Chapter 8 the Celestial Sphere

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 8 the Celestial Sphere Chapter 1 Naked eye observations 1.1 Introduction The etymology of the word ‘Astronomy’ implies that it was the discipline involved in ‘the arranging of the stars’. Today we might say that astronomy is our attempt to study and understand celestial phenomena, part of the never-ending urge to discover order in nature. We do not know who were the first astronomers—what we do know is that the science of astronomy was well advanced in parts of Europe by the middle of the third millennium BC and that the Chinese people had astronomical schools as early as 2000 BC. In all ages, from the burgeoning of man’s intelligence, there have been people fascinated by the heavens and their changing aspect and these people, as far as their cultural environment has allowed them, have tried to formulate cosmologies. We are no different today. Nowadays, the word ‘Astrophysics’ is also used to describe the study of the celestial bodies. In fact, many astronomers use both terms quite generally and it is not infrequent to find Departments of Astronomy and Astrophysics within educational establishments. The question may well be asked ‘What is the difference between Astronomy and Astrophysics?’ Very loosely, Astronomy might be defined as the subject of the ‘where and when’ related to the description of a celestial body with the ‘why and how’ being covered more by Astrophysics. Rather than trying to provide a hard and fast rule for the terminology, we will simply use Astronomy to cover all aspects of the description of the skies and the Universe. If our current theories of the Universe are nearer the truth, it is probably not that our intelligence has increased in the past six millennia. It is more likely that the main factor has been the discovery and development of the ‘scientific method’, which has led to our present civilization based on the flood of technological advantages provided by this method. This has enabled scientists in far greater numbers than ever before to devote their lives to the study of the heavens, assisted by telescopes, computers, space vehicles and a multitude of other equipment. Their attempts to interpret and understand the wealth of new information provided by these new instruments have been aided by allied sciences such as physics, chemistry, geology, mathematics and so on. We must remember, however, that for more than nine-tenths of the last five thousand years of our study of the heavens, we have had to rely on the unaided eye. The Mediterranean people who set the constellations in the sky, the Babylonians, Egyptians and Greeks, the Arabian astronomers who flourished during the Dark Ages of Post-Roman Europe, the Chinese, the Mayan and other early American astronomers, all built their theories of the Universe on naked eye observations. And so we begin by following in their footsteps and seeing what they saw as they observed over a few minutes (see section 1.2), over a few hours (see section 1.3), over a month (see section 1.4) or over at least a year (see section 1.5). In this way, we will find it easier to understand why their cosmological theories were formulated in their particular ways. 3 4 Naked eye observations 1.2 Instantaneous phenomena 1.2.1 Day During the day a variety of phenomena may be seen. In a particular direction lies the Sun, so bright it is impossible (and dangerous) to look directly at it. In general, the sky background is blue. The Moon may also be visible, having a distinct shape though certainly not circular. If the Sun has just set or if dawn is not far away, there is sufficient daylight to see clearly. We call this condition twilight. On the horizon opposite to the twilight glow, a dark purple band is sometimes seen. This area corresponds to a zone on the sky which is cut off from the direct sunlight by the Earth and is receiving very little light by scattering from the atoms and molecules in the atmosphere. It corresponds, in fact, to the shadow of the Earth in the sky. Its presence tells us of the extreme purity and low humidity of the local atmosphere. Needless to say, it is very rarely seen in Britain. To the ancients, clouds, wind, rain, hail and other atmospheric phenomena were inadequately distinguished from what we term celestial events. Our civilization includes them in meteorology,a science quite distinct from astronomy, so that we need not consider them further, except to remark that astronomers’ observations have, until recently, been dependent entirely upon good weather conditions being available. With the development of radio telescopes and the fact that other equipment can be placed in artificial satellites and operated above the Earth’s atmosphere, this dependence is no longer complete. 1.2.2 Night If seeing conditions are favourable, a view of the night sky provides a far wider variety of celestial phenomena. If the Moon is visible, its brightness will dominate that of all other objects. Its shape will be crescent or gibbous or even circular. At the last condition, its apparent diameter is very close to that of the Sun. To anyone with reasonable eyesight, its surface will not be evenly bright. Areas darker than their surroundings will be noticed, so that the fancy of primitive man could see a ‘Man in the Moon’, a ‘Beautiful Lady’ or a ‘Rabbit’, sketched out by these features. In addition to the Moon, some two to three thousand tiny, twinkling points of light—the stars—are seen, ranging in brightness from ones easily visible just after sunset to ones just visible when the Moon is below the horizon and the sky background is darkest. Careful comparison of one bright star with another shows that stars have different colours; for example, in the star pattern of Orion, one of the many constellations, Betelgeuse is a red star in contrast to the blue of Rigel. The apparent distribution of stars across the vault of heaven seems random. With the eyes becoming accustomed to the darkness, a faint band of light, the Milky Way, catches the observer’s attention. Modern astronomers, with the aid of telescopes, know that this luminous region stretching from horizon to horizon across the sky in a great circle is made up of a myriad of stars too faint to be resolved with the naked eye. To the ancient observer, its presence inspired all kinds of speculations, none of them verifiable. One or two of the tiny points of light may draw a closer scrutiny. They shine steadily, in contrast to the twinkling of the stars and they are among the brightest of the star-like objects. There must be some reason why they are different. If our observer is going to watch for a few hours, attention will be returned to these objects. 1.3 A few hours 1.3.1 Day The heavens are never static. The slowly-moving shadow cast by an upright rod or a boulder or tree reveals the Sun’s movement across the sky. If observation is kept up throughout the day, the Sun is A month 5 seen to rise above the eastern horizon, climb up the sky in a circle inclined at some angle to the plane defined by the horizon and culminate, i.e. reach a maximum altitude above the line joining the north to the south points, then descend in a mirror image of its forenoon path to set on the western horizon. If the Moon is seen during that day, it will appear to imitate the Sun’s behaviour in rising and setting. 1.3.2 Night As darkness falls, the first stars become visible above the eastern horizon. With the ending of twilight the fainter stars can be seen and, as the hours pass, the stellar groups rise from the eastern horizon, reach their maximum altitude like the Sun, then set or become dim and invisible as daylight returns. The impression of being on a flat plane surmounted by a dark revolving bowl to which the stars are attached is strong, especially when it is seen that there are many stars in a particular region of the sky that revolve, never rising, never setting, about a hub or pivot. These stars are said to be circumpolar. It is then clear that those other stars that rise and set do so simply because their circular paths about this pole are so big that they intersect the horizon. The Moon also revolves across this upturned bowl. Although the Moon appears to have an angular motion across the sky similar to that of the stars, careful observation over a few hours reveals that it moves slightly eastwards relative to the star background. Occasionally a bright object, called a meteor, shoots across the sky in a second, looking like a fast-moving or ‘falling star’. It may be too that faintly luminous sheets are seen, hanging down the bowl of the heavens like great curtains. These are the auroraeW1.1. If our observer is watching at any time after October 4, 1957, it is quite likely that one or more faint specks of light will be seen to cross the sky, taking a few minutes to do so, their presence giving reminder that man-made satellites are now in orbit about the Earth. Indeed, one of the latest satellites— the International Space StationW1.2—is exceedingly bright—as bright as the brightest planet Venus— and bears testament to the continual development of manned orbiting laboratories. 1.4 A month The month is the next period of any significance to our watcher.
Recommended publications
  • Astronomie in Theorie Und Praxis 8. Auflage in Zwei Bänden Erik Wischnewski
    Astronomie in Theorie und Praxis 8. Auflage in zwei Bänden Erik Wischnewski Inhaltsverzeichnis 1 Beobachtungen mit bloßem Auge 37 Motivation 37 Hilfsmittel 38 Drehbare Sternkarte Bücher und Atlanten Kataloge Planetariumssoftware Elektronischer Almanach Sternkarten 39 2 Atmosphäre der Erde 49 Aufbau 49 Atmosphärische Fenster 51 Warum der Himmel blau ist? 52 Extinktion 52 Extinktionsgleichung Photometrie Refraktion 55 Szintillationsrauschen 56 Angaben zur Beobachtung 57 Durchsicht Himmelshelligkeit Luftunruhe Beispiel einer Notiz Taupunkt 59 Solar-terrestrische Beziehungen 60 Klassifizierung der Flares Korrelation zur Fleckenrelativzahl Luftleuchten 62 Polarlichter 63 Nachtleuchtende Wolken 64 Haloerscheinungen 67 Formen Häufigkeit Beobachtung Photographie Grüner Strahl 69 Zodiakallicht 71 Dämmerung 72 Definition Purpurlicht Gegendämmerung Venusgürtel Erdschattenbogen 3 Optische Teleskope 75 Fernrohrtypen 76 Refraktoren Reflektoren Fokus Optische Fehler 82 Farbfehler Kugelgestaltsfehler Bildfeldwölbung Koma Astigmatismus Verzeichnung Bildverzerrungen Helligkeitsinhomogenität Objektive 86 Linsenobjektive Spiegelobjektive Vergütung Optische Qualitätsprüfung RC-Wert RGB-Chromasietest Okulare 97 Zusatzoptiken 100 Barlow-Linse Shapley-Linse Flattener Spezialokulare Spektroskopie Herschel-Prisma Fabry-Pérot-Interferometer Vergrößerung 103 Welche Vergrößerung ist die Beste? Blickfeld 105 Lichtstärke 106 Kontrast Dämmerungszahl Auflösungsvermögen 108 Strehl-Zahl Luftunruhe (Seeing) 112 Tubusseeing Kuppelseeing Gebäudeseeing Montierungen 113 Nachführfehler
    [Show full text]
  • Unit 2 Basic Concepts of Positional Astronomy
    Basic Concepts of UNIT 2 BASIC CONCEPTS OF POSITIONAL Positional Astronomy ASTRONOMY Structure 2.1 Introduction Objectives 2.2 Celestial Sphere Geometry of a Sphere Spherical Triangle 2.3 Astronomical Coordinate Systems Geographical Coordinates Horizon System Equatorial System Diurnal Motion of the Stars Conversion of Coordinates 2.4 Measurement of Time Sidereal Time Apparent Solar Time Mean Solar Time Equation of Time Calendar 2.5 Summary 2.6 Terminal Questions 2.7 Solutions and Answers 2.1 INTRODUCTION In Unit 1, you have studied about the physical parameters and measurements that are relevant in astronomy and astrophysics. You have learnt that astronomical scales are very different from the ones that we encounter in our day-to-day lives. In astronomy, we are also interested in the motion and structure of planets, stars, galaxies and other celestial objects. For this purpose, it is essential that the position of these objects is precisely defined. In this unit, we describe some coordinate systems (horizon , local equatorial and universal equatorial ) used to define the positions of these objects. We also discuss the effect of Earth’s daily and annual motion on the positions of these objects. Finally, we explain how time is measured in astronomy. In the next unit, you will learn about various techniques and instruments used to make astronomical measurements. Study Guide In this unit, you will encounter the coordinate systems used in astronomy for the first time. In order to understand them, it would do you good to draw each diagram yourself. Try to visualise the fundamental circles, reference points and coordinates as you make each drawing.
    [Show full text]
  • Basic Principles of Celestial Navigation James A
    Basic principles of celestial navigation James A. Van Allena) Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242 ͑Received 16 January 2004; accepted 10 June 2004͒ Celestial navigation is a technique for determining one’s geographic position by the observation of identified stars, identified planets, the Sun, and the Moon. This subject has a multitude of refinements which, although valuable to a professional navigator, tend to obscure the basic principles. I describe these principles, give an analytical solution of the classical two-star-sight problem without any dependence on prior knowledge of position, and include several examples. Some approximations and simplifications are made in the interest of clarity. © 2004 American Association of Physics Teachers. ͓DOI: 10.1119/1.1778391͔ I. INTRODUCTION longitude ⌳ is between 0° and 360°, although often it is convenient to take the longitude westward of the prime me- Celestial navigation is a technique for determining one’s ridian to be between 0° and Ϫ180°. The longitude of P also geographic position by the observation of identified stars, can be specified by the plane angle in the equatorial plane identified planets, the Sun, and the Moon. Its basic principles whose vertex is at O with one radial line through the point at are a combination of rudimentary astronomical knowledge 1–3 which the meridian through P intersects the equatorial plane and spherical trigonometry. and the other radial line through the point G at which the Anyone who has been on a ship that is remote from any prime meridian intersects the equatorial plane ͑see Fig.
    [Show full text]
  • Equatorial and Cartesian Coordinates • Consider the Unit Sphere (“Unit”: I.E
    Coordinate Transforms Equatorial and Cartesian Coordinates • Consider the unit sphere (“unit”: i.e. declination the distance from the center of the (δ) sphere to its surface is r = 1) • Then the equatorial coordinates Equator can be transformed into Cartesian coordinates: right ascension (α) – x = cos(α) cos(δ) – y = sin(α) cos(δ) z x – z = sin(δ) y • It can be much easier to use Cartesian coordinates for some manipulations of geometry in the sky Equatorial and Cartesian Coordinates • Consider the unit sphere (“unit”: i.e. the distance y x = Rcosα from the center of the y = Rsinα α R sphere to its surface is r = 1) x Right • Then the equatorial Ascension (α) coordinates can be transformed into Cartesian coordinates: declination (δ) – x = cos(α)cos(δ) z r = 1 – y = sin(α)cos(δ) δ R = rcosδ R – z = sin(δ) z = rsinδ Precession • Because the Earth is not a perfect sphere, it wobbles as it spins around its axis • This effect is known as precession • The equatorial coordinate system relies on the idea that the Earth rotates such that only Right Ascension, and not declination, is a time-dependent coordinate The effects of Precession • Currently, the star Polaris is the North Star (it lies roughly above the Earth’s North Pole at δ = 90oN) • But, over the course of about 26,000 years a variety of different points in the sky will truly be at δ = 90oN • The declination coordinate is time-dependent albeit on very long timescales • A precise astronomical coordinate system must account for this effect Equatorial coordinates and equinoxes • To account
    [Show full text]
  • Capricious Suntime
    [Physics in daily life] I L.J.F. (Jo) Hermans - Leiden University, e Netherlands - [email protected] - DOI: 10.1051/epn/2011202 Capricious suntime t what time of the day does the sun reach its is that the solar time will gradually deviate from the time highest point, or culmination point, when on our watch. We expect this‘eccentricity effect’ to show a its position is exactly in the South? e ans - sine-like behaviour with a period of a year. A wer to this question is not so trivial. For ere is a second, even more important complication. It is one thing, it depends on our location within our time due to the fact that the rotational axis of the earth is not zone. For Berlin, which is near the Eastern end of the perpendicular to the ecliptic, but is tilted by about 23.5 Central European time zone, it may happen around degrees. is is, aer all, the cause of our seasons. To noon, whereas in Paris it may be close to 1 p.m. (we understand this ‘tilt effect’ we must realise that what mat - ignore the daylight saving ters for the deviation in time time which adds an extra is the variation of the sun’s hour in the summer). horizontal motion against But even for a fixed loca - the stellar background tion, the time at which the during the year. In mid- sun reaches its culmination summer and mid-winter, point varies throughout the when the sun reaches its year in a surprising way.
    [Show full text]
  • COURT of CLAIMS of THE
    REPORTS OF Cases Argued and Determined IN THE COURT of CLAIMS OF THE STATE OF ILLINOIS VOLUME 39 Containing cases in which opinions were filed and orders of dismissal entered, without opinion for: Fiscal Year 1987 - July 1, 1986-June 30, 1987 SPRINGFIELD, ILLINOIS 1988 (Printed by authority of the State of Illinois) (65655--300-7/88) PREFACE The opinions of the Court of Claims reported herein are published by authority of the provisions of Section 18 of the Court of Claims Act, Ill. Rev. Stat. 1987, ch. 37, par. 439.1 et seq. The Court of Claims has exclusive jurisdiction to hear and determine the following matters: (a) all claims against the State of Illinois founded upon any law of the State, or upon an regulation thereunder by an executive or administrative ofgcer or agency, other than claims arising under the Workers’ Compensation Act or the Workers’ Occupational Diseases Act, or claims for certain expenses in civil litigation, (b) all claims against the State founded upon any contract entered into with the State, (c) all claims against the State for time unjustly served in prisons of this State where the persons imprisoned shall receive a pardon from the Governor stating that such pardon is issued on the grounds of innocence of the crime for which they were imprisoned, (d) all claims against the State in cases sounding in tort, (e) all claims for recoupment made by the State against any Claimant, (f) certain claims to compel replacement of a lost or destroyed State warrant, (g) certain claims based on torts by escaped inmates of State institutions, (h) certain representation and indemnification cases, (i) all claims pursuant to the Law Enforcement Officers, Civil Defense Workers, Civil Air Patrol Members, Paramedics and Firemen Compensation Act, (j) all claims pursuant to the Illinois National Guardsman’s and Naval Militiaman’s Compensation Act, and (k) all claims pursuant to the Crime Victims Compensation Act.
    [Show full text]
  • The Lore of the Stars, for Amateur Campfire Sages
    obscure. Various claims have been made about Babylonian innovations and the similarity between the Greek zodiac and the stories, dating from the third millennium BCE, of Gilgamesh, a legendary Sumerian hero who encountered animals and characters similar to those of the zodiac. Some of the Babylonian constellations may have been popularized in the Greek world through the conquest of The Lore of the Stars, Alexander in the fourth century BCE. Alexander himself sent captured Babylonian texts back For Amateur Campfire Sages to Greece for his tutor Aristotle to interpret. Even earlier than this, Babylonian astronomy by Anders Hove would have been familiar to the Persians, who July 2002 occupied Greece several centuries before Alexander’s day. Although we may properly credit the Greeks with completing the Babylonian work, it is clear that the Babylonians did develop some of the symbols and constellations later adopted by the Greeks for their zodiac. Contrary to the story of the star-counter in Le Petit Prince, there aren’t unnumerable stars Cuneiform tablets using symbols similar to in the night sky, at least so far as we can see those used later for constellations may have with our own eyes. Only about a thousand are some relationship to astronomy, or they may visible. Almost all have names or Greek letter not. Far more tantalizing are the various designations as part of constellations that any- cuneiform tablets outlining astronomical one can learn to recognize. observations used by the Babylonians for Modern astronomers have divided the sky tracking the moon and developing a calendar. into 88 constellations, many of them fictitious— One of these is the MUL.APIN, which describes that is, they cover sky area, but contain no vis- the stars along the paths of the moon and ible stars.
    [Show full text]
  • Characterization of the Gaseous Companion Κ Andromedae B⋆
    UvA-DARE (Digital Academic Repository) Characterization of the gaseous companion κ Andromedae b. New Keck and LBTI high-contrast observations Bonnefoy, M.; et al., [Unknown]; Thalmann, C. DOI 10.1051/0004-6361/201322119 Publication date 2014 Document Version Final published version Published in Astronomy & Astrophysics Link to publication Citation for published version (APA): Bonnefoy, M., et al., U., & Thalmann, C. (2014). Characterization of the gaseous companion κ Andromedae b. New Keck and LBTI high-contrast observations. Astronomy & Astrophysics, 562, A111. https://doi.org/10.1051/0004-6361/201322119 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:23 Sep 2021 A&A 562, A111 (2014) Astronomy DOI: 10.1051/0004-6361/201322119 & c ESO 2014 Astrophysics Characterization of the gaseous companion κ Andromedae b? New Keck and LBTI high-contrast observations?? M.
    [Show full text]
  • Educator's Guide: Orion
    Legends of the Night Sky Orion Educator’s Guide Grades K - 8 Written By: Dr. Phil Wymer, Ph.D. & Art Klinger Legends of the Night Sky: Orion Educator’s Guide Table of Contents Introduction………………………………………………………………....3 Constellations; General Overview……………………………………..4 Orion…………………………………………………………………………..22 Scorpius……………………………………………………………………….36 Canis Major…………………………………………………………………..45 Canis Minor…………………………………………………………………..52 Lesson Plans………………………………………………………………….56 Coloring Book…………………………………………………………………….….57 Hand Angles……………………………………………………………………….…64 Constellation Research..…………………………………………………….……71 When and Where to View Orion…………………………………….……..…77 Angles For Locating Orion..…………………………………………...……….78 Overhead Projector Punch Out of Orion……………………………………82 Where on Earth is: Thrace, Lemnos, and Crete?.............................83 Appendix………………………………………………………………………86 Copyright©2003, Audio Visual Imagineering, Inc. 2 Legends of the Night Sky: Orion Educator’s Guide Introduction It is our belief that “Legends of the Night sky: Orion” is the best multi-grade (K – 8), multi-disciplinary education package on the market today. It consists of a humorous 24-minute show and educator’s package. The Orion Educator’s Guide is designed for Planetarians, Teachers, and parents. The information is researched, organized, and laid out so that the educator need not spend hours coming up with lesson plans or labs. This has already been accomplished by certified educators. The guide is written to alleviate the fear of space and the night sky (that many elementary and middle school teachers have) when it comes to that section of the science lesson plan. It is an excellent tool that allows the parents to be a part of the learning experience. The guide is devised in such a way that there are plenty of visuals to assist the educator and student in finding the Winter constellations.
    [Show full text]
  • 1. Introduction
    1. Introduction Three variable stars with short periods and high-amplitude, CY Aqr, BP Peg, and GP And, are selected for the study, and the characteristic of each variable star is analyzed from their light curves. These three variable stars are difference a little, CY Aqr is probability a binary system, BP Peg is a type of delta Scuti star with two stable periods (Rodriguez et al., 1992), and GP And is a simple delta Scuti star. 1.1 Delta Scuti stars Delta Scuti, the fourth bright star in Scutum at V magnitude, 4.71, stand out as the prototype of one of these. On the HR diagram or temperature-luminosity diagram, the kind of variable stars were located in intersects of main sequence with instability strip shown in Figure 1. Figure 1. Delta Scuti stars were in intersects of main sequence with instability strip. Delta Scuti stars is the group of the second most numerous of pulsators in the Galaxy, after the pulsating white dwarfs, and their spectrum belong to type A to early F. Most delta Scuti stars belong to Population I (Antonello, Broglia & Mantegazza, 1986), but a few variables show low metals and 6 high space velocities typical of Population II (Rodriguez E., Rolland A. & Lopez de coca P., 1990). The delta Scuti stars is divided into two types, variable stars with high-amplitude delta Scuti (HADS) and high-amplitude SX Phe (HASXP) (Breger, 1983;Andreasen, 1983;Frolov and Irkaev, 1984). Both of them have asymmetrical light curve in V with amplitudes > 0.25 magnitude and probably hydrogen-burning stars in the main sequence or post main sequence stage.
    [Show full text]
  • JUDITH MERRIL-PDF-Sep23-07.Pdf (368.7Kb)
    JUDITH MERRIL: AN ANNOTATED BIBLIOGRAPHY AND GUIDE Compiled by Elizabeth Cummins Department of English and Technical Communication University of Missouri-Rolla Rolla, MO 65409-0560 College Station, TX The Center for the Bibliography of Science Fiction and Fantasy December 2006 Table of Contents Preface Judith Merril Chronology A. Books B. Short Fiction C. Nonfiction D. Poetry E. Other Media F. Editorial Credits G. Secondary Sources About Elizabeth Cummins PREFACE Scope and Purpose This Judith Merril bibliography includes both primary and secondary works, arranged in categories that are suitable for her career and that are, generally, common to the other bibliographies in the Center for Bibliographic Studies in Science Fiction. Works by Merril include a variety of types and modes—pieces she wrote at Morris High School in the Bronx, newsletters and fanzines she edited; sports, westerns, and detective fiction and non-fiction published in pulp magazines up to 1950; science fiction stories, novellas, and novels; book reviews; critical essays; edited anthologies; and both audio and video recordings of her fiction and non-fiction. Works about Merill cover over six decades, beginning shortly after her first science fiction story appeared (1948) and continuing after her death (1997), and in several modes— biography, news, critical commentary, tribute, visual and audio records. This new online bibliography updates and expands the primary bibliography I published in 2001 (Elizabeth Cummins, “Bibliography of Works by Judith Merril,” Extrapolation, vol. 42, 2001). It also adds a secondary bibliography. However, the reasons for producing a research- based Merril bibliography have been the same for both publications. Published bibliographies of Merril’s work have been incomplete and often inaccurate.
    [Show full text]
  • DMAAC – February 1973
    LUNAR TOPOGRAPHIC ORTHOPHOTOMAP (LTO) AND LUNAR ORTHOPHOTMAP (LO) SERIES (Published by DMATC) Lunar Topographic Orthophotmaps and Lunar Orthophotomaps Scale: 1:250,000 Projection: Transverse Mercator Sheet Size: 25.5”x 26.5” The Lunar Topographic Orthophotmaps and Lunar Orthophotomaps Series are the first comprehensive and continuous mapping to be accomplished from Apollo Mission 15-17 mapping photographs. This series is also the first major effort to apply recent advances in orthophotography to lunar mapping. Presently developed maps of this series were designed to support initial lunar scientific investigations primarily employing results of Apollo Mission 15-17 data. Individual maps of this series cover 4 degrees of lunar latitude and 5 degrees of lunar longitude consisting of 1/16 of the area of a 1:1,000,000 scale Lunar Astronautical Chart (LAC) (Section 4.2.1). Their apha-numeric identification (example – LTO38B1) consists of the designator LTO for topographic orthophoto editions or LO for orthophoto editions followed by the LAC number in which they fall, followed by an A, B, C or D designator defining the pertinent LAC quadrant and a 1, 2, 3, or 4 designator defining the specific sub-quadrant actually covered. The following designation (250) identifies the sheets as being at 1:250,000 scale. The LTO editions display 100-meter contours, 50-meter supplemental contours and spot elevations in a red overprint to the base, which is lithographed in black and white. LO editions are identical except that all relief information is omitted and selenographic graticule is restricted to border ticks, presenting an umencumbered view of lunar features imaged by the photographic base.
    [Show full text]