Information to Users

Total Page:16

File Type:pdf, Size:1020Kb

Information to Users INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. A Bell & Howell Information Company 300 North Zeeb Road. Ann Arbor. Ml 48106-1346 USA 313/761-4700 800/521-0600 REACTION CHEMISTRY OF FISCHER-TYPE RHENACYCLOBUTADIENE AND t|3-TRIMETHYLENEMETHANE PLATINUM COMPLEXES DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Graduate School of The Ohio State University By Vdronique Plantevin The Ohio State University 1995 Dissertation Committee: Approved by: Dr. Bruce Bursten Dr. Viresh Rawal « - Dr. Andrew Wojcicki Adviser / Department of Chemistry UMI Number: 9526075 UMI Microform 9526075 Copyright 1995, by UMI Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. UMI 300 North Zeeb Road Ann Arbor, MI 48103 To My Parents ii ACKNOWLEDGMENT I would like to express my sincere gratitude to my advisor, Professor A. Wojcicki, for his support and guidance. The completion of my experimental work would have been impossible without the collaboration of Carl Engleman (NMR), David Chang (mass spectrometry), and Judith Gallucci (X-ray diffraction analysis). I would like to acknowledge as well the financial support provided by The Ohio State University and the Lubrizol Co. for a graduate fellowship. Thanks to all the members of the Wojcicki group, past and present: Laura L. Padolik, Patrick W. Blosser, Richard R. Willis, Dean E. Rende, Mark W. Baize, Todd R. Dunsizer, Kirsten L. Daniel, and Christopher M. Beck. In addition to constructive chemistry-related discussions, I am appreciative of their moral support and friendship. Finally, I would like to express my gratitude to my parents whose love, patience, and unconditional support have contributed to the completion of my graduate studies. This dissertation is dedicated to them. VITA January 29, 1968 Bom, Rognac, France 1985 Baccalaurdat C, Lycde Vauvenargues, Aix-en-Provence, France 1985-1987 Mathdmatiques Supdrieures-Mathdmatiques Spdciales, Lycde Paul Cdzanne, Aix-en-Provence, France 1987-1989 ESCIL, Lyon, France 1989-1993 Teaching Assistant and Research Assistant The Ohio State University 1994 Lubrizol, Co. Industrial Fellow, The Ohio State University PUBLICATIONS - Plantevin, V.; Blosser, P. W.; Gallucci, J. C.; Wojcicki, A. "ti3-Trimethylenemethane Complexes of Platinum", OrganometaUics 1 9 9 4 , 13, 3651. - Plantevin, V.; Gallucci, J. C.; Wojcicki, A. Inorg. Chim. Acta 1994, 222, 199. FIELDS OF STUDY Major Field: Chemistry Studies in Organic Chemistry Professor Andrew Wojcicki iv TABLE OF CONTENTS DEDICATION............................................................................................................ ii ACKNOWLEDGMENT...............................................................................................iii VITA.............................................................................................................................iv LIST OF TABLES..................................................................................................... vii LIST OF FIGURES.................................................................................................... viii LIST OF SCHEMES...................................................................................................x CHAPTER PAGE I. INTRODUCTION ................................................................................................ 1 PART A: ORGANORHENIUM COMPLEXES........................................... 2 I- Fischer-type carbene complexes ........................................ 2 II- Schrock-type metallacyclobutadiene complexes ............... 19 III- Fischer-type rhenacyclobutadiene complexes .................21 IV- Objectives of the project ................................................... 25 PART B: ORGANOPLATINUM COMPLEXES...........................................26 I- T)3-Propargyl transition metal complexes ...........................26 II- Use of trimethylenemethane transition metal complexes in organic synthesis................................................................32 III- ti3-Trimethylenemethane complexes of platinum ........... 42 IV- Objectives of the project ................................................... 42 II. DISCUSSION ................................................................................................. 44 PART A: ORGANORHENIUM COMPLEXES............................................ 44 I- Fischer-type properties o f .................................................. rhenacyclobutadiene complexes 1 ...........................................44 II- Attempts to diversify die substitution pattern onthemetallacycle .................................................................. 53 III- Exploration of the novel reaction chemistry of rhenacyclobutadiene complexes ..............................................70 IV-Summar y.......................................................................... 132 v PART B: ORGANOPLATINUM COMPLEXES............................................133 I- Spectroscopic data ................................................................133 II- X-Ray diffraction analysis of complex 7 8 ........................ 137 III- Reactivity of complex 7 8 with unsaturated reagents 144 IV- Attempt to change the nature of the substituent on C 2 163 V- Attempts to change the terminal substituent ........................168 VI- Study of the reactivity of complex 150 toward olefins ...................................................................188 VII- Summary......................................................................... 192 III. EXPERIMENTAL PART.................................................................................... 193 PART A: GENERAL PROCEDURES............................................................193 I- General experimental conditions .......................................... 193 II- Instrumentation ...................................................................194 III- Reagents and chemicals ..................................................... 196 PART B: ORGANORHENIUM COMPLEXES.............................................197 I- Preparation of rhenacyclobutadiene complexes ...................197 II- Deprotonation of complex la and deuteration/alkylation studies ..................................................203 III- Aminolysis reactions .........................................................207 IV- Reactions involving P(CH 3 )2Ph ....................................... 210 V- Rhenium cyclopentadienyl complexes ...............................213 VI- Oxygen-atom insertion reactions ....................................... 222 VII- Nucleophilic attack by carbanions ...................................224 VIII- Rearrangements in organonitriles and pyridine .............227 IX- NH-Insertion reactions .....................................................230 PART C: ORGANOPLATINUM COMPLEXES........................................... 236 I- Synthesis of propargyl tosylate starting materials .............. 236 II- Attempts to isolate -propargyl Pt tosylate complexes ................................................................................238 III- Synthesis of various heteroatom-substituted platinum allyl complexes .........................................................240 IV- Synthesis of various trimethylenemethane complexes of platinum ...............................................................................245 V- Reactivity of substituted trimethylenemethane complexes of platinum .............................................................251 REFERENCES.............................................................................................................257 APPENDIX.................................................................................................................. 272 vi LIST OF TABLES TABLE PAGE 1. Product ratios: naphthols versus indenones ......................................... 19 2. Selected 13C{ 1H} NMR chemical shifts of complexes 1 .....................22 3. IR data of complex la and its conjugated base .....................................49 4. Selected 13C{ 1H} NMR chemical shifts of complexes 8 7 ..................57 5. Chelation
Recommended publications
  • Controlling Ligand Substitution Reactions of Organometallic Complexes: Tuning Cancer Cell Cytotoxicity
    Controlling ligand substitution reactions of organometallic complexes: Tuning cancer cell cytotoxicity Fuyi Wang*, Abraha Habtemariam*, Erwin P. L. van der Geer*, Rafael Ferna´ ndez*, Michael Melchart*, Robert J. Deeth†, Rhona Aird‡, Sylvie Guichard‡, Francesca P. A. Fabbiani*, Patricia Lozano-Casal*, Iain D. H. Oswald*, Duncan I. Jodrell‡, Simon Parsons*, and Peter J. Sadler*§ *School of Chemistry, University of Edinburgh, West Mains Road, EH9 3JJ Edinburgh, United Kingdom; †Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom; and ‡CRUK Pharmacology and Drug Development Team, University of Edinburgh Cancer Research Centre, Cancer Research UK Oncology Unit, Crewe Road South, EH4 2XR Edinburgh, United Kingdom Edited by Jack Halpern, University of Chicago, Chicago, IL, and approved October 27, 2005 (received for review July 11, 2005) Organometallic compounds offer broad scope for the design of the factors that control the aqueous chemistry of organometallic therapeutic agents, but this avenue has yet to be widely explored. complexes may therefore also allow the design of effective A key concept in the design of anticancer complexes is optimization anticancer agents. of chemical reactivity to allow facile attack on the target site (e.g., Our studies are focused on monofunctional ruthenium(II) arene DNA) yet avoid attack on other sites associated with unwanted anticancer complexes of the type [(␩6-arene)Ru(ethylenediamin- side effects. Here, we consider how this result can be achieved for e)(X)]nϩ, where X is a leaving group (e.g., Cl). In these pseudooc- monofunctional ‘‘piano-stool’’ ruthenium(II) arene complexes of tahedral ‘‘piano-stool’’ RuII complexes, a ␲-bonded arene (the the type [(␩6-arene)Ru(ethylenediamine)(X)]n؉.
    [Show full text]
  • CO2 Derivatives of Molecular Tin Compounds. Part 1: † Hemicarbonato and Carbonato Complexes
    inorganics Review CO2 Derivatives of Molecular Tin Compounds. Part 1: y Hemicarbonato and Carbonato Complexes Laurent Plasseraud Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB), UMR-CNRS 6302, Université de Bourgogne Franche-Comté, 9 avenue A. Savary, F-21078 Dijon, France; [email protected] Paper dedicated to Professor Georg Süss-Fink on the occasion of his 70th birthday. y Received: 31 March 2020; Accepted: 24 April 2020; Published: 29 April 2020 Abstract: This review focuses on organotin compounds bearing hemicarbonate and carbonate ligands, and whose molecular structures have been previously resolved by single-crystal X-ray diffraction analysis. Most of them were isolated within the framework of studies devoted to the reactivity of tin precursors with carbon dioxide at atmospheric or elevated pressure. Alternatively, and essentially for the preparation of some carbonato derivatives, inorganic carbonate salts such as K2CO3, Cs2CO3, Na2CO3 and NaHCO3 were also used as coreagents. In terms of the number of X-ray structures, carbonate compounds are the most widely represented (to date, there are 23 depositions in the Cambridge Structural Database), while hemicarbonate derivatives are rarer; only three have so far been characterized in the solid-state, and exclusively for diorganotin complexes. For each compound, the synthesis conditions are first specified. Structural aspects involving, in particular, the modes of coordination of the hemicarbonato and carbonato moieties and the coordination geometry around tin are then described and illustrated (for most cases) by showing molecular representations. Moreover, when they were available in the original reports, some characteristic spectroscopic data are also given for comparison (in table form).
    [Show full text]
  • Of Grignard Reagent Formation. the Surface Nature of the Reaction
    286 Ace. Chem. Res. 1990,23, 286-293 Mechanism of Grignard Reagent Formation. The Surface Nature of the Reaction H. M. WALBORSKY Dittmer Laboratory of Chemistry, Florida State University, Tallahassee, Florida 32306 Received February 23, 1990 (Revised Manuscript Received May 7, 1990) The reaction of organic halides (Br, C1, I) with mag- Scheme I nesium metal to yield what is referred to today as a Kharasch-Reinmuth Mechanism for Grignard Reagent Grignard reagent has been known since the turn of the Formation century,' The name derives from its discoverer, Nobel (1)(Mg0)AMg*)2y + RX 4 [(M~'~(MQ')~~-,('MQX)+ R.] + laureate Victor Grignard. How this reagent is formed, (Mgo)x-2(MQ')2~MgX)(MgR) that is, how a magnesium atom is inserted into a car- bon-halogen bond, is the subject of this Account. ('4 (Ms0),-*(M9')2~MgX)(MgR) + + (Mg0)x-dMg*)2y+2 + 2RMgX RX + Mg - RMgX Kharasch and Reinmuth,, persuaded by the work of late under the same conditions gave Itl = 6.2 X s-l. Another system that meets the above criterion is the Gomberg and Bachmad as well as by product analyses of many Grignard formation reactions that existed in vinyl system. The lack of reactivity of vinyl halides toward SN1reactions is well-known and is exemplified the literature prior to 1954,speculated that the reaction involved radicals and that the radical reactions might by the low solvolysis rate of 2-propenyl triflate5 in 80% involve "surface adherent radicals, at least in part". The ethanol at 25 OC, kl being 9.8 X s-l.
    [Show full text]
  • Bond Distances and Bond Orders in Binuclear Metal Complexes of the First Row Transition Metals Titanium Through Zinc
    Metal-Metal (MM) Bond Distances and Bond Orders in Binuclear Metal Complexes of the First Row Transition Metals Titanium Through Zinc Richard H. Duncan Lyngdoh*,a, Henry F. Schaefer III*,b and R. Bruce King*,b a Department of Chemistry, North-Eastern Hill University, Shillong 793022, India B Centre for Computational Quantum Chemistry, University of Georgia, Athens GA 30602 ABSTRACT: This survey of metal-metal (MM) bond distances in binuclear complexes of the first row 3d-block elements reviews experimental and computational research on a wide range of such systems. The metals surveyed are titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, and zinc, representing the only comprehensive presentation of such results to date. Factors impacting MM bond lengths that are discussed here include (a) n+ the formal MM bond order, (b) size of the metal ion present in the bimetallic core (M2) , (c) the metal oxidation state, (d) effects of ligand basicity, coordination mode and number, and (e) steric effects of bulky ligands. Correlations between experimental and computational findings are examined wherever possible, often yielding good agreement for MM bond lengths. The formal bond order provides a key basis for assessing experimental and computationally derived MM bond lengths. The effects of change in the metal upon MM bond length ranges in binuclear complexes suggest trends for single, double, triple, and quadruple MM bonds which are related to the available information on metal atomic radii. It emerges that while specific factors for a limited range of complexes are found to have their expected impact in many cases, the assessment of the net effect of these factors is challenging.
    [Show full text]
  • Submitted to the Requirements For
    THE SYNTIIE$IS OP C LABELLED 2, 4-DICI LOROi-EENOÇYAGETIC ACID by ERNEST GEORGE AWORSKI A THESIS submitted to OREGON STA1 COLLEGE in partial fulfillment or the requirements for the degree of MAS2R 0F SCIENCE June 1950 PROVED: professor ot Clie'thlstry Department In Charge of Major Head of Department of' Chemistry Chairman of School Graduate Conimittee Dean of Graduate School Date thesis is presented Typed by Clara Homyar ACNOWLEDGMNTS The author wishes to express his appreciation to Dr. oseph S. Butts for his eneouragem.ent and generous direction in r4laking this work possible. Grateful aoknowledgnient is given to Dr. Albert V. Logan for his assistance in methodical diff i- culties. This research project was supported by an Atoniic inergy Commission grant carried under Navy contract N7-onr-3 7602. TABLE OF CONTENTS Page I. INTRODUCTION I II. STNTHESI OF ALPHA METH'LENB LABELLED2,14-D . , * 4 A. Apparatus ......*,*., B Method . 7 C. Analysis and }hysica1 Constants 3.7 In. StfliSIs OF C CABBOXTh LABELLED 2LD 19 A. Apparatus . 19 B )kethoc3. , , , , , 23. C. Analysis and PhjsLoa3. Constants 26 Iv DISCUSSION . , , . , , V. SUL2&RY . e e . 30 LTTERATUREOITED .......... 31 I1N1)I. 3 2 THE SYNTHESIS OF C LABELLED 2, 4-DICHLOROHENOXThCETIC ACID I. INTRODUCTION The synthesis or C labelled 2,4-dichlorophen- oxyacetic acid (hereafter referred to as 2,4V-D) was undertaken In order to study the process by which lt exerts its selective herbicidal effect on soiae noxious plants. Should this method prove fruitful, it would be useful for a more systematic approach to the study of ooitounds having potential herbicidal properties.
    [Show full text]
  • Cyclic Voltammetry of Mono- and Diiron(II)Cyclopentadienyl Complexes of Thianthrene and Related Heterocycles R
    Subscriber access provided by University of Texas Libraries Cyclic voltammetry of mono- and diiron(II)Cyclopentadienyl complexes of thianthrene and related heterocycles R. Quin Bligh, Roger Moulton, Allen J. Bard, Adam Piorko, and Ronald G. Sutherland Inorg. Chem., 1989, 28 (13), 2652-2659 • DOI: 10.1021/ic00312a030 Downloaded from http://pubs.acs.org on January 30, 2009 More About This Article The permalink http://dx.doi.org/10.1021/ic00312a030 provides access to: • Links to articles and content related to this article • Copyright permission to reproduce figures and/or text from this article Inorganic Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 2652 Inorg. Chem. 1989, 28, 2652-2659 nate-bond formation, not only for the metal-dioxygen bond but constant reported by Baker et al." For CoSALTMEN, the ox- also for the coordinate bonds between the metal ion and the ligand ygenation constant found here for diglyme solution at 0.5 "C is donor atoms. The increase in the electropositive nature of the very small, ca. -3.5, while the value reportedI2 for DMAC solution metal ion on oxygenation results in strengthening of its coordinate at 5 OC is similar, ca. -3.4. These low values, which seem to be bonds, thus contributing considerably to the exothermicity of the lower than those of any other cobalt Schiff base complexes re- reaction. All entropies of oxygenation are seen to be negative, ported, may indicate steric effects resulting from the distortion a general characteristic for all oxygenation processes. The observed from planarity of the ligand by the four methyl substituents on decrease of entropy is considered derived from two sources: (1) the ethylene bridge.
    [Show full text]
  • Synthesis of Fused and Bridged Ring Systems James Nicolas Ong Sy Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1988 Synthesis of fused and bridged ring systems James Nicolas Ong Sy Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Sy, James Nicolas Ong, "Synthesis of fused and bridged ring systems " (1988). Retrospective Theses and Dissertations. 9735. https://lib.dr.iastate.edu/rtd/9735 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS The most advanced technology has been used to photo­ graph and reproduce this manuscript from the microfilm master. UMI films the original text directly from the copy submitted. Thus, some dissertation copies are in typewriter face, while others may be from a computer printer. In the unlikely event that the author did not send UMl a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyrighted material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are re­ produced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each oversize page is available as one exposure on a standard 35 mm slide or as a 17" x 23" black and white photographic print for an additional charge.
    [Show full text]
  • Part I. Inversion of Secondary Cyclic Grignard Reagents
    This dissertation has been , 69-11,692 microfilmed exactly as received PECHHOLD, Engelbert, 1933- STUDIES OF THE BEHAVIOR AND GENERATION OF GARB ANIONS: PART I. INVERSION OF SECONDARY CYCLIC GRIGNARD REAGENTS. PART II. FRAGMENTATION OF AZOFORMATE SALTS AND ACYLAZO COMPOUNDS WITH BASES. The Ohio State University, Ph.D., 1968 Chemistry, organic University Microfilms, Inc., Ann Arbor, Michigan ©Copyright "by- Engelbert Pechhold 1969 STUDIES OF THE BEHAVIOR MD GENERATION OF CARBANIONS PART I. INVERSION OF SECONDARY CYCLIC GRIGNARD REAGENTS PART II. FRAGMENTATION OF AZOFORMATE SADIS AND ACYLAZO COMPOUNDS WITH BASES DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Engelbert Pechhold * # # * * # The Ohio State University 1968 Approved by •pV-gpa.-t— Adviser Department of Chemistry DEDICATION To my wife, Ingrid, and my parents, whose love, understanding, and encouragement have made this venture possible. ii ACKNOWLEDaEMElWS I -wish to express my deepest appreciation to Professor Gideon Fraenkel for suggestinf^ this problem, and for his guidance and encouragement throughout the course of this research. His assistance in the preparation of this dissertation is gratefully acknowledged. It is an understatement to say that without his un­ usual courage of conviction and high standards for academic perfor­ mance, this work could not have come into being. I owe special debt of gratitude to my colleagues for many suimtü-ating discussions of chemical matters and otherwise. In particular, I wish to express my gratitute to Dr. Don Dix, Dr. Dave Mams, and James Morton, who gave me much insight in ny research.
    [Show full text]
  • Organometallics Study Meeting H.Mitsunuma 1
    04/21/2011 Organometallics Study Meeting H.Mitsunuma 1. Crystal field theory (CFT) and ligand field theory (LFT) CFT: interaction between positively charged metal cation and negative charge on the non-bonding electrons of the ligand LFT: molecular orbital theory (back donation...etc) Octahedral (figure 9-1a) d-electrons closer to the ligands will have a higher energy than those further away which results in the d-orbitals splitting in energy. ligand field splitting parameter ( 0): energy between eg orbital and t2g orbital 1) high oxidation state 2) 3d<4d<5d 3) spectrochemical series I-< Br-< S2-< SCN-< Cl-< N -,F-< (H N) CO, OH-< ox, O2-< H O< NCS- <C H N, NH < H NCH CH NH < bpy, phen< NO - - - - 3 2 2 2 5 5 3 2 2 2 2 2 < CH3 ,C6H5 < CN <CO cf) pairing energy: energy cost of placing an electron into an already singly occupied orbital Low spin: If 0 is large, then the lower energy orbitals(t2g) are completely filled before population of the higher orbitals(eg) High spin: If 0 is small enough then it is easier to put electrons into the higher energy orbitals than it is to put two into the same low-energy orbital, because of the repulsion resulting from matching two electrons in the same orbital 3 n ex) (t2g) (eg) (n= 1,2) Tetrahedral (figure 9-1b), Square planar (figure 9-1c) LFT (figure 9-3, 9-4) - - Cl , Br : lower 0 (figure 9-4 a) CO: higher 0 (figure 9-4 b) 2. Ligand metal complex hapticity formal chargeelectron donation metal complex hapticity formal chargeelectron donation MR alkyl 1 -1 2 6-arene 6 0 6 MH hydride 1 -1 2 M MX H 1 -1 2 halogen 1 -1 2 M M -hydride M OR alkoxide 1 -1 2 X 1 -1 4 M M -halogen O R acyl 1 -1 2 O 1 -1 4 M R M M -alkoxide O 1-alkenyl 1 -1 2 C -carbonyl 1 0 2 M M M R2 C -alkylidene 1 -2 4 1-allyl 1 -1 2 M M M O C 3-carbonyl 1 0 2 M R acetylide 1 -1 2 MMM R R C 3-alkylidine 1 -3 6 M carbene 1 0 2 MMM R R M carbene 1 -2 4 R M carbyne 1 -3 6 M CO carbonyl 1 0 2 M 2-alkene 2 0 2 M 2-alkyne 2 0 2 M 3-allyl 3 -1 4 M 4-diene 4 0 4 5 -cyclo 5 -1 6 M pentadienyl 1 3.
    [Show full text]
  • Structural Analysis of Zincocenes with Substituted Cyclopentadienyl Rings
    DOI: 10.1002/chem.200801917 Structural Analysis of Zincocenes with Substituted Cyclopentadienyl Rings Rafael Fernndez,[a] Abdessamad Grirrane,[a] Irene Resa,[a] Amor Rodrguez,[a] Ernesto Carmona,*[a] Eleuterio lvarez,[a] Enrique Gutirrez-Puebla,[b] ngeles Monge,[b] Juan Miguel Lpez del Amo,[c] Hans-Heinrich Limbach,[c] Agustí Lleds,[d] Feliu Maseras,[d, e] and Diego del Ro[a, f] Abstract: New zincocenes [ZnCp’2](2– tion of 7, which yields a side-product ZnÀC bond of comparable strength to 5) with substituted cyclopentadienyl li- (C) upon attempted crystallisation. the ZnÀMe bond in ZnMe2. Zincocene gands C5Me4H, C5Me4tBu, Compounds 5 and 6 were also investi- 5 has dynamic behaviour in solution, 13 5 1 C5Me4SiMe2tBu and C5Me4SiMe3, re- gated by C CPMAS NMR spectrosco- but a rigid h /h (s) structure in the spectively, have been prepared by the py. Zincocenes 1 and 2 have infinite solid state, as revealed by 13C CPMAS reaction of ZnCl2 with the appropriate chain structures with bridging Cp’ li- NMR studies, whereas for 6 the differ- Cp’-transfer reagent. For a comparative gands, while 3 and 4 exhibit slipped- ent nature of the Cp’ ligands and of the structural study, the known sandwich geometries. Compounds 5 ring substituents of the h1-Cp’ group 5 1 [Zn(C5H4SiMe3)2](1), has also been in- and 6 have rigid, h /h (s) structures, in (Me and SiMe3) have permitted obser- 5 vestigated, along with the mixed-ring which the monohapto C5Me4SiMe3 vation for the first time of the rigid h / ACHTUNGRE 1 zincocenes [Zn(C5Me5)(C5Me4SiMe3)] ligand is bound to zinc through the h solution structure.
    [Show full text]
  • Carbonation of a Grignard Preparation of Benzoic Acid
    CARBONATION OF A GRIGNARD PREPARATION OF BENZOIC ACID INTRODUCTION The Grignard is one of the most versatile reactions in organic chemistry. It was used to produce 2-methyl-2-hexanol from bromobutane and acetone. Carboxylic acids may also be prepared by the Grignard reagent. The “Grignard” is an organometallic compound that contains one the most powerful nucleophiles. This carbanion is capable of reacting with something that is only slightly basic like carbon dioxide. This reaction will convert bromobenzene to benzoic acid. The bromobenzene is converted to the Grignard and then added to solid carbon dioxide. The carbon dioxide acts as a reactant and as the means to keep the reaction cold. The Grignard is prepared by the process of reflux with addition. In this reaction the glassware and reactants must be kept absolutely dry, as the presence of water will inhibit the reaction. Reactions: Br MgBr Ether + Mg MgBr COOH + H3O + CO2 Week One PROCEDURE 1. PREPARATION OF THE GRIGNARD REAGENT Add 0.1 mole of Mg metal ( 2.43 grams ) to a 100 ml round bottom flask and add 30 ml of anhydrous ether to cover the metal. Clamp the flask to the grid at a height that will allow enough room for heating and cooling. Add 0.1 mole of bromobenzene to a separatory funnel. Attach a Claisen adapter to the round bottom flask and fit the adapter just above with a water cooled column. Attach the separatory funnel to the other connection. Prepare an ice/water bath and position it so that the reaction mixture may be cooled by raising the bath to the round bottom with a lab jack.
    [Show full text]
  • Synthesis and Reactivity of Cyclopentadienyl Based Organometallic Compounds and Their Electrochemical and Biological Properties
    Synthesis and reactivity of cyclopentadienyl based organometallic compounds and their electrochemical and biological properties Sasmita Mishra Department of Chemistry National Institute of Technology Rourkela Synthesis and reactivity of cyclopentadienyl based organometallic compounds and their electrochemical and biological properties Dissertation submitted to the National Institute of Technology Rourkela In partial fulfillment of the requirements of the degree of Doctor of Philosophy in Chemistry by Sasmita Mishra (Roll Number: 511CY604) Under the supervision of Prof. Saurav Chatterjee February, 2017 Department of Chemistry National Institute of Technology Rourkela Department of Chemistry National Institute of Technology Rourkela Certificate of Examination Roll Number: 511CY604 Name: Sasmita Mishra Title of Dissertation: ''Synthesis and reactivity of cyclopentadienyl based organometallic compounds and their electrochemical and biological properties We the below signed, after checking the dissertation mentioned above and the official record book(s) of the student, hereby state our approval of the dissertation submitted in partial fulfillment of the requirements of the degree of Doctor of Philosophy in Chemistry at National Institute of Technology Rourkela. We are satisfied with the volume, quality, correctness, and originality of the work. --------------------------- Prof. Saurav Chatterjee Principal Supervisor --------------------------- --------------------------- Prof. A. Sahoo. Prof. G. Hota Member (DSC) Member (DSC) ---------------------------
    [Show full text]