2 Linear Sigma Models

Total Page:16

File Type:pdf, Size:1020Kb

2 Linear Sigma Models Trieste Lectures On Mirror Symmetry Kentaro Hori* Department of Physics and Department of Mathematics, University of Toronto, Toronto, Ontario, Canada Lectures given at the Spring School on Superstrings and Related Matters Trieste, 18-26 March 2002 LNS0313003 * [email protected] Abstract These are pedagogical lectures on mirror symmetry given at the Spring School in ICTP, Trieste, March 2002. The focus is placed on worldsheet descriptions of the physics related to mirror symmetry. We start with the introduction to general aspects of (2,2) supersymmetric field theories in 1 +1 dimensions. We next move on to the study and applications of linear sigma model. Finally, we provide a proof of mirror symmetry in a class of models. Contents 1 Aspects of A/* = 2 Supersymmetry 115 1.1 (2,2) Supersymmetry in 1 + 1 Dimensions 116 1.1.1 (2,2) Superspace and Superfields 120 1.1.2 Decoupling of Parameters 121 1.2 Non-Linear Sigma Models and Landau-Ginzburg Models . 122 1.2.1 The Models 122 1.2.2 Witten Index 124 1.2.3 R-Symmetry 125 1.2.4 Twisting 127 1.2.5 Supersymmetric Ground States 129 1.2.6 Renormalization Group Flow 130 1.2.7 Complexified Kahler Class and Complex Structure . 131 1.3 D-Branes and Orientifolds 132 1.3.1 A-branes and B-branes 132 1.3.2 A-orientifolds and B-orientifolds 133 1.3.3 Overlaps with RR Ground States and BPS Basses . 134 1.4 Summary 136 2 Linear Sigma Models 138 2.1 The Models 140 2.2 Non-Linear Sigma Models from Gauge Theories 143 2.2.1 QP^-1 143 2.2.2 0(-1) 0 0(-1) over OP1 (Resolved Conifold) 145 1 N 2.2.3 0{-d) over QP^" or C /Zd Orbifold 147 2.2.4 Toric Manifolds 148 2.2.5 Hypersurfaces and Complete Intersections 149 2.3 Low Energy Dynamics 152 2.3.1 The QP^-1 Model 156 2.3.2 The "Phases" 160 2.3.3 (LG) Orbifold as an ffi. Fixed Point 162 2.3.4 A Flow from (LG) Orbifold 163 3 Mirror Symmetry 164 3.1 T-duality 166 3.1.1 T-duality as Mirror Symmetry 167 3.1.2 T-duality for Charged Fields 168 3.2 Vortex Instanton Effects 170 3.3 The Proof 173 3.4 Some Applications 173 3.4.1 Projective Spaces 173 3.4.2 Resolved Conifolds 175 1 N 3.4.3 0{-d) over QP^'" or Perturbed Orbifold C /Zd . 176 3.5 The Case of Hypersurfaces in Toric Manifolds 179 3.5.1 Low Energy Dynamics 182 3.5.2 Geometric Description of the Mirror 183 3.6 Dilatonic Backgrounds 186 3.6.1 2d Black hole and Liouville Theory 186 3.6.2 Squashed Toric Manifolds 189 3.6.3 Orbifolds 191 4 Bibliography 192 References 197 Mirror Symmetry 113 Introduction For nearly a decade, duality has been playing the central role in most of the development in superstring theory and supersymmetric quantum field theories. Duality is the idea that the strong coupling limit of one theory is equivalent to the weak coupling limit of another apparently different theory. As such, duality can be used to learn about the non-perturbative aspects of a given theory. A typical example is the electric-magnetic duality in M — 4 supersymmetric Yang-Mills theory (Montonen-Olive duality). There are various generalizations, to other gauge theories in four-dimensions with lower supersymmetry (such as Seiberg duality of Af — 1 gauge theories), to supersymmetric field theories in other dimensions, and to superstring backgrounds such as S-duality of Type IIB superstring (string theory version of Montonen-Olive duality). Mirror symmetry is one of them — it is a duality in (2,2) supersymmetric field theories in 1 + 1 dimensions. Most of the dualities found so far remain conjectural. They have been tested by computing and comparing quantities that are protected from quan- tum corrections, but of course such tests, no matter how many, are insuf- ficient to prove the statement of duality which usually takes the form of exact equivalence of two theories (either at all scales or in the deep infra-red limit). Abelain dualities in free field theories, however, are different.1 The typical example is the electric-magnetic duality in Maxwell theory (U(l) gauge theory in 3 + 1 dimensions) without charged matter field. Duality in such theories can be proved by functional Fourier transform. Most of the non-trivial dualities mentioned above may be regarded as generalizations of such abelian duality. For example, mirror symmetry is a generalization of T-duality, or radius inversion duality, of compact scalar fields. It is then a natural idea to try to extend the functional Fourier transform (or "dualization") of free field theories to interacting theories. In fact, mirror symmetry for a certain class of (2,2) supersymmetric field theories can be proved in such a way. One can quantitatively analyze the effect of the inter- action to the dualization process and find out the mirror of a given theory. One purpose of this lecture is to describe this proof of mirror symmetry. As stated, mirror symmetry is just one example of the whole set of du- alities in (supersymmetric) quantum field theories and string theories. It is extremely interesting to see whether and how the proof presented here may 1By definition free fields have no interaction, but the "coupling constant" can be defined as the constant g that appears in front of the action as 1 /g2. 114 K. Hori be applied to other dualities. Actually, there is another aspect of mirror symmetry. (2,2) supersym- metric field theories, especially those with superconformal symmetry, can be used to construct string backgrounds. For example, supersymmetric sigma models on six dimensional Calabi-Yau manifolds have (2,2) superconfor- mal symmetry and can be used to compactify Type II superstring to four- dimensional Minkowski space with M — 2 supersymmetry. If D-branes and orientifolds are included one can also realize M — 1 supersymmetry in four- dimensions, which is extremely important for application to particle physics. Duality in such systems therefore provide examples of duality in important superstring backgrounds. In particular, this will be useful in understanding worldsheet non-perturbative effects. The lectures consists of three parts. In the first part (Section 1), I de- scribe general aspects of theories on 1 + 1 dimensions with (2,2) supersym- metry. We start with formal aspects derived from the algebraic structure of the symmetry generators. One important fact is that there are two special representations of the algebra — "chiral" and "twisted chiral"— and fields and parameters in different representations in a given system are in a cer- tain sense decoupled from each other. We then move on to more specific models including non-linear sigma models on Kahler manifolds and Landau- Ginzburg models. We discuss important ingredients such as Witten index, R- symmetry, twisting, supersymmetric ground states, renormalization groups ow (and non-renormalization theorem). Finally we study theories formu- lated on 1 +1 dimensional space with boundaries and crosscaps, and explore the boundary conditions and parity symmetries that preserve a half of the (2,2) supersymmetry. The second part (Section 2) is devoted to a class of models called (gauged) Linear Sigma Models which have been introduce in late 1970's but were revived by the seminal work by Witten in 1993. Such models provide a way to describe the non-linear sigma models globally, without relying on the choice of coordinate patches. This makes possible to study the non-perturbative aspects, which would have been difficult in patch-wise description of the models. Another virtue of Linear Sigma Models is that the chiral and twisted chiral parameters are concretely realized in F-terms and twisted F-terms of the classical Lagrangian, and one can make full use of the power of (2,2) supersymmetry — the decoupling of the two sectors in particular. The last and the main reason to introduce this subject here is that the set-up is used in an essential way in the proof of mirror symmetry. Mirror Symmetry 115 In the third part (Section 3), the proof of mirror symmetry given by Hori (the lecturer) and Vafa is described. We first introduce T-duality, the abelian duality in compact scalar fields in 1 + 1 dimensions, for bosonic as well as supersymmetric cases. We next discuss how the effect of interaction can be taken into account in the dualization process. We consider the sys- tem that can be viewed as the compact scalar field fibred over some base space. "Interaction" corresponds to the variation of the radius of the scalar (as a function of the base), including vanishing radius at some locus. We see that the most important role is played by the vortex instantons of the Linear Sigma Model that realizes the system. Once it is done, the proof of mirror symmetry is a simple manipulation of integrating out heavy fields. We provide some application of mirror symmetry to study dynamical aspects of the non-linear sigma models. We also describe the mirror symmetry for string backgrounds with non-trivial dilaton profiles. Finally, a remark on the bibliography of the subject is given. This include a brief description of the history of mirror symmetry. 1 Aspects of J\f = 2 Supersymmetry Let us consider a field theory of a complex scalar field <f) and a Dirac fermion ij)±, ij)± — in 1 + 1 dimensions, with the following action + + (1-1) Here do and d\ are derivatives with respect to the time and space coordinates x1.
Recommended publications
  • Kaluza-Klein Gravity, Concentrating on the General Rel- Ativity, Rather Than Particle Physics Side of the Subject
    Kaluza-Klein Gravity J. M. Overduin Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, Victoria, British Columbia, Canada, V8W 3P6 and P. S. Wesson Department of Physics, University of Waterloo, Ontario, Canada N2L 3G1 and Gravity Probe-B, Hansen Physics Laboratories, Stanford University, Stanford, California, U.S.A. 94305 Abstract We review higher-dimensional unified theories from the general relativity, rather than the particle physics side. Three distinct approaches to the subject are identi- fied and contrasted: compactified, projective and noncompactified. We discuss the cosmological and astrophysical implications of extra dimensions, and conclude that none of the three approaches can be ruled out on observational grounds at the present time. arXiv:gr-qc/9805018v1 7 May 1998 Preprint submitted to Elsevier Preprint 3 February 2008 1 Introduction Kaluza’s [1] achievement was to show that five-dimensional general relativity contains both Einstein’s four-dimensional theory of gravity and Maxwell’s the- ory of electromagnetism. He however imposed a somewhat artificial restriction (the cylinder condition) on the coordinates, essentially barring the fifth one a priori from making a direct appearance in the laws of physics. Klein’s [2] con- tribution was to make this restriction less artificial by suggesting a plausible physical basis for it in compactification of the fifth dimension. This idea was enthusiastically received by unified-field theorists, and when the time came to include the strong and weak forces by extending Kaluza’s mechanism to higher dimensions, it was assumed that these too would be compact. This line of thinking has led through eleven-dimensional supergravity theories in the 1980s to the current favorite contenders for a possible “theory of everything,” ten-dimensional superstrings.
    [Show full text]
  • Off-Shell Interactions for Closed-String Tachyons
    Preprint typeset in JHEP style - PAPER VERSION hep-th/0403238 KIAS-P04017 SLAC-PUB-10384 SU-ITP-04-11 TIFR-04-04 Off-Shell Interactions for Closed-String Tachyons Atish Dabholkarb,c,d, Ashik Iqubald and Joris Raeymaekersa aSchool of Physics, Korea Institute for Advanced Study, 207-43, Cheongryangri-Dong, Dongdaemun-Gu, Seoul 130-722, Korea bStanford Linear Accelerator Center, Stanford University, Stanford, CA 94025, USA cInstitute for Theoretical Physics, Department of Physics, Stanford University, Stanford, CA 94305, USA dDepartment of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India E-mail:[email protected], [email protected], [email protected] Abstract: Off-shell interactions for localized closed-string tachyons in C/ZN super- string backgrounds are analyzed and a conjecture for the effective height of the tachyon potential is elaborated. At large N, some of the relevant tachyons are nearly massless and their interactions can be deduced from the S-matrix. The cubic interactions be- tween these tachyons and the massless fields are computed in a closed form using orbifold CFT techniques. The cubic interaction between nearly-massless tachyons with different charges is shown to vanish and thus condensation of one tachyon does not source the others. It is shown that to leading order in N, the quartic contact in- teraction vanishes and the massless exchanges completely account for the four point scattering amplitude. This indicates that it is necessary to go beyond quartic inter- actions or to include other fields to test the conjecture for the height of the tachyon potential. Keywords: closed-string tachyons, orbifolds.
    [Show full text]
  • Moduli Spaces
    spaces. Moduli spaces such as the moduli of elliptic curves (which we discuss below) play a central role Moduli Spaces in a variety of areas that have no immediate link to the geometry being classified, in particular in alge- David D. Ben-Zvi braic number theory and algebraic topology. Moreover, the study of moduli spaces has benefited tremendously in recent years from interactions with Many of the most important problems in mathemat- physics (in particular with string theory). These inter- ics concern classification. One has a class of math- actions have led to a variety of new questions and new ematical objects and a notion of when two objects techniques. should count as equivalent. It may well be that two equivalent objects look superficially very different, so one wishes to describe them in such a way that equiv- 1 Warmup: The Moduli Space of Lines in alent objects have the same description and inequiva- the Plane lent objects have different descriptions. Moduli spaces can be thought of as geometric solu- Let us begin with a problem that looks rather simple, tions to geometric classification problems. In this arti- but that nevertheless illustrates many of the impor- cle we shall illustrate some of the key features of mod- tant ideas of moduli spaces. uli spaces, with an emphasis on the moduli spaces Problem. Describe the collection of all lines in the of Riemann surfaces. (Readers unfamiliar with Rie- real plane R2 that pass through the origin. mann surfaces may find it helpful to begin by reading about them in Part III.) In broad terms, a moduli To save writing, we are using the word “line” to mean problem consists of three ingredients.
    [Show full text]
  • Bosonization and Mirror Symmetry Arxiv:1608.05077V1 [Hep-Th]
    Bosonization and Mirror Symmetry Shamit Kachru1, Michael Mulligan2,1, Gonzalo Torroba3, and Huajia Wang4 1Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA 94305, USA 2Department of Physics and Astronomy, University of California, Riverside, CA 92511, USA 3Centro At´omico Bariloche and CONICET, R8402AGP Bariloche, ARG 4Department of Physics, University of Illinois, Urbana-Champaign, IL 61801, USA Abstract We study bosonization in 2+1 dimensions using mirror symmetry, a duality that relates pairs of supersymmetric theories. Upon breaking supersymmetry in a controlled way, we dynamically obtain the bosonization duality that equates the theory of a free Dirac fermion to QED3 with a single scalar boson. This duality may be used to demonstrate the bosonization duality relating an O(2)-symmetric Wilson-Fisher fixed point to QED3 with a single Dirac fermion, Peskin-Dasgupta-Halperin duality, and the recently conjectured duality relating the theory of a free Dirac fermion to fermionic QED3 with a single flavor. Chern-Simons and BF couplings for both dynamical and background gauge fields play a central role in our approach. In the course of our study, we describe a \chiral" mirror pair that may be viewed as the minimal supersymmetric generalization of the two bosonization dualities. arXiv:1608.05077v1 [hep-th] 17 Aug 2016 Contents 1 Introduction 1 2 Mirror symmetry and its deformations 4 2.1 Superfields and lagrangians . .5 2.2 = 4 mirror symmetry . .7 N 2.3 Deformations by U(1)A and U(1)R backgrounds . 10 2.4 General mirror duality . 11 3 Chiral mirror symmetry 12 3.1 Chiral theory A .
    [Show full text]
  • Arxiv:2007.12543V4 [Hep-Th] 15 Mar 2021 Contents
    Jacobi sigma models F. Basconea;b Franco Pezzellaa Patrizia Vitalea;b aINFN - Sezione di Napoli, Complesso Universitario di Monte S. Angelo Edificio 6, via Cintia, 80126 Napoli, Italy bDipartimento di Fisica “E. Pancini”, Università di Napoli Federico II, Complesso Universitario di Monte S. Angelo Edificio 6, via Cintia, 80126 Napoli, Italy E-mail: [email protected], [email protected], [email protected] Abstract: We introduce a two-dimensional sigma model associated with a Jacobi mani- fold. The model is a generalisation of a Poisson sigma model providing a topological open string theory. In the Hamiltonian approach first class constraints are derived, which gen- erate gauge invariance of the model under diffeomorphisms. The reduced phase space is finite-dimensional. By introducing a metric tensor on the target, a non-topological sigma model is obtained, yielding a Polyakov action with metric and B-field, whose target space is a Jacobi manifold. Keywords: Sigma Models, Topological Strings arXiv:2007.12543v4 [hep-th] 15 Mar 2021 Contents 1 Introduction1 2 Poisson sigma models3 3 Jacobi sigma models5 3.1 Jacobi brackets and Jacobi manifold5 3.1.1 Homogeneous Poisson structure on M × R from Jacobi structure7 3.2 Poisson sigma model on M × R 7 3.3 Action principle on the Jacobi manifold8 3.3.1 Hamiltonian description, constraints and gauge transformations9 4 Metric extension and Polyakov action 15 5 Jacobi sigma model on SU(2) 16 6 Conclusions and Outlook 18 1 Introduction Jacobi sigma models are here introduced as a natural generalisation of Poisson sigma mod- els.
    [Show full text]
  • D-Instanton Perturbation Theory
    D-instanton Perturbation Theory Ashoke Sen Harish-Chandra Research Institute, Allahabad, India Sao Paolo, June 2020 1 Plan: 1. Overview of the problem and the solution 2. Review of basic aspects of world-sheet string theory and string field theory 3. Some explicit computations A.S., arXiv:1908.02782, 2002.04043, work in progress 2 The problem 3 String theory began with Veneziano amplitude – tree level scattering amplitude of four tachyons in open string theory World-sheet expression for the amplitude (in α0 = 1 unit) Z 1 dy y2p1:p2 (1 − y)2p2:p3 0 – diverges for 2p1:p2 ≤ −1 or 2p2:p3 ≤ −1. Our convention: a:b ≡ −a0b0 + ~a:~b Conventional viewpoint: Define the amplitude for 2p1:p2 > −1, 2p2:p3 > −1 and then analytically continue to the other kinematic regions. 4 However, analytic continuation does not always work It may not be possible to move away from the singularity by changing the external momenta Examples: Mass renormalization, Vacuum shift – discussed earlier In these lectures we shall discuss another situation where analytic continuation fails – D-instanton contribution to string amplitudes 5 D-instanton: A D-brane with Dirichlet boundary condition on all non-compact directions including (euclidean) time. D-instantons give non-perturbative contribution to string amplitudes that are important in many situations Example: KKLT moduli stabilization uses non-perturbative contribution from D-instanton (euclidean D3-brane) Systematic computation of string amplitudes in such backgrounds will require us to compute amplitudes in the presence of D-instantons Problem: Open strings living on the D-instanton do not carry any continuous momenta ) we cannot move away from the singularities by varying the external momenta 6 Some examples: Let X be the (euclidean) time direction Since the D-instanton is localized at some given euclidean time, it has a zero mode that translates it along time direction 4-point function of these zero modes: Z 1 A = dy y−2 + (y − 1)−2 + 1 0 Derivation of this expression will be discussed later.
    [Show full text]
  • Gauged Sigma Models and Magnetic Skyrmions Abstract Contents
    SciPost Phys. 7, 030 (2019) Gauged sigma models and magnetic Skyrmions Bernd J. Schroers Maxwell Institute for Mathematical Sciences and Department of Mathematics, Heriot-Watt University, Edinburgh EH14 4AS, UK [email protected] Abstract We define a gauged non-linear sigma model for a 2-sphere valued field and a SU(2) connection on an arbitrary Riemann surface whose energy functional reduces to that for critically coupled magnetic skyrmions in the plane, with arbitrary Dzyaloshinskii-Moriya interaction, for a suitably chosen gauge field. We use the interplay of unitary and holo- morphic structures to derive a general solution of the first order Bogomol’nyi equation of the model for any given connection. We illustrate this formula with examples, and also point out applications to the study of impurities. Copyright B. J. Schroers. Received 23-05-2019 This work is licensed under the Creative Commons Accepted 28-08-2019 Check for Attribution 4.0 International License. Published 10-09-2019 updates Published by the SciPost Foundation. doi:10.21468/SciPostPhys.7.3.030 Contents 1 Introduction1 2 Gauged sigma models on a Riemann surface3 2.1 Conventions3 2.2 Energy and variational equations4 2.3 The Bogomol’nyi equation5 2.4 Boundary terms6 3 Solving the Bogomol’nyi equation7 3.1 Holomorphic versus unitary structures7 3.2 Holomorphic structure of the gauged sigma model9 3.3 A general solution 11 4 Applications to magnetic skyrmions and impurities 12 4.1 Critically coupled magnetic skyrmions with any DM term 12 4.2 Axisymmetric DM interactions 13 4.3 Rank one DM interaction 15 4.4 Impurities as non-abelian gauge fields 16 5 Conclusion 17 References 18 1 SciPost Phys.
    [Show full text]
  • Riemann Surfaces, Conformal Fields and Strings I. FIELD THEORY and RIEMANN SURFACES the Space-Time on Which the Particl Physicis
    Riemann Surfaces, Conformal Fields and Strings I he ru k uf Rtc m:rnn s url acc~ in modern pa rticle r h y~ i cs I\ discussed. M<i thc111at- 1r :1!1 \. q11 :1111urn ri cld th eories c:1 11 he tlclinccl 011 the" : mani fo lds if the <1rc co11 - lmm11lll' in ari 11 n1. I hysic•tll y. Ri 1:t11 nnn surl:i tcs provide n 111 od1: I for th • wqrlJ , h~ c l ~ 'vc p t out IJ n prop:1gating rcla1i vistk stri ng. Thuh Ricmu nn surl uccs nrc th e natural se ll ing for confom1al fiel d theory. and. both these co n cc pl ~ together pruvidc .1 1i1r11tul .1 t1 011 of smng theory. I\~\ Words: string theory, conformal symmetry , 11•orld sh eets, Riemann surfaces I. FIELD THEORY AND RIEMANN SURFACES The space- tim e on whi ch th e particl ph ysici st writes a Lagrnngian field theory and deduces equations ol moiion, c b ss i c~ d solutions anJ quantum scaucring amplitud s is usually taken to be a Ri e­ nian111a11 manifold . 1 T he. ii.l ea is cent rn l l ' ge neral relati vi ty and grav1tat1 n.2 and has becom · mor imporlanl in pnrticlc phys ics w11h increasi ng cmphasi on unified th eo ries o f all for es including grav itation . R1cmannian gcomotr is usually incorpo.ratctl as a se ri es of pre­ Knpti ons. starting with the introduction of a i..:c ond -r:rnk ~y m ­ mctril: tcn·or fi ' ld, the metri c g1.,,(x).
    [Show full text]
  • Jhep05(2019)105
    Published for SISSA by Springer Received: March 21, 2019 Accepted: May 7, 2019 Published: May 20, 2019 Modular symmetries and the swampland conjectures JHEP05(2019)105 E. Gonzalo,a;b L.E. Ib´a~neza;b and A.M. Urangaa aInstituto de F´ısica Te´orica IFT-UAM/CSIC, C/ Nicol´as Cabrera 13-15, Campus de Cantoblanco, 28049 Madrid, Spain bDepartamento de F´ısica Te´orica, Facultad de Ciencias, Universidad Aut´onomade Madrid, 28049 Madrid, Spain E-mail: [email protected], [email protected], [email protected] Abstract: Recent string theory tests of swampland ideas like the distance or the dS conjectures have been performed at weak coupling. Testing these ideas beyond the weak coupling regime remains challenging. We propose to exploit the modular symmetries of the moduli effective action to check swampland constraints beyond perturbation theory. As an example we study the case of heterotic 4d N = 1 compactifications, whose non-perturbative effective action is known to be invariant under modular symmetries acting on the K¨ahler and complex structure moduli, in particular SL(2; Z) T-dualities (or subgroups thereof) for 4d heterotic or orbifold compactifications. Remarkably, in models with non-perturbative superpotentials, the corresponding duality invariant potentials diverge at points at infinite distance in moduli space. The divergence relates to towers of states becoming light, in agreement with the distance conjecture. We discuss specific examples of this behavior based on gaugino condensation in heterotic orbifolds. We show that these examples are dual to compactifications of type I' or Horava-Witten theory, in which the SL(2; Z) acts on the complex structure of an underlying 2-torus, and the tower of light states correspond to D0-branes or M-theory KK modes.
    [Show full text]
  • Limits on New Physics from Black Holes Arxiv:1309.0530V1
    Limits on New Physics from Black Holes Clifford Cheung and Stefan Leichenauer California Institute of Technology, Pasadena, CA 91125 Abstract Black holes emit high energy particles which induce a finite density potential for any scalar field φ coupling to the emitted quanta. Due to energetic considerations, φ evolves locally to minimize the effective masses of the outgoing states. In theories where φ resides at a metastable minimum, this effect can drive φ over its potential barrier and classically catalyze the decay of the vacuum. Because this is not a tunneling process, the decay rate is not exponentially suppressed and a single black hole in our past light cone may be sufficient to activate the decay. Moreover, decaying black holes radiate at ever higher temperatures, so they eventually probe the full spectrum of particles coupling to φ. We present a detailed analysis of vacuum decay catalyzed by a single particle, as well as by a black hole. The former is possible provided large couplings or a weak potential barrier. In contrast, the latter occurs much more easily and places new stringent limits on theories with hierarchical spectra. Finally, we comment on how these constraints apply to the standard model and its extensions, e.g. metastable supersymmetry breaking. arXiv:1309.0530v1 [hep-ph] 2 Sep 2013 1 Contents 1 Introduction3 2 Finite Density Potential4 2.1 Hawking Radiation Distribution . .4 2.2 Classical Derivation . .6 2.3 Quantum Derivation . .8 3 Catalyzed Vacuum Decay9 3.1 Scalar Potential . .9 3.2 Point Particle Instability . 10 3.3 Black Hole Instability . 11 3.3.1 Tadpole Instability .
    [Show full text]
  • Conformal Field Theories of Stochastic Loewner Evolutions
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Conformal Field Theories of Stochastic Loewner Evolutions. [ CFTs of SLEs ] Michel Bauer1 and Denis Bernard2 Service de Physique Th´eorique de Saclay CEA/DSM/SPhT, Unit´e de recherche associ´ee au CNRS CEA-Saclay, 91191 Gif-sur-Yvette, France Abstract Stochastic Loewner evolutions (SLEκ) are random growth pro- cesses of sets, called hulls, embedded in the two dimensional upper half plane. We elaborate and develop a relation between SLEκ evo- lutions and conformal field theories (CFT) which is based on a group theoretical formulation of SLEκ processes and on the identification of the proper hull boundary states. This allows us to define an in- finite set of SLEκ zero modes, or martingales, whose existence is a consequence of the existence of a null vector in the appropriate Vira- soro modules. This identification leads, for instance, to linear systems for generalized crossing probabilities whose coefficients are multipoint CFT correlation functions. It provides a direct link between confor- mal correlation functions and probabilities of stopping time events in SLEκ evolutions. We point out a relation between SLEκ processes and two dimensional gravity and conjecture a reconstruction proce- dure of conformal field theories from SLEκ data. 1Email: [email protected] 2Member of the CNRS; email: [email protected] 1 1 Introduction. Two dimensional conformal field theories [2] have produced an enormous amount of exact results for multifractal properties of conformally invariant critical clusters. See eg. refs.[15, 5, 9] and references therein.
    [Show full text]
  • Tachyon-Dilaton Inflation As an Α'-Non Perturbative Solution in First
    Anna Kostouki Work in progress with J. Alexandre and N. Mavromatos TachyonTachyon --DilatonDilaton InflationInflation asas anan αα''--nonnon perturbativeperturbative solutionsolution inin firstfirst quantizedquantized StringString CosmologyCosmology Oxford, 23 September 2008 A. Kostouki 2 nd UniverseNet School, Oxford, 23/09/08 1 OutlineOutline • Motivation : String Inflation in 4 dimensions • Closed Bosonic String in Graviton, Dilaton and Tachyon Backgrounds; a non – perturbative configuration • Conformal Invariance of this model • Cosmological Implications of this model: FRW universe & inflation (under conditions) • Open Issues: Exit from the inflationary phase; reheating A. Kostouki 2 nd UniverseNet School, Oxford, 23/09/08 2 MotivationMotivation Inflation : • elegant & simple idea • explains many cosmological observations (e.g. “horizon problem”, large - scale structure) Inflation in String Theory: • effective theory • in traditional string theories: compactification of extra dimensions of space-time is needed • other models exist too, but no longer “simple & elegant” A. Kostouki 2 nd UniverseNet School, Oxford, 23/09/08 3 ProposalProposal • Closed Bosonic String • graviton, dilaton and tachyon background • field configuration non-perturbative in Does it satisfy conformal invariance conditions? A. Kostouki 2 nd UniverseNet School, Oxford, 23/09/08 4 ConformalConformal propertiesproperties ofof thethe configurationconfiguration General field redefinition: • Theory is invariant • The Weyl anomaly coefficients transform : ( ) A. Kostouki 2 nd UniverseNet School, Oxford, 23/09/08 5 ConformalConformal propertiesproperties ofof thethe configurationconfiguration • 1-loop beta-functions: homogeneous dependence on X0, besides one term in the tachyon beta-function • Power counting → Every other term that appears at higher loops in the beta-functions is homogeneous A. Kostouki 2 nd UniverseNet School, Oxford, 23/09/08 6 ConformalConformal propertiesproperties ofof thethe configurationconfiguration One can find a general field redefinition , that: 1.
    [Show full text]