Introduction to Pharmacokinetics and Pharmacodynamics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1: Clinical Pharmacokinetics 1
1: CLINICAL PHARMACOKINETICS 1 General overview: clinical pharmacokinetics, 2 Pharmacokinetics, 4 Drug clearance (CL), 6 Volume of distribution (Vd), 8 The half-life (t½), 10 Oral availability (F), 12 Protein binding (PB), 14 pH and pharmacokinetics, 16 1 Clinical pharmacokinetics General overview General overview: clinical pharmacokinetics 1 The ultimate aim of drug therapy is to achieve effi cacy without toxicity. This involves achieving a plasma concentration (Cp) within the ‘therapeutic window’, i.e. above the min- imal effective concentration (MEC), but below the minimal toxic concentration (MTC). Clinical pharmacokinetics is about all the factors that determine variability in the Cp and its time-course. The various factors are dealt with in subsequent chapters. Ideal therapeutics: effi cacy without toxicity Minimum Toxic Concentration (MTC) Ideal dosing Minimum Effective Concentration (MEC) Drug concentration Time The graph shows a continuous IV infusion at steady state, where the dose-rate is exactly appropriate for the patient’s clearance (CL). Inappropriate dosing Dosing too high in relation to the patient’s CL – toxicity likely Minimum Toxic Concentration (MTC) Minimum Effective Concentration (MEC) Dosing too low in relation to the Drug concentration patient’s CL – drug may be ineffective Time Some reasons for variation in CL Low CL High CL Normal variation Normal variation Renal impairment Increased renal blood fl ow Genetic poor metabolism Genetic hypermetabolism Liver impairment Enzyme induction Enzyme inhibition Old age/neonate 2 General overview Clinical Pharmacokinetics Pharmacokinetic factors determining ideal therapeutics If immediate effect is needed, a loading dose (LD) must be given to achieve a desired 1 concentration. The LD is determined by the volume of distribution (Vd). -
Pharmacokinetics, Biodistribution, and Pharmacodynamics of Drug Delivery Systems
JPET Fast Forward. Published on March 5, 2019 as DOI: 10.1124/jpet.119.257113 This article has not been copyedited and formatted. The final version may differ from this version. JPET # 257113 Title: Pharmacokinetic and Pharmacodynamic Properties of Drug Delivery Systems Authors: Patrick M. Glassman, Vladimir R. Muzykantov Affiliation: Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania Address: 3400 Civic Center Boulevard, Bldg 421, Philadelphia, Pennsylvania 19104-5158, United States Downloaded from jpet.aspetjournals.org at ASPET Journals on September 24, 2021 1 JPET Fast Forward. Published on March 5, 2019 as DOI: 10.1124/jpet.119.257113 This article has not been copyedited and formatted. The final version may differ from this version. JPET # 257113 Running Title: PK/PD Properties of Drug Delivery Systems Corresponding Authors: Vladimir R. Muzykantov ([email protected], (215) 898-9823) and Patrick M. Glassman ([email protected]) # of Text Pages: 22 # of Tables: 2 # of Figures: 4 Word Count – Abstract: 144 Word Count – Introduction: 350 Word Count – Discussion: N/A Downloaded from Non-Standard Abbreviations: Absorption, Distribution, Metabolism, and Elimination (ADME) Biodistribution (BD) Drug Delivery Systems (DDSs) Enhanced Permeability & Retention (EPR) jpet.aspetjournals.org Gastrointestinal (GI) Intravenously (IV) Neonatal Fc Receptor (FcRn) Monoclonal Antibody (mAb) Reticuloendothelial System (RES) at ASPET Journals on September 24, 2021 Pharmacodynamics (PD) Pharmacokinetics (PK) Physiologically-Based Pharmacokinetic (PBPK) Subcutaneously (SC) Target-Mediated Drug Disposition (TMDD) Recommended Section: Drug Discovery and Translational Medicine 2 JPET Fast Forward. Published on March 5, 2019 as DOI: 10.1124/jpet.119.257113 This article has not been copyedited and formatted. -
Using Toxicity Tests in Ecological Risk Assessment Toxicity Tests Are Used to Expose Test Organisms to a 2
United States Office of Publication 9345.0-05I Environmental Solid Waste and March 1994 Protection Emergency Response Agency ECO Update Office of Emergency Remedial Response Intermittent Bulletin Hazardous Site Evaluation Division (5204G) Volume 2 Number1 Using Toxicity Tests in Ecological Risk Assessment Toxicity tests are used to expose test organisms to a 2. Toxicity tests can evaluate the aggregate toxic effects of medium—water, sediment, or soil—and evaluate the effects of all contaminants in a medium. Many Superfund sites present contamination on the survival, growth, reproduction, behavior a complex array of contaminants, with a mixture of potentially and/or other attributes of these organisms. These tests may harmful substances present in the media. At such sites, help to determine whether the contaminant concentrations in a chemical data alone cannot accurately predict the toxicity of site’s media are high enough to cause adverse effects in the contaminants. Rather, toxicity tests measure the aggregate organisms. Generally, toxicity tests involve collecting effects of contaminated media on organisms. These effects samples of media from a site and sending them to a toxicity result from characteristics of the medium itself (such as laboratory, where the tests are performed. On occasion hardness and pH, in the case of water), interactions among investigators1 measure toxicity by exposing test organisms to contaminants, and interactions between contaminants and soil or water on site—these are known as in situ tests. media. Consequently, observed toxicity test results may often vary from those predicted by chemical data alone. As the general guidelines at the end of this Bulletin indicate, not all sites require toxicity tests. -
Sanitization: Concentration, Temperature, and Exposure Time
Sanitization: Concentration, Temperature, and Exposure Time Did you know? According to the CDC, contaminated equipment is one of the top five risk factors that contribute to foodborne illnesses. Food contact surfaces in your establishment must be cleaned and sanitized. This can be done either by heating an object to a high enough temperature to kill harmful micro-organisms or it can be treated with a chemical sanitizing compound. 1. Heat Sanitization: Allowing a food contact surface to be exposed to high heat for a designated period of time will sanitize the surface. An acceptable method of hot water sanitizing is by utilizing the three compartment sink. The final step of the wash, rinse, and sanitizing procedure is immersion of the object in water with a temperature of at least 170°F for no less than 30 seconds. The most common method of hot water sanitizing takes place in the final rinse cycle of dishwashing machines. Water temperature must be at least 180°F, but not greater than 200°F. At temperatures greater than 200°F, water vaporizes into steam before sanitization can occur. It is important to note that the surface temperature of the object being sanitized must be at 160°F for a long enough time to kill the bacteria. 2. Chemical Sanitization: Sanitizing is also achieved through the use of chemical compounds capable of destroying disease causing bacteria. Common sanitizers are chlorine (bleach), iodine, and quaternary ammonium. Chemical sanitizers have found widespread acceptance in the food service industry. These compounds are regulated by the U.S. Environmental Protection Agency and consequently require labeling with the word “Sanitizer.” The labeling should also include what concentration to use, data on minimum effective uses and warnings of possible health hazards. -
Gene-Signature-Derived Ic50s/Ec50s Reflect the Potency of Causative
www.nature.com/scientificreports OPEN Gene-signature-derived IC50s/EC50s refect the potency of causative upstream targets and downstream phenotypes Stefen Renner1 ✉ , Christian Bergsdorf1, Rochdi Bouhelal1, Magdalena Koziczak-Holbro2, Andrea Marco Amati1,6, Valerie Techer-Etienne1, Ludivine Flotte2, Nicole Reymann1, Karen Kapur3, Sebastian Hoersch3, Edward James Oakeley4, Ansgar Schufenhauer1, Hanspeter Gubler3, Eugen Lounkine5,7 & Pierre Farmer1 ✉ Multiplexed gene-signature-based phenotypic assays are increasingly used for the identifcation and profling of small molecule-tool compounds and drugs. Here we introduce a method (provided as R-package) for the quantifcation of the dose-response potency of a gene-signature as EC50 and IC50 values. Two signaling pathways were used as models to validate our methods: beta-adrenergic agonistic activity on cAMP generation (dedicated dataset generated for this study) and EGFR inhibitory efect on cancer cell viability. In both cases, potencies derived from multi-gene expression data were highly correlated with orthogonal potencies derived from cAMP and cell growth readouts, and superior to potencies derived from single individual genes. Based on our results we propose gene-signature potencies as a novel valid alternative for the quantitative prioritization, optimization and development of novel drugs. Gene expression signatures are widely used in the feld of translational medicine to defne disease sub-types1, severity2 and predict treatment outcome3. Bridging this technology to early drug discovery was previously pro- posed years ago4,5 but its prohibitive costs limited this approach. Te recent advancement of massively parallel gene expression technologies such as RASL-seq.6, DRUG-seq.7, QIAseq.8,9, PLATE-seq.10, or LINCS L100011 are now transforming the feld of compound profling, enabling larger scale profling and screening experiments at a more afordable cost12–17. -
The Excretion and Storage of Ammonia by the Aquatic Larva of Sialis Lutaria (Neuroptera)
THE EXCRETION AND STORAGE OF AMMONIA BY THE AQUATIC LARVA OF SIALIS LUTARIA (NEUROPTERA) BY B. W. STADDON* Department of Zoology, University of Durham, King's College, Newcastle upon Tyne (Received 12 April 1954) INTRODUCTION Delaunay (1931), in a review of the invertebrates, showed that an excellent correla- tion existed between the nature of the major nitrogenous component of the excreta and the nature of the environment, aquatic or terrestrial, in which an animal lived. Ammonia was shown to predominate in the excreta of aquatic species, urea or uric acid in the excreta of semi-terrestrial or terrestrial species. Delaunay put forward the view that the synthesis by these terrestrial forms of more complex molecules from ammonia was essentially a detoxication mechanism necessitated by a restricted water supply. Although the insects are primarily a terrestrial group, representatives of a number of orders have become aquatic in one or more stages of their life histories. It is well known that those terrestrial species which have been examined, with the notable exception of blowfly larvae, excrete the bulk of their nitrogen in the form of uric acid (Wigglesworth, 1950). The possibility, however, that aquatic species might have reverted to ammonotelism does not seem to have been examined. Preliminary tests were carried out on the excreta of a variety of aquatic insects. In all cases ammonia was found to be the major nitrogenous excretory product. An investigation into various aspects of the metabolism, toxicity and excretion of ammonia was then undertaken on the aquatic larva of Siatis lutaria. It is the purpose of the present communication to present some observations on the excretion and storage of ammonia in this species. -
Cysteinyl Leukotriene Receptor 1/2 Antagonists Nonselectively Modulate Organic Anion Transport by Multidrug Resistance Proteins (MRP1-4) S
Supplemental material to this article can be found at: http://dmd.aspetjournals.org/content/suppl/2016/04/11/dmd.116.069468.DC1 1521-009X/44/6/857–866$25.00 http://dx.doi.org/10.1124/dmd.116.069468 DRUG METABOLISM AND DISPOSITION Drug Metab Dispos 44:857–866, June 2016 Copyright ª 2016 by The American Society for Pharmacology and Experimental Therapeutics Cysteinyl Leukotriene Receptor 1/2 Antagonists Nonselectively Modulate Organic Anion Transport by Multidrug Resistance Proteins (MRP1-4) s Mark A. Csandl, Gwenaëlle Conseil, and Susan P. C. Cole Departments of Biomedical and Molecular Sciences (M.A.C., S.P.C.C.), and Pathology and Molecular Medicine (G.C., S.P.C.C.), Division of Cancer Biology and Genetics, Queen’s University Cancer Research Institute, Kingston, ON, Canada Received January 13, 2016; accepted April 7, 2016 ABSTRACT Active efflux of both drugs and organic anion metabolites is class of antagonists showed any MRP selectivity. For E217bG Downloaded from mediated by the multidrug resistance proteins (MRPs). MRP1 uptake, LTM IC50s ranged from 1.2 to 26.9 mMandweremost (ABCC1), MRP2 (ABCC2), MRP3 (ABCC3), and MRP4 (ABCC4) have comparable for MRP1 and MRP4. The LTM rank order inhibitory partially overlapping substrate specificities and all transport 17b- potencies for E217bGversusLTC4 uptake by MRP1, and E217bG estradiol 17-(b-D-glucuronide) (E217bG). The cysteinyl leukotriene versus PGE2 uptake by MRP4, were also similar. Three of four receptor 1 (CysLT1R) antagonist MK-571 inhibits all four MRP CysLT1R-selective LTMs also stimulated MRP2 (but not MRP3) homologs, but little is known about the modulatory effects of newer transport and thus exerted a concentration-dependent biphasic leukotriene modifiers (LTMs). -
Clinical Pharmacology 1: Phase 1 Studies and Early Drug Development
Clinical Pharmacology 1: Phase 1 Studies and Early Drug Development Gerlie Gieser, Ph.D. Office of Clinical Pharmacology, Div. IV Objectives • Outline the Phase 1 studies conducted to characterize the Clinical Pharmacology of a drug; describe important design elements of and the information gained from these studies. • List the Clinical Pharmacology characteristics of an Ideal Drug • Describe how the Clinical Pharmacology information from Phase 1 can help design Phase 2/3 trials • Discuss the timing of Clinical Pharmacology studies during drug development, and provide examples of how the information generated could impact the overall clinical development plan and product labeling. Phase 1 of Drug Development CLINICAL DEVELOPMENT RESEARCH PRE POST AND CLINICAL APPROVAL 1 DISCOVERY DEVELOPMENT 2 3 PHASE e e e s s s a a a h h h P P P Clinical Pharmacology Studies Initial IND (first in human) NDA/BLA SUBMISSION Phase 1 – studies designed mainly to investigate the safety/tolerability (if possible, identify MTD), pharmacokinetics and pharmacodynamics of an investigational drug in humans Clinical Pharmacology • Study of the Pharmacokinetics (PK) and Pharmacodynamics (PD) of the drug in humans – PK: what the body does to the drug (Absorption, Distribution, Metabolism, Excretion) – PD: what the drug does to the body • PK and PD profiles of the drug are influenced by physicochemical properties of the drug, product/formulation, administration route, patient’s intrinsic and extrinsic factors (e.g., organ dysfunction, diseases, concomitant medications, -
In Vitro Interactions of Epacadostat and Its Major Metabolites With
DMD Fast Forward. Published on March 10, 2017 as DOI: 10.1124/dmd.116.074609 This article has not been copyedited and formatted. The final version may differ from this version. DMD # 74609 In vitro interactions of epacadostat and its major metabolites with human efflux and uptake transporters: Implications for pharmacokinetics and drug interactions Qiang Zhang, Yan Zhang, Jason Boer, Jack G. Shi, Peidi Hu, Sharon Diamond, and Downloaded from Swamy Yeleswaram Incyte Corporation, Wilmington, DE 19803 dmd.aspetjournals.org at ASPET Journals on September 29, 2021 1 DMD Fast Forward. Published on March 10, 2017 as DOI: 10.1124/dmd.116.074609 This article has not been copyedited and formatted. The final version may differ from this version. DMD # 74609 Running title: Interactions of Epacadostat with Transporters Corresponding Author: Qiang Zhang, Ph.D. Incyte Corporation 1801 Augustine Cut-Off Wilmington, DE 19803 Downloaded from Email: [email protected] Phone: 302-498-5827 Fax: 302-425-2759 dmd.aspetjournals.org Number of Text Pages: 24 Number of Figures: 8 at ASPET Journals on September 29, 2021 Number of Tables: 6 Number of References: 24 The number of words of Abstract: 247 The number of words of Introduction: 655 The number of words of Discussion: 1487 Non-standard Abbreviations: EPAC, epacadostat; IDO1, indoleamine 2,3-dioxygenase 1; EHC, enterohepatic circulation; NME, new chemical entity; TEER, transepithelial electrical resistance; HBSS, Hank's Balanced Salt Solution; KO, knockout; CSA, cyclosporin A; IC50, half-maximal inhibitory concentration; ER, efflux ratio 2 DMD Fast Forward. Published on March 10, 2017 as DOI: 10.1124/dmd.116.074609 This article has not been copyedited and formatted. -
Exploring the Concept of Safety and Tolerability
SECOND ANNUAL WORKSHOP ON CLINICAL OUTCOME ASSESSMENTS IN CANCER CLINICAL TRIALS April 25, 2017 Bethesda, MD Co-sponsored by Session 1 Exploring the Concepts of Safety and Tolerability: Incorporating the Patient Voice SECOND ANNUAL WORKSHOP ON CLINICAL OUTCOME ASSESSMENTS IN CANCER CLINICAL TRIALS April 25, 2017 Bethesda, MD Co-sponsored by Disclaimer • The views and opinions expressed in the following slides are those of the individual presenters and should not be attributed to their respective organizations/companies, the U.S. Food and Drug Administration or the Critical Path Institute. • These slides are the intellectual property of the individual presenters and are protected under the copyright laws of the United States of America and other countries. Used by permission. All rights reserved. All trademarks are the property of their respective owners. 3 Session Participants Chair • Bindu Kanapuru, MD – Medical Officer, Division of Hematology Products, OHOP, FDA Presenters • James (Randy) Hillard, MD – Professor of Psychiatry, Michigan State University • Crystal Denlinger, MD, FACP – Associate Professor, Department of Hematology/Oncology; Chief, Gastrointestinal Medical Oncology; Director, Survivorship Program; Deputy Director, Phase 1 Program, Fox Chase Cancer Center • Katherine Soltys, MD – Acting Director, Bureau of Medical Sciences, Therapeutic Products Directorate, Health Products and Food Branch, Health Canada • Karen E. Arscott, DO, MSc – Associate Professor of Medicine-Patient Advocate and Survivor, Geisinger Commonwealth -
The 5-HT6 Receptor Antagonist SB-271046 Selectively Enhances Excitatory Neurotransmission in the Rat Frontal Cortex and Hippocampus Lee A
The 5-HT6 Receptor Antagonist SB-271046 Selectively Enhances Excitatory Neurotransmission in the Rat Frontal Cortex and Hippocampus Lee A. Dawson, Ph.D., Huy Q. Nguyen, B.S., and Ping Li, B.S. Preclinical evidence has suggested a possible role for the 5-HT6 increases in extracellular glutamate levels in both frontal receptor in the treatment of cognitive dysfunction. However, cortex and dorsal hippocampus, respectively. These effects were currently there is little neurochemical evidence suggesting the completely attenuated by infusion of tetrodotoxin but mechanism(s) which may be involved. Using the selective unaffected by the muscarinic antagonist, atropine. Here we 5-HT6 antagonist SB-271046 and in vivo microdialysis, we demonstrate for the first time the selective enhancement of have evaluated the effects of this compound on the modulation excitatory neurotransmission by SB-271046 in those brain of basal neurotransmitter release within multiple brain regions regions implicated in cognitive and memory function, and of the freely moving rat. SB-271046 produced no change in provide mechanistic evidence in support of a possible basal levels of dopamine (DA), norepinephrine (NE) or 5-HT therapeutic role for 5-HT6 receptor antagonists in the in the striatum, frontal cortex, dorsal hippocampus or nucleus treatment of cognitive and memory dysfunction. accumbens. Similarly, this compound had no effect on [Neuropsychopharmacology 25:662–668, 2001] excitatory neurotransmission in the striatum or nucleus © 2001 American College of Neuropsychopharmacology. accumbens. Conversely, SB-271046 produced 3- and 2-fold Published by Elsevier Science Inc. KEY WORDS: 5-HT6 receptor; SB-271046; Microdialysis; sma et al. 1993; Ruat et al. -
Principles of Drug Addiction Treatment: a Research-Based Guide (Third Edition)
Publications Revised January 2018 Principles of Drug Addiction Treatment: A Research-Based Guide (Third Edition) Table of Contents Principles of Drug Addiction Treatment: A Research-Based Guide (Third Edition) Preface Principles of Effective Treatment Frequently Asked Questions Drug Addiction Treatment in the United States Evidence-Based Approaches to Drug Addiction Treatment Acknowledgments Resources Page 1 Principles of Drug Addiction Treatment: A Research-Based Guide (Third Edition) The U.S. Government does not endorse or favor any specific commercial product or company. Trade, proprietary, or company names appearing in this publication are used only because they are considered essential in the context of the studies described. Preface Drug addiction is a complex illness. It is characterized by intense and, at times, uncontrollable drug craving, along with compulsive drug seeking and use that persist even in the face of devastating consequences. This update of the National Institute on Drug Abuse’s Principles of Drug Addiction Treatment is intended to address addiction to a wide variety of drugs, including nicotine, alcohol, and illicit and prescription drugs. It is designed to serve as a resource for healthcare providers, family members, and other stakeholders trying to address the myriad problems faced by patients in need of treatment for drug abuse or addiction. Addiction affects multiple brain circuits, including those involved in reward and motivation, learning and memory, and inhibitory control over behavior. That is why addiction is a brain disease. Some individuals are more vulnerable than others to becoming addicted, depending on the interplay between genetic makeup, age of exposure to drugs, and other environmental influences.