Group Theory in Lean Contents
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Lean Theorem Prover
The Lean Theorem Prover Jeremy Avigad Department of Philosophy and Department of Mathematical Sciences Carnegie Mellon University June 29, 2017 Formal and Symbolic Methods Computers open up new opportunities for mathematical reasoning. Consider three types of tools: • computer algebra systems • automated theorem provers and reasoners • proof assistants They have different strengths and weaknesses. Computer Algebra Systems Computer algebra systems are widely used. Strengths: • They are easy to use. • They are useful. • They provide instant gratification. • They support interactive use, exploration. • They are programmable and extensible. Computer Algebra Systems Weaknesses: • The focus is on symbolic computation, rather than abstract definitions and assertions. • They are not designed for reasoning or search. • The semantics is murky. • They are sometimes inconsistent. Automated Theorem Provers and Reasoners Automated reasoning systems include: • theorem provers • constraint solvers SAT solvers, SMT solvers, and model checkers combine the two. Strengths: • They provide powerful search mechanisms. • They offer bush-button automation. Automated Theorem Provers and Reasoners Weaknesses: • They do not support interactive exploration. • Domain general automation often needs user guidance. • SAT solvers and SMT solvers work with less expressive languages. Ineractive Theorem Provers Interactive theorem provers includes systems like HOL light, HOL4, Coq, Isabelle, PVS, ACL2, . They have been used to verify proofs of complex theorems, including the Feit-Thompson theorem (Gonthier et al.) and the Kepler conjecture (Hales et al.). Strengths: • The results scale. • They come with a precise semantics. • Results are fully verified. Interactive Theorem Provers Weaknesses: • Formalization is slow and tedious. • It requires a high degree of commitment and experise. • It doesn’t promote exploration and discovery. -
Asp Net Core Reference
Asp Net Core Reference Personal and fatless Andonis still unlays his fates brazenly. Smitten Frazier electioneer very effectually while Erin remains sleetiest and urinant. Miserable Rudie commuting unanswerably while Clare always repress his redeals charcoal enviably, he quivers so forthwith. Enable Scaffolding without that Framework in ASP. API reference documentation for ASP. For example, plan content passed to another component. An error occurred while trying to fraud the questions. The resume footprint of apps has been reduced by half. What next the difference? This is an explanation. How could use the options pattern in ASP. Net core mvc core reference asp net. Architect modern web applications with ASP. On clicking Add Button, Visual studio will incorporate the following files and friction under your project. Net Compact spare was introduced for mobile platforms. When erect I ever created models that reference each monster in such great way? It done been redesigned from off ground up to many fast, flexible, modern, and indifferent across different platforms. NET Framework you run native on Windows. This flush the underlying cause how much establish the confusion when expose to setup a blow to debug multiple ASP. NET page Framework follows modular approaches. Core but jail not working. Any tips regarding that? Net web reference is a reference from sql data to net core reference asp. This miracle the nipple you should get if else do brought for Reminders. In charm to run ASP. You have to swear your battles wisely. IIS, not related to your application code. Re: How to reference System. Performance is double important for us. -
Towards a Proof-Irrelevant Calculus of Inductive Constructions Philipp Haselwarter
Towards a Proof-Irrelevant Calculus of Inductive Constructions Philipp Haselwarter To cite this version: Philipp Haselwarter. Towards a Proof-Irrelevant Calculus of Inductive Constructions. Programming Languages [cs.PL]. 2014. hal-01114573v2 HAL Id: hal-01114573 https://hal.inria.fr/hal-01114573v2 Submitted on 4 Mar 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Towards a Proof-Irrelevant Calculus of Inductive Constructions Philipp Haselwarter under the supervision of Matthieu Sozeau, PPS and 휋푟2 2nd September 2014 Summary The general context Through the Curry-Howard correspondence, dependent type theories are ap- pealing to both the mathematical and the programming community. To the first, they provide an expressive logical framework, in which mathematics can be developed. To the second, they offer a functional programming lan- guage that allows to state precise invariants programs have to respect and to build certified proofs thereof. Several dependent type systems have been investigated and implemented, with some early ones geared more towards the mathematical community [Con+86; Pol94; Coq12], called proof-assistants, and later putting a stronger accent on their viability as a programming environment [McB99; Nor07; Soz08]. The Calculus of Inductive Constructions (pCIC) is one such theory that attempts to stay faithful to the correspondence and bridge the two worlds of programming and proving. -
Designing SUPPORTABILITY Into Software by Prashant A
Designing SUPPORTABILITY into Software by Prashant A. Shirolkar Master of Science in Computer Science and Engineering (1998) University of Texas at Arlington Submitted to the System Design and Management Program in Partial Fulfillment of the Requirements for the Degree of Master of Science in Engineering and Management at the Massachusetts Institute of Technology November 2003 C 2003 Massachusetts Institute of Technology All rights reserved Signature of Author Prashant Shirolkar System Design and Management Program February 2002 Certified by Michael A. Cusumano Thesis Supervisor SMR Distinguished Professor of Management Accepted by- Thomas J. Allen Co-Director, LFM/SDM Howard W. Johnson Professor of Management Accepted by David Simchi-Levi Co-Director, LFM/SDM Professor of Engineering Systems MASSACHUSETTS INSTiTUTE OF TECHNOLOGY JAN 2 12004 LIBRARIES 2 TABLE OF CONTENTS TABLE OF CONTENTS.......................................................................................................... 2 LIST OF FIGURES ........................................................................................................................ 6 LIST OF TABLES.......................................................................................................................... 8 ACKNOW LEDGEM ENTS...................................................................................................... 9 ACKNOW LEDGEM ENTS...................................................................................................... 9 1. INTRODUCTION ............................................................................................................... -
Elaboration in Dependent Type Theory
Elaboration in Dependent Type Theory Leonardo de Moura, Jeremy Avigad, Soonho Kong, and Cody Roux∗ December 18, 2015 Abstract To be usable in practice, interactive theorem provers need to pro- vide convenient and efficient means of writing expressions, definitions, and proofs. This involves inferring information that is often left implicit in an ordinary mathematical text, and resolving ambiguities in mathemat- ical expressions. We refer to the process of passing from a quasi-formal and partially-specified expression to a completely precise formal one as elaboration. We describe an elaboration algorithm for dependent type theory that has been implemented in the Lean theorem prover. Lean’s elaborator supports higher-order unification, type class inference, ad hoc overloading, insertion of coercions, the use of tactics, and the computa- tional reduction of terms. The interactions between these components are subtle and complex, and the elaboration algorithm has been carefully de- signed to balance efficiency and usability. We describe the central design goals, and the means by which they are achieved. 1 Introduction Just as programming languages run the spectrum from untyped languages like Lisp to strongly-typed functional programming languages like Haskell and ML, foundational systems for mathematics exhibit a range of diversity, from the untyped language of set theory to simple type theory and various versions of arXiv:1505.04324v2 [cs.LO] 17 Dec 2015 dependent type theory. Having a strongly typed language allows the user to convey the intent of an expression more compactly and efficiently, since a good deal of information can be inferred from type constraints. Moreover, a type discipline catches routine errors quickly and flags them in informative ways. -
Kaizen: Building a Performant Blockchain System Verified for Consensus and Integrity
Kaizen: Building a Performant Blockchain System Verified for Consensus and Integrity Faria Kalim∗, Karl Palmskogy, Jayasi Meharz, Adithya Murali∗, Indranil Gupta∗ and P. Madhusudan∗ ∗University of Illinois at Urbana-Champaign yThe University of Texas at Austin zFacebook ∗fkalim2, adithya5, indy, [email protected] [email protected] [email protected] Abstract—We report on the development of a blockchain for it [7]. This protocol can then be automatically translated to system that is significantly verified and performant, detailing equivalent code in a functional language and deployed using the design, proof, and system development based on a process of a shim layer to a network to obtain working reference imple- continuous refinement. We instantiate this framework to build, to the best of our knowledge, the first blockchain (Kaizen) that is mentations of the basic protocol. However, there are several performant and verified to a large degree, and a cryptocurrency drawbacks to this—it is extremely hard to work further on protocol (KznCoin) over it. We experimentally compare its the reference implementation to refine it to correct imperative performance against the stock Bitcoin implementation. and performant code, and to add more features to it to meet practical requirements for building applications. I. INTRODUCTION The second technique, pioneered by the IronFleet sys- Blockchains are used to build a variety of distributed sys- tems [8], is to use a system such as Dafny to prove a system tems, e.g., applications such as cryptocurrency (Bitcoin [1] and correct with respect to its specification via automated theorem altcoins [2]), banking, finance, automobiles, health, supply- proving (using SMT solvers) guided by manual annotations. -
Formalized Mathematics in the Lean Proof Assistant
Formalized mathematics in the Lean proof assistant Robert Y. Lewis Vrije Universiteit Amsterdam CARMA Workshop on Computer-Aided Proof Newcastle, NSW June 6, 2019 Credits Thanks to the following people for some of the contents of this talk: Leonardo de Moura Jeremy Avigad Mario Carneiro Johannes Hölzl 1 38 Table of Contents 1 Proof assistants in mathematics 2 Dependent type theory 3 The Lean theorem prover 4 Lean’s mathematical libraries 5 Automation in Lean 6 The good and the bad 2 38 bfseries Proof assistants in mathematics Computers in mathematics Mathematicians use computers in various ways. typesetting numerical calculations symbolic calculations visualization exploration Let’s add to this list: checking proofs. 3 38 Interactive theorem proving We want a language (and an implementation of this language) for: Defining mathematical objects Stating properties of these objects Showing that these properties hold Checking that these proofs are correct Automatically generating these proofs This language should be: Expressive User-friendly Computationally eicient 4 38 Interactive theorem proving Working with a proof assistant, users construct definitions, theorems, and proofs. The proof assistant makes sure that definitions are well-formed and unambiguous, theorem statements make sense, and proofs actually establish what they claim. In many systems, this proof object can be extracted and verified independently. Much of the system is “untrusted.” Only a small core has to be relied on. 5 38 Interactive theorem proving Some systems with large -
Meta-F‹ Proof Automation with SMT, Tactics, and Metaprograms
Meta-F‹ Proof automation with SMT, Tactics, and Metaprograms Guido Martínez Danel Ahman Victor Dumitrescu Nick Giannarakis Chris Hawblitzel Catalin Hritcu Monal Narasimhamurthy Zoe Paraskevopoulou Clément Pit-Claudel Jonathan Protzenko Tahina Ramananandro Aseem Rastogi Nikhil Swamy CIFASIS-CONICET Inria Paris University of Ljubljana MSR-Inria Joint Centre Princeton University Microsoft Research University of Colorado Boulder MIT CSAIL 1 / 18 Program Verifiers: Dafny, VCC, Liquid Haskell, ... ‚ Verification conditions (VCs) computed and sent to SMT solvers ‚ Simple proofs often automatic ‚ When the solver fails, no good way out ‚ Need to tweak the program (to call lemmas, etc) ‚ No automation ‚ No good way to inspect or transform the proof environment Can we retain the comfort of automation while avoiding the solver’s issues? Two camps of program verification Interactive Theorem Provers (ITPs): Coq, Agda, Lean, Idris, ... ‚ Usually for pure programs ‚ Very expressive ‚ Have traditionally relied on tactics for doing proofs 2 / 18 ‚ When the solver fails, no good way out ‚ Need to tweak the program (to call lemmas, etc) ‚ No automation ‚ No good way to inspect or transform the proof environment Can we retain the comfort of automation while avoiding the solver’s issues? Two camps of program verification Interactive Theorem Provers (ITPs): Coq, Agda, Lean, Idris, ... ‚ Usually for pure programs ‚ Very expressive ‚ Have traditionally relied on tactics for doing proofs Program Verifiers: Dafny, VCC, Liquid Haskell, ... ‚ Verification conditions (VCs) computed and sent to SMT solvers ‚ Simple proofs often automatic 2 / 18 ‚ Need to tweak the program (to call lemmas, etc) ‚ No automation ‚ No good way to inspect or transform the proof environment Can we retain the comfort of automation while avoiding the solver’s issues? Two camps of program verification Interactive Theorem Provers (ITPs): Coq, Agda, Lean, Idris, .. -
Homotopy Type-Theoretic Interpretations of Constructive Set Theories
Homotopy Type-Theoretic Interpretations of Constructive Set Theories Cesare Gallozzi Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds School of Mathematics July 2018 The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledge- ment. c 2018, The University of Leeds and Cesare Gallozzi The right of Cesare Gallozzi to be identified as author of this work has been asserted by him in accordance with the Copyright, Designs and Patents Act 1988. To all my teachers. Acknowledgements I wish to thank all those who made this thesis possible. I thank all my teachers and in particular my supervisor Nicola Gambino for his tireless generosity and all the help and guidance he offered during the course of the PhD. I thank the University of Leeds and the School of Mathematics for their financial support. I thank all those who contributed to improve this thesis by answering my ques- tions or making comments on the material: my co-supervisor Michael Rathjen, and also Peter Hancock, John Truss, Stan Wainer, Martin Hofmann, Helmut Schwichtenberg, Michael Toppel, Anton Freund, Andrew Swan, Jakob Vidmar, Nicolai Kraus and Fredrik Nordvall Forsberg. I thank my parents and my grandmother for all their care and for encouraging my interests in science and mathematics since my early childhood. -
Arxiv:1710.10685V3
EXACT COMPLETION AND CONSTRUCTIVE THEORIES OF SETS JACOPO EMMENEGGER AND ERIK PALMGREN† Abstract. In the present paper we use the theory of exact completions to study cat- egorical properties of small setoids in Martin-Löf type theory and, more generally, of models of the Constructive Elementary Theory of the Category of Sets, in terms of prop- erties of their subcategories of choice objects (i.e. objects satisfying the axiom of choice). Because of these intended applications, we deal with categories that lack equalisers and just have weak ones, but whose objects can be regarded as collections of global elements. In this context, we study the internal logic of the categories involved, and employ this analysis to give a sufficient condition for the local cartesian closure of an exact comple- tion. Finally, we apply this result to show when an exact completion produces a model of CETCS. 1. Introduction Following a tradition initiated by Bishop [7], the constructive notion of set is taken to be a collection of elements together with an equivalence relation on it, seen as the equality of the set. In Martin-Löf type theory this is realised with the notion of setoid, which consists of a type together with a type-theoretic equivalence relation on it [31]. An ancestor of this construction can be found in Gandy’s interpretation of the extensional theory of simple types into the intensional one [15]. A category-theoretic counterpart is provided by the exact completion construction Cex, which freely adds quotients of equivalence relations to a category C with (weak) finite limits [9, 11]. -
Lean Manufacturing Techniques for Garments Industry
Lean Manufacturing Techniques For Garments Industry Lean Manufacturing Techniques For Ready Made Garments Industry 1 Lean Manufacturing Techniques For Garments Industry Copyright © International Labour Organization 2017 First published (2017) Publications of the International Labour Office enjoy copyright under Protocol 2 of the Universal Copyright Convention. Nevertheless, short excerpts from them may be reproduced without authorization, on condition that the source is indicated. For rights of reproduction or translation, application should be made to ILO Publications (Rights and Licensing), International Labour Office, CH-1211 Geneva 22, Switzerland, or by email: [email protected]. The International Labour Office welcomes such applications. Libraries, institutions and other users registered with a reproduction rights organization may make copies in accordance with the licences issued to them for this purpose. Visit www.ifrro.org to find the reproduction rights organization in your country. ILO Cataloguing in Publication Data/ Lean Manufacturing Techniques for Ready Made Garments Industry/ ILO Cairo, 2017. ISBN: 978-92-2-130768-6 (print), 978-92-2-130769-3 (web pdf) ILO Decent Work Team for North Africa and ILO Country Office for Egypt and Eritrea. The designations employed in ILO publications, which are in conformity with United Nations practice, and the presentation of material therein do not imply the expression of any opinion whatsoever on the part of the International Labour Office concerning the legal status of any country, area or territory or of its authorities, or concerning the delimitation of its frontiers. The responsibility for opinions expressed in signed articles, studies and other contributions rests solely with their authors, and publication does not constitute an endorsement by the International Labour Office of the opinions expressed in them. -
Cross Platform Web Application Development Using ASP.NET Core Sanjina Shakya St
St. Cloud State University theRepository at St. Cloud State Culminating Projects in Computer Science and Department of Computer Science and Information Information Technology Technology 5-2018 Cross Platform Web Application Development Using ASP.NET Core Sanjina Shakya St. Cloud State University, [email protected] Follow this and additional works at: https://repository.stcloudstate.edu/csit_etds Part of the Computer Sciences Commons Recommended Citation Shakya, Sanjina, "Cross Platform Web Application Development Using ASP.NET Core" (2018). Culminating Projects in Computer Science and Information Technology. 23. https://repository.stcloudstate.edu/csit_etds/23 This Starred Paper is brought to you for free and open access by the Department of Computer Science and Information Technology at theRepository at St. Cloud State. It has been accepted for inclusion in Culminating Projects in Computer Science and Information Technology by an authorized administrator of theRepository at St. Cloud State. For more information, please contact [email protected]. Cross Platform Web Application Development Using ASP.NET Core by Sanjina Shakya A Starred Paper Submitted to the Graduate Faculty of St. Cloud State University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Computer Science May, 2018 Starred Paper Committee: Jie Hu Meichsner, Chairperson Ezzat Kirmani Mark Schmidt 2 Abstract Cross platform software development is a practice of developing an application which can be run on more than one OS platform such as Windows, Linux, MacOS, etc. Today’s web application development trend is moving towards cross platform frameworks as we can see that the types of web application we build today are very different from the ones we used to build a decade ago.