 2-hydroxylase [ Mus musculus (house mouse) ] Gene ID: 338521, updated on 31-Aug-2019 Gene summary Official Symbol Fa2h provided by MGI Official Full Name fatty acid 2-hydroxylase provided by MGI Primary source MGI:MGI:2443327 See related Ensembl:ENSMUSG00000033579 Gene type protein coding RefSeq status VALIDATED Organism Mus musculus Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus Also known as FAAH; Faxdc1; G630055L08Rik Expression Biased expression in stomach adult (RPKM 77.1), colon adult (RPKM 59.1) and 8 other tissues See more Orthologs human all Genomic context Location: 8; 8 E1 See Fa2h in Genome Data Viewer Exon count: 7 Annotation release Status Assembly Chr Location 108 current GRCm38.p6 (GCF_000001635.26) 8 NC_000074.6 (111345138..111393821, complement) Build 37.2 previous assembly MGSCv37 (GCF_000001635.18) 8 NC_000074.5 (113869038..113917721, complement) Chromosome 8 - NC_000074.6 Page 6 of 8 https://www.alphaknockout.com Transcript information: This gene has 4 transcripts Gene: Fa2h ENSMUSG00000033579 Description fatty acid 2-hydroxylase [Source:MGI Symbol;Acc:MGI:2443327] Gene Synonyms Faxdc1, G630055L08Rik Location Chromosome 8: 111,345,135-111,393,824 reverse strand. GRCm38:CM001001.2 About this gene This gene has 4 transcripts (splice variants), 203 orthologues, is a member of 1 Ensembl protein family and is associated with 34 phenotypes. Transcripts Name Transcript ID bp Protein Translation ID Biotype CCDS UniProt Flags Fa2h-201 ENSMUST00000038475.8 2492 372aa ENSMUSP00000043597.8 Protein coding CCDS22674 Q5MPP0 TSL:1 GENCODE basic APPRIS P1 Fa2h-204 ENSMUST00000162463.1 1566 No protein - Retained intron - - TSL:1 Fa2h-202 ENSMUST00000159336.7 1971 No protein - lncRNA - - TSL:5 Fa2h-203 ENSMUST00000162216.1 933 No protein - lncRNA - - TSL:3 68.69 kb Forward strand 111.34Mb 111.36Mb 111.38Mb 111.40Mb Contigs AC132311.2 > Genes (Comprehensive set... < Mlkl-201protein coding < Fa2h-202lncRNA < Mlkl-202protein coding < Fa2h-201protein coding < Mlkl-204protein coding < Fa2h-203lncRNA < Fa2h-204retained intron Regulatory Build 111.34Mb 111.36Mb 111.38Mb 111.40Mb Reverse strand 68.69 kb Regulation Legend CTCF Enhancer Open Chromatin Promoter Promoter Flank Transcription Factor Binding Site Gene Legend Protein Coding merged Ensembl/Havana Ensembl protein coding Non-Protein Coding processed transcript RNA gene Page 7 of 8 https://www.alphaknockout.com Transcript: ENSMUST00000038475 < Fa2h-201protein coding Reverse strand 48.68 kb ENSMUSP00000043... Transmembrane heli... Low complexity (Seg) Superfamily Cytochrome b5-like heme/steroid binding domain superfamily SMART Cytochrome b5-like heme/steroid binding domain Prints Cytochrome b5-like heme/steroid binding domain Pfam Cytochrome b5-like heme/steroid binding domain Fatty acid hydroxylase PROSITE profiles Cytochrome b5-like heme/steroid binding domain PROSITE patterns Cytochrome b5, heme-binding site PIRSF Sterol desaturase Scs7 PANTHER PTHR12863 Gene3D Cytochrome b5-like heme/steroid binding domain superfamily All sequence SNPs/i... Sequence variants (dbSNP and all other sources) Variant Legend splice acceptor variant missense variant splice region variant synonymous variant Scale bar 0 40 80 120 160 200 240 280 320 372 We wish to acknowledge the following valuable scientific information resources: Ensembl, MGI, NCBI, UCSC. Page 8 of 8.
Recommended publications
  • WO 2Ull/13162O Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date Χ 1 / A 1 27 October 2011 (27.10.2011) WO 2Ull/13162o Al (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, C12N 9/02 (2006.01) A61K 38/44 (2006.01) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, A61K 38/17 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (21) International Application Number: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, PCT/EP20 11/056142 ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (22) International Filing Date: NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, 18 April 201 1 (18.04.201 1) SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every (26) Publication Langi English kind of regional protection available): ARIPO (BW, GH, (30) Priority Data: GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 10160368.6 19 April 2010 (19.04.2010) EP ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, (71) Applicants (for all designated States except US): MEDI- EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, FT, LT, LU, ZINISCHE UNIVERSITAT INNSBRUCK [AT/AT]; LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, Christoph-Probst-Platz, Innrain 52, A-6020 Innsbruck SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, (AT).
    [Show full text]
  • Thesis Reference
    Thesis A kinome-wide RNAi screen to identify genes controlling membrane lipid homeostasis in human cells GEHIN, Charlotte Abstract The control of lipid homeostasis is a fundamental process that allows cells to maintain the unique lipid composition of their membrane compartments and to deal with the energetic fluxes from metabolism. If most of enzymes involved in lipid metabolism are characterized, the question of the genetic control of lipid homeostasis is still outstanding. In order to find genes that control the homeostasis of membrane lipids, I combined a large-scale RNAi screen targeting the human knome with the techniques of targeted lipidomic analysis by mass spectrometry to monitor lipid changes in HeLa cells. Data analysis of the screen allowed the characterization of candidate genes involved in the control of membrane lipid homeostasis. In parallel, in the context of the NCCR Chemical Biology, I developed a robotically-assisted siRNA transfection assay and screened a library of chemicals potentially able to transfect siRNA in Human cells at least as efficiently than commercially available compounds. Reference GEHIN, Charlotte. A kinome-wide RNAi screen to identify genes controlling membrane lipid homeostasis in human cells. Thèse de doctorat : Univ. Genève, 2014, no. Sc. 4670 URN : urn:nbn:ch:unige-380353 DOI : 10.13097/archive-ouverte/unige:38035 Available at: http://archive-ouverte.unige.ch/unige:38035 Disclaimer: layout of this document may differ from the published version. 1 / 1 UNIVERSITÉ DE GENÈVE FACULTÉ DES SCIENCES
    [Show full text]
  • Genome-Wide Association and Gene Enrichment Analyses of Meat Sensory Traits in a Crossbred Brahman-Angus
    Proceedings of the World Congress on Genetics Applied to Livestock Production, 11. 124 Genome-wide association and gene enrichment analyses of meat tenderness in an Angus-Brahman cattle population J.D. Leal-Gutíerrez1, M.A. Elzo1, D. Johnson1 & R.G. Mateescu1 1 University of Florida, Department of Animal Sciences, 2250 Shealy Dr, 32608 Gainesville, Florida, United States. [email protected] Summary The objective of this study was to identify genomic regions associated with meat tenderness related traits using a whole-genome scan approach followed by a gene enrichment analysis. Warner-Bratzler shear force (WBSF) was measured on 673 steaks, and tenderness and connective tissue were assessed by a sensory panel on 496 steaks. Animals belong to the multibreed Angus-Brahman herd from University of Florida and range from 100% Angus to 100% Brahman. All animals were genotyped with the Bovine GGP F250 array. Gene enrichment was identified in two pathways; the first pathway is involved in negative regulation of transcription from RNA polymerase II, and the second pathway groups several cellular component of the endoplasmic reticulum membrane. Keywords: tenderness, gene enrichment, regulation of transcription, cell growth, cell proliferation Introduction Identification of quantitative trait loci (QTL) for any complex trait, including meat tenderness, is the first most important step in the process of understanding the genetic architecture underlying the phenotype. Given a large enough population and a dense coverage of the genome, a genome-wide association study (GWAS) is usually successful in uncovering major genes and QTLs with large and medium effect on these type of traits. Several GWA studies on Bos indicus (Magalhães et al., 2016; Tizioto et al., 2013) or crossbred beef cattle breeds (Bolormaa et al., 2011b; Hulsman Hanna et al., 2014; Lu et al., 2013) were successful at identifying QTL for meat tenderness; and most of them include the traditional candidate genes µ-calpain and calpastatin.
    [Show full text]
  • Hereditary Spastic Paraplegia: from Genes, Cells and Networks to Novel Pathways for Drug Discovery
    brain sciences Review Hereditary Spastic Paraplegia: From Genes, Cells and Networks to Novel Pathways for Drug Discovery Alan Mackay-Sim Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia; a.mackay-sim@griffith.edu.au Abstract: Hereditary spastic paraplegia (HSP) is a diverse group of Mendelian genetic disorders affect- ing the upper motor neurons, specifically degeneration of their distal axons in the corticospinal tract. Currently, there are 80 genes or genomic loci (genomic regions for which the causative gene has not been identified) associated with HSP diagnosis. HSP is therefore genetically very heterogeneous. Finding treatments for the HSPs is a daunting task: a rare disease made rarer by so many causative genes and many potential mutations in those genes in individual patients. Personalized medicine through genetic correction may be possible, but impractical as a generalized treatment strategy. The ideal treatments would be small molecules that are effective for people with different causative mutations. This requires identification of disease-associated cell dysfunctions shared across geno- types despite the large number of HSP genes that suggest a wide diversity of molecular and cellular mechanisms. This review highlights the shared dysfunctional phenotypes in patient-derived cells from patients with different causative mutations and uses bioinformatic analyses of the HSP genes to identify novel cell functions as potential targets for future drug treatments for multiple genotypes. Keywords: neurodegeneration; motor neuron disease; spastic paraplegia; endoplasmic reticulum; Citation: Mackay-Sim, A. Hereditary protein-protein interaction network Spastic Paraplegia: From Genes, Cells and Networks to Novel Pathways for Drug Discovery. Brain Sci. 2021, 11, 403.
    [Show full text]
  • Download Ppis for Each Single Seed, Thus Obtaining Each Seed’S Interactome (Ferrari Et Al., 2018)
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.14.425874; this version posted January 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Integrating protein networks and machine learning for disease stratification in the Hereditary Spastic Paraplegias Nikoleta Vavouraki1,2, James E. Tomkins1, Eleanna Kara3, Henry Houlden3, John Hardy4, Marcus J. Tindall2,5, Patrick A. Lewis1,4,6, Claudia Manzoni1,7* Author Affiliations 1: Department of Pharmacy, University of Reading, Reading, RG6 6AH, United Kingdom 2: Department of Mathematics and Statistics, University of Reading, Reading, RG6 6AH, United Kingdom 3: Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, United Kingdom 4: Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, United Kingdom 5: Institute of Cardiovascular and Metabolic Research, University of Reading, Reading, RG6 6AS, United Kingdom 6: Department of Comparative Biomedical Sciences, Royal Veterinary College, London, NW1 0TU, United Kingdom 7: School of Pharmacy, University College London, London, WC1N 1AX, United Kingdom *Corresponding author: [email protected] Abstract The Hereditary Spastic Paraplegias are a group of neurodegenerative diseases characterized by spasticity and weakness in the lower body. Despite the identification of causative mutations in over 70 genes, the molecular aetiology remains unclear. Due to the combination of genetic diversity and variable clinical presentation, the Hereditary Spastic Paraplegias are a strong candidate for protein- protein interaction network analysis as a tool to understand disease mechanism(s) and to aid functional stratification of phenotypes.
    [Show full text]
  • Contextual Analysis of Large-Scale Biomedical Associations for the Elucidation and Prioritization of Genes and Their Roles in Complex Disease Jeremy J
    The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library 12-2013 Contextual Analysis of Large-Scale Biomedical Associations for the Elucidation and Prioritization of Genes and their Roles in Complex Disease Jeremy J. Jay Follow this and additional works at: http://digitalcommons.library.umaine.edu/etd Part of the Computer Sciences Commons Recommended Citation Jay, Jeremy J., "Contextual Analysis of Large-Scale Biomedical Associations for the Elucidation and Prioritization of Genes and their Roles in Complex Disease" (2013). Electronic Theses and Dissertations. 2140. http://digitalcommons.library.umaine.edu/etd/2140 This Open-Access Dissertation is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. CONTEXTUAL ANALYSIS OF LARGE-SCALE BIOMEDICAL ASSOCIATIONS FOR THE ELUCIDATION AND PRIORITIZATION OF GENES AND THEIR ROLES IN COMPLEX DISEASE By Jeremy J. Jay B.S.I. Baylor University, 2006 M.S. University of Tennessee, 2009 A DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy (in Computer Science) The Graduate School The University of Maine December 2013 Advisory Committee: George Markowsky, Professor, Advisor Elissa J Chesler, Associate Professor, The Jackson Laboratory Erich J Baker, Associate Professor, Baylor University Judith Blake, Associate Professor, The Jackson Laboratory James Fastook, Professor DISSERTATION ACCEPTANCE STATEMENT On behalf of the Graduate Committee for Jeremy J. Jay, I affirm that this manuscript is the final and accepted dissertation. Signatures of all committee members are on file with the Graduate School at the University of Maine, 42 Stodder Hall, Orono, Maine.
    [Show full text]
  • Levels of SCS7/FA2H-Mediated Fatty Acid 2-Hydroxylation Determine the Sensitivity of Cells to Antitumor PM02734
    Research Article Levels of SCS7/FA2H-Mediated Fatty Acid 2-Hydroxylation Determine the Sensitivity of Cells to Antitumor PM02734 Ana B. Herrero,1 Alma M. Astudillo,2 Marı´a A. Balboa,2 Carmen Cuevas,3 Jesu´s Balsinde,2 and Sergio Moreno1 1Instituto de Biologı´a Molecular y Celular del Ca´ncer, Consejo Superior de Investigaciones Cientı´ficas/Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain; 2Instituto de Biologı´a y Gene´ticaMolecular, Consejo Superior de Investigaciones Cientı´ficas, and Centro de Investigacio´n Biome´dicaen Red de Diabetes y Enfermedades Metabo´licas Asociadas, Valladolid, Spain; and 3PharmaMar S.A., Research and Development, Madrid, Spain Abstract into mice. Based on these observations, and in view of its PM02734 is a novel synthetic antitumor drug that is currently acceptable nonclinical toxicity profile, PM02734 has been selected in phase I clinical trials. To gain some insight into its mode of for clinical development (2). action, we used the yeast Saccharomyces cerevisiae as a model Although PM02734 has entered phase I clinical trials with a positive therapeutic index in advanced pretreated solid tumors, system. Treatment of S. cerevisiae with PM02734 rapidly very little is known about its mechanism of action. To gain insight induced necrosis-like cell death, as also found for mammalian into the in vivo mechanism of the action of PM02734, we used the cells treated with its close analogue kahalalide F. We have yeast Saccharomyces cerevisiae as a model organism. We found that screened the complete set of 4,848 viable S. cerevisiae haploid the compound induces rapid necrosis-like cell death in yeast.
    [Show full text]
  • Integrative Functional Analyses of the Neurodegenerative Disease-Associated TECPR2 Gene Reveal Its Diverse Roles
    Integrative functional analyses of the neurodegenerative disease-associated TECPR2 gene reveal its diverse roles Ido Shalev Ben-Gurion University of the Negev Judith Somekh University of Haifa Alal Eran ( [email protected] ) Ben-Gurion University of the Negev https://orcid.org/0000-0001-6784-7597 Research article Keywords: Integrative functional analysis, neurodegenerative disorders, autophagy, ribosome, TECPR2 Posted Date: January 30th, 2020 DOI: https://doi.org/10.21203/rs.2.22274/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/23 Abstract Background Loss of tectonin β-propeller repeat-containing 2 (TECPR2) function has been implicated in an array of neurodegenerative disorders, yet its physiological function remains largely unknown. Understanding TECPR2 function is essential for developing much needed precision therapeutics for TECPR2-related diseases. Methods We leveraged the considerable amounts of functional data to obtain a comprehensive perspective of the role of TECPR2 in health and disease. We integrated expression patterns, population variation, phylogenetic proling, protein-protein interactions, and regulatory network data for a minimally biased multimodal functional analysis. Genes and proteins linked to TECPR2 via multiple lines of evidence were subject to functional enrichment analyses to identify molecular mechanisms involving TECPR2. Results TECPR2 was found to be part of a tight neurodevelopmental gene expression program that includes KIF1A, ATXN1, TOM1L2, and FA2H, all implicated in neurological diseases. Functional enrichment analyses of TECPR2-related genes converged on a role in late autophagy and ribosomal processes. Large-scale population variation data demonstrated that this role is nonredundant. Conclusions TECPR2 might serve as an indicator for the energy balance between protein synthesis and autophagy, and a marker for diseases associated with their imbalance, such as Alzheimer’s disease, Huntington’s disease, and various cancers.
    [Show full text]
  • Cell Type Marker Enrichment Across Brain Regions and Experimental Conditions
    Cell type marker enrichment across brain regions and experimental conditions by Powell Patrick Cheng Tan B. Sc. (Honours), Simon Fraser University, 2010 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science in THE FACULTY OF GRADUATE STUDIES (Bioinformatics) The University Of British Columbia (Vancouver) November 2012 c Powell Patrick Cheng Tan, 2012 Abstract The first chapter of this thesis explored the dominant gene expression pattern in the adult human brain. We discovered that the largest source of variation can be explained by cell type marker expression. Across brain regions, expression of neuron cell type markers are anti-correlated with the expression of oligodendrocyte cell type markers. Next, we explored gene function convergence and divergence in the adult mouse brain. Our contributions are as follows. First, we provide candidate cell type markers for investigating specific cell type populations. Second, we highlight orthologous genes that show functional divergence between human and mouse brains. In the second chapter, we present our preliminary work on the effects of tissue types and experimen- tal conditions on human microarray studies. First, we measured the expression and differential expression levels of tissue-enriched genes. Next, we identified modules with similar expression levels and differen- tial expression p-values. Our results show that expression levels reflect tissue type variation. In contrast, differential expression levels are more complex, owing to the large diversity of experimental conditions in the data. In summary, our work provides a different perspective on the functional roles of genes in human microarray studies. ii Table of Contents Abstract .
    [Show full text]
  • Gene Modules Associated with Human Diseases Revealed by Network
    bioRxiv preprint doi: https://doi.org/10.1101/598151; this version posted June 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Gene modules associated with human diseases revealed by network analysis Shisong Ma1,2*, Jiazhen Gong1†, Wanzhu Zuo1†, Haiying Geng1, Yu Zhang1, Meng Wang1, Ershang Han1, Jing Peng1, Yuzhou Wang1, Yifan Wang1, Yanyan Chen1 1. Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China 2. School of Data Science, University of Science and Technology of China, Hefei, Anhui 230027, China * To whom correspondence should be addressed. Email: [email protected] † These authors contribute equally. 1 bioRxiv preprint doi: https://doi.org/10.1101/598151; this version posted June 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. ABSTRACT Despite many genes associated with human diseases have been identified, disease mechanisms often remain elusive due to the lack of understanding how disease genes are connected functionally at pathways level. Within biological networks, disease genes likely map to modules whose identification facilitates etiology studies but remains challenging. We describe a systematic approach to identify disease-associated gene modules.
    [Show full text]
  • Identification of a Robust Five-Gene Risk Model in Prostate Cancer: a Robust Likelihood-Based Survival Analysis
    Hindawi International Journal of Genomics Volume 2020, Article ID 1097602, 23 pages https://doi.org/10.1155/2020/1097602 Research Article Identification of a Robust Five-Gene Risk Model in Prostate Cancer: A Robust Likelihood-Based Survival Analysis Yutao Wang ,1 Jiaxing Lin ,1 Kexin Yan ,2 and Jianfeng Wang 1 1Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, China 2Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning, China Correspondence should be addressed to Jianfeng Wang; [email protected] Received 15 December 2019; Revised 21 April 2020; Accepted 1 May 2020; Published 1 June 2020 Academic Editor: Hieronim Jakubowski Copyright © 2020 Yutao Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Aim. In this paper, we aimed to develop and validate a risk prediction method using independent prognosis genes selected robustly in prostate cancer. Method. We considered 723 samples obtained from TCGA (the Cancer Genome Atlas), GSE46602, and GSE21032. Prostate cancer prognosis-related genes with P <0:05 were selected using Univariable Cox regression analysis. We then built the lowest AIC (Akaike information criterion score) optimal gene model using the “Rbsurv” package in TCGA train set. The coefficients were obtained by Multivariable Cox regression analysis. We named the new prognosis method CMU5. The CMU5 risk score was verified in TCGA test set, GSE46602, and GSE21032. Results. FAM72D, ARHGAP33, TACR2, PLEK2, and FA2H were identified as independent prognosis factors in prostate cancer patients.
    [Show full text]
  • Identification of Key Pathways and Genes Related to the Development of Hair Follicle Cycle in Cashmere Goats
    G C A T T A C G G C A T genes Article Identification of Key Pathways and Genes Related to the Development of Hair Follicle Cycle in Cashmere Goats Jianfang Wang, Jie Sui, Chao Mao, Xiaorui Li, Xingyi Chen , Chengcheng Liang , Xiaohui Wang, Si-Hu Wang and Cunling Jia * College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; [email protected] (J.W.); [email protected] (J.S.); [email protected] (C.M.); [email protected] (X.L.); [email protected] (X.C.); [email protected] (C.L.); [email protected] (X.W.); [email protected] (S.-H.W.) * Correspondence: [email protected] Abstract: The development of hair follicle in cashmere goats shows significant periodic change, as with mice and humans. However, for cashmere goat with double-coat, the periodic change may be due to other regulatory molecules and signal pathways. To understand the mechanism of periodic development of hair follicle, we performed a weighted gene coexpression network analysis (WGCNA) to mine key genes and establish an interaction network by utilizing the NCBI public dataset. Ten coexpression modules, including 7689 protein-coding genes, were constructed by WGCNA, six of which are considered to be significantly related to the development of the hair follicle cycle. A functional enrichment analysis for each model showed that they are closely related to ECM- receptor interaction, focal adhesion, PI3K-Akt signaling pathway, estrogen signaling pathway, and so on. Combined with the analysis of differential expressed genes, 12 hub genes from coexpression Citation: Wang, J.; Sui, J.; Mao, C.; Li, modules were selected as candidate markers, i.e., COL1A1, C1QTNF6, COL1A2, AQP3, KRTAP3-1, X.; Chen, X.; Liang, C.; Wang, X.; KRTAP11-1, FA2H, NDUFS5, DERL2, MRPL14, ANTKMT and XAB2, which might be applied to Wang, S.-H.; Jia, C.
    [Show full text]