Dryad: Distributed Data-Parallel Programs from Sequential Building Blocks

Total Page:16

File Type:pdf, Size:1020Kb

Dryad: Distributed Data-Parallel Programs from Sequential Building Blocks Dryad: Distributed Data-Parallel Programs from Sequential Building Blocks Michael Isard Mihai Budiu Yuan Yu Microsoft Research, Silicon Valley Microsoft Research, Silicon Valley Microsoft Research, Silicon Valley Andrew Birrell Dennis Fetterly Microsoft Research, Silicon Valley Microsoft Research, Silicon Valley ABSTRACT 1. INTRODUCTION Dryad is a general-purpose distributed execution engine for The Dryad project addresses a long-standing problem: coarse-grain data-parallel applications. A Dryad applica- how can we make it easier for developers to write efficient tion combines computational “vertices” with communica- parallel and distributed applications? We are motivated tion “channels” to form a dataflow graph. Dryad runs the both by the emergence of large-scale internet services that application by executing the vertices of this graph on a set of depend on clusters of hundreds or thousands of general- available computers, communicating as appropriate through purpose servers, and also by the prediction that future ad- files, TCP pipes, and shared-memory FIFOs. vances in local computing power will come from increas- The vertices provided by the application developer are ing the number of cores on a chip rather than improving quite simple and are usually written as sequential programs the speed or instruction-level parallelism of a single core with no thread creation or locking. Concurrency arises from [3]. Both of these scenarios involve resources that are in Dryad scheduling vertices to run simultaneously on multi- a single administrative domain, connected using a known, ple computers, or on multiple CPU cores within a computer. high-performance communication topology, under central- The application can discover the size and placement of data ized management and control. In such cases many of the at run time, and modify the graph as the computation pro- hard problems that arise in wide-area distributed systems gresses to make efficient use of the available resources. may be sidestepped: these include high-latency and unre- Dryad is designed to scale from powerful multi-core sin- liable networks, control of resources by separate federated gle computers, through small clusters of computers, to data or competing entities, and issues of identity for authentica- centers with thousands of computers. The Dryad execution tion and access control. Our primary focus is instead on engine handles all the difficult problems of creating a large the simplicity of the programming model and the reliability, distributed, concurrent application: scheduling the use of efficiency and scalability of the applications. computers and their CPUs, recovering from communication For many resource-intensive applications, the simplest way or computer failures, and transporting data between ver- to achieve scalable performance is to exploit data paral- tices. lelism. There has historically been a great deal of work in the parallel computing community both on systems that Categories and Subject Descriptors automatically discover and exploit parallelism in sequential D.1.3 [PROGRAMMING TECHNIQUES]: Concurrent programs, and on those that require the developer to explic- Programming—Distributed programming itly expose the data dependencies of a computation. There are still limitations to the power of fully-automatic paral- lelization, and so we build mainly on ideas from the latter General Terms research tradition. Condor [37] was an early example of such Performance, Design, Reliability a system in a distributed setting, and we take more direct inspiration from three other models: shader languages devel- Keywords oped for graphic processing units (GPUs) [30, 36], Google’s MapReduce system [16], and parallel databases [18]. In all Concurrency, Distributed Programming, Dataflow, Cluster these programming paradigms, the system dictates a com- Computing munication graph, but makes it simple for the developer to supply subroutines to be executed at specified graph ver- tices. All three have demonstrated great success, in that large numbers of developers have been able to write con- current software that is reliably executed in a distributed Permission to make digital or hard copies of all or part of this work for fashion. personal or classroom use is granted without fee provided that copies are We believe that a major reason for the success of GPU not made or distributed for profit or commercial advantage and that copies shader languages, MapReduce and parallel databases is that bear this notice and the full citation on the first page. To copy otherwise, to the developer is explicitly forced to consider the data paral- republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. lelism of the computation. Once an application is cast into EuroSys’07, March 21–23, 2007, Lisboa, Portugal. this framework, the system is automatically able to provide Copyright 2007 ACM 978-1-59593-636-3/07/0003 ...$5.00. the necessary scheduling and distribution. The developer need have no understanding of standard concurrency mech- use heuristics to automatically select and tune appropriate anisms such as threads and fine-grain concurrency control, Dryad features, and thereby get good performance for most which are known to be difficult to program correctly. In- simple applications. stead the system runtime abstracts these issues from the We summarize Dryad’s contributions as follows: developer, and also deals with many of the hardest dis- tributed computing problems, most notably resource alloca- • We built a general-purpose, high performance distrib- tion, scheduling, and the transient or permanent failure of a uted execution engine. The Dryad execution engine subset of components in the system. By fixing the boundary handles many of the difficult problems of creating a between the communication graph and the subroutines that large distributed, concurrent application: scheduling inhabit its vertices, the model guides the developer towards across resources, optimizing the level of concurrency an appropriate level of granularity. The system need not try within a computer, recovering from communication or too hard to extract parallelism within a developer-provided computer failures, and delivering data to where it is subroutine, while it can exploit the fact that dependencies needed. Dryad supports multiple different data trans- are all explicitly encoded in the flow graph to efficiently port mechanisms between computation vertices and distribute the execution across those subroutines. Finally, explicit dataflow graph construction and refinement. developers now work at a suitable level of abstraction for • We demonstrated the excellent performance of Dryad writing scalable applications since the resources available at from a single multi-core computer up to clusters con- execution time are not generally known at the time the code sisting of thousands of computers on several nontrivial, is written. real examples. We further demonstrated that Dryad’s The aforementioned systems restrict an application’s com- fine control over an application’s dataflow graph gives munication flow for different reasons. GPU shader languages the programmer the necessary tools to optimize trade- are strongly tied to an efficient underlying hardware imple- offs between parallelism and data distribution over- mentation that has been tuned to give good performance head. This validated Dryad’s design choices. for common graphics memory-access patterns. MapReduce was designed to be accessible to the widest possible class of • We explored the programmability of Dryad on two developers, and therefore aims for simplicity at the expense fronts. First, we have designed a simple graph descrip- of generality and performance. Parallel databases were de- tion language that empowers the developer with ex- signed for relational algebra manipulations (e.g. SQL) where plicit graph construction and refinement to fully take the communication graph is implicit. advantage of the rich features of the Dryad execution By contrast, the Dryad system allows the developer fine engine. Our user experiences lead us to believe that, control over the communication graph as well as the subrou- while it requires some effort to learn, a programmer tines that live at its vertices. A Dryad application developer can master the APIs required for most of the appli- can specify an arbitrary directed acyclic graph to describe cations in a couple of weeks. Second, we (and oth- the application’s communication patterns, and express the ers within Microsoft) have built simpler, higher-level data transport mechanisms (files, TCP pipes, and shared- programming abstractions for specific application do- memory FIFOs) between the computation vertices. This mains on top of Dryad. This has significantly lowered direct specification of the graph also gives the developer the barrier to entry and increased the acceptance of greater flexibility to easily compose basic common opera- Dryad among domain experts who are interested in tions, leading to a distributed analogue of “piping” together using Dryad for rapid application prototyping. This traditional Unix utilities such as grep, sort and head. further validated Dryad’s design choices. Dryad is notable for allowing graph vertices (and compu- tations in general) to use an arbitrary number of inputs and The next three sections describe the abstract form of a outputs. MapReduce restricts all computations to take a Dryad application and outline the steps involved in writ- single input set and generate a single
Recommended publications
  • A Taxonomy of Accelerator Architectures and Their
    A taxonomy of accelerator C. Cas$caval S. Chatterjee architectures and their H. Franke K. J. Gildea programming models P. Pattnaik As the clock frequency of silicon chips is leveling off, the computer architecture community is looking for different solutions to continue application performance scaling. One such solution is the multicore approach, i.e., using multiple simple cores that enable higher performance than wide superscalar processors, provided that the workload can exploit the parallelism. Another emerging alternative is the use of customized designs (accelerators) at different levels within the system. These are specialized functional units integrated with the core, specialized cores, attached processors, or attached appliances. The design tradeoff is quite compelling because current processor chips have billions of transistors, but they cannot all be activated or switched at the same time at high frequencies. Specialized designs provide increased power efficiency but cannot be used as general-purpose compute engines. Therefore, architects trade area for power efficiency by placing in the design additional units that are known to be active at different times. The resulting system is a heterogeneous architecture, with the potential of specialized execution that accelerates different workloads. While designing and building such hardware systems is attractive, writing and porting software to a heterogeneous platform is even more challenging than parallelism for homogeneous multicore systems. In this paper, we propose a taxonomy that allows us to define classes of accelerators, with the goal of focusing on a small set of programming models for accelerators. We discuss several types of currently popular accelerators and identify challenges to exploiting such accelerators in current software stacks.
    [Show full text]
  • Recursive Definitions Across the Footprint That a Straight- Line Program Manipulated, E.G
    natural proofs for verification of dynamic heaps P. MADHUSUDAN UNIV. OF ILLINOIS AT URBANA-CHAMPAIGN (VISITING MSR, BANGALORE) WORKSHOP ON MAKING FORMAL VERIFICATION SCALABLE AND USEABLE CMI, CHENNAI, INDIA JOINT WORK WITH… Xiaokang Qiu .. graduating! Gennaro Andrei Pranav Garg Parlato Stefanescu GOAL: BUILD RELIABLE SOFTWARE Build systems with proven reliability and security guarantees. (Not the same as finding bugs!) Deductive verification with automatic theorem proving • Floyd/Hoare style verification • User supplied modular annotations (pre/post cond, class invariants) and loop invariants • Resulting verification conditions are derived automatically for each linear program segment (using weakest-pre/strongest-post) Verification conditions are then proved valid using mostly automatic theorem proving (like SMT solvers) TARGET: RELIABLE SYS TEMS SOFTWARE Operating Systems Angry birds Browsers Excel VMs Mail clients … App platforms Systems Software Applications Several success stories: • Microsoft Hypervisor verification using VCC [MSR, EMIC] • A secure foundation for mobile apps [@Illinois, ASPLOS’13] A SECURE FOUNDATION FOR MOBILE APPS In collaboration with King’s systems group at Illinois First OS architecture that provides verifiable, high-level abstractions for building mobile applications. Application state is private by default. • Meta-data on files controls access by apps; only app with appropriate permissions can access files • Every page is encrypted before sending to the storage service. • Memory isolation between apps • A page fault handler serves a file- backed page for a process, the fille has to be opened by the same process. • Only the current app can write to the screen buffer. • IPC channel correctness • … VERIFICATION TOOLS ARE MATURE And works! ENOUGH TO BUILD RELIABLE S/W.
    [Show full text]
  • Type 2 Diabetes Prediction Using Machine Learning Algorithms
    Type 2 Diabetes Prediction Using Machine Learning Algorithms Parisa Karimi Darabi*, Mohammad Jafar Tarokh Department of Industrial Engineering, K. N. Toosi University of Technology, Tehran, Iran Abstract Article Type: Background and Objective: Currently, diabetes is one of the leading causes of Original article death in the world. According to several factors diagnosis of this disease is Article History: complex and prone to human error. This study aimed to analyze the risk of Received: 15 Jul 2020 having diabetes based on laboratory information, life style and, family history Revised: 1 Aug 2020 with the help of machine learning algorithms. When the model is trained Accepted: 5 Aug 2020 properly, people can examine their risk of having diabetes. *Correspondence: Material and Methods: To classify patients, by using Python, eight different machine learning algorithms (Logistic Regression, Nearest Neighbor, Decision Parisa Karimi Darabi, Tree, Random Forest, Support Vector Machine, Naive Bayesian, Neural Department of Industrial Network and Gradient Boosting) were analyzed. Were evaluated by accuracy, Engineering, K. N. Toosi University sensitivity, specificity and ROC curve parameters. of Technology, Tehran, Iran Results: The model based on the gradient boosting algorithm showed the best [email protected] performance with a prediction accuracy of %95.50. Conclusion: In the future, this model can be used for diagnosis diabete. The basis of this study is to do more research and develop models such as other learning machine algorithms. Keywords: Prediction, diabetes, machine learning, gradient boosting, ROC curve DOI : 10.29252/jorjanibiomedj.8.3.4 people die every year from diabetes disease. Introduction By 2045, it will reach 629 million (1).
    [Show full text]
  • Scalable Fault-Tolerant Elastic Data Ingestion in Asterixdb
    UC Irvine UC Irvine Electronic Theses and Dissertations Title Scalable Fault-Tolerant Elastic Data Ingestion in AsterixDB Permalink https://escholarship.org/uc/item/9xv3435x Author Grover, Raman Publication Date 2015 License https://creativecommons.org/licenses/by-nd/4.0/ 4.0 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, IRVINE Scalable Fault-Tolerant Elastic Data Ingestion in AsterixDB DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Information and Computer Science by Raman Grover Dissertation Committee: Professor Michael J. Carey, Chair Professor Chen Li Professor Sharad Mehrotra 2015 © 2015 Raman Grover DEDICATION To my wonderful parents... ii TABLE OF CONTENTS Page LIST OF FIGURES vi LIST OF TABLES viii ACKNOWLEDGMENTS ix CURRICULUM VITAE x ABSTRACT OF THE DISSERTATION xi 1 Introduction 1 1.1 Challenges in Data Feed Management . .3 1.1.1 Genericity and Extensibility . .3 1.1.2 Fetch-Once Compute-Many Model . .5 1.1.3 Scalability and Elasticity . .5 1.1.4 Fault Tolerance . .7 1.2 Contributions . .8 1.3 Organization . .9 2 Related Work 10 2.1 Stream Processing Engines . 10 2.2 Data Routing Engines . 11 2.3 Extract Transform Load (ETL) Systems . 12 2.4 Other Systems . 13 2.4.1 Flume . 14 2.4.2 Chukwa . 15 2.4.3 Kafka . 16 2.4.4 Sqoop . 17 2.5 Summary . 17 3 Background and Preliminaries 19 3.1 AsterixDB . 19 3.1.1 AsterixDB Architecture . 20 3.1.2 AsterixDB Data Model . 21 3.1.3 Querying Data .
    [Show full text]
  • WWW 2013 22Nd International World Wide Web Conference
    WWW 2013 22nd International World Wide Web Conference General Chairs: Daniel Schwabe (PUC-Rio – Brazil) Virgílio Almeida (UFMG – Brazil) Hartmut Glaser (CGI.br – Brazil) Research Track: Ricardo Baeza-Yates (Yahoo! Labs – Spain & Chile) Sue Moon (KAIST – South Korea) Practice and Experience Track: Alejandro Jaimes (Yahoo! Labs – Spain) Haixun Wang (MSR – China) Developers Track: Denny Vrandečić (Wikimedia – Germany) Marcus Fontoura (Google – USA) Demos Track: Bernadette F. Lóscio (UFPE – Brazil) Irwin King (CUHK – Hong Kong) W3C Track: Marie-Claire Forgue (W3C Training, USA) Workshops Track: Alberto Laender (UFMG – Brazil) Les Carr (U. of Southampton – UK) Posters Track: Erik Wilde (EMC – USA) Fernanda Lima (UNB – Brazil) Tutorials Track: Bebo White (SLAC – USA) Maria Luiza M. Campos (UFRJ – Brazil) Industry Track: Marden S. Neubert (UOL – Brazil) Proceedings and Metadata Chair: Altigran Soares da Silva (UFAM - Brazil) Local Arrangements Committee: Chair – Hartmut Glaser Executive Secretary – Vagner Diniz PCO Liaison – Adriana Góes, Caroline D’Avo, and Renato Costa Conference Organization Assistant – Selma Morais International Relations – Caroline Burle Technology Liaison – Reinaldo Ferraz UX Designer / Web Developer – Yasodara Córdova, Ariadne Mello Internet infrastructure - Marcelo Gardini, Felipe Agnelli Barbosa Administration– Ana Paula Conte, Maria de Lourdes Carvalho, Beatriz Iossi, Carla Christiny de Mello Legal Issues – Kelli Angelini Press Relations and Social Network – Everton T. Rodrigues, S2Publicom and EntreNós PCO – SKL Eventos
    [Show full text]
  • Anomaly Detection and Identification Scheme for VM Live Migration in Cloud Infrastructure✩
    Future Generation Computer Systems 56 (2016) 736–745 Contents lists available at ScienceDirect Future Generation Computer Systems journal homepage: www.elsevier.com/locate/fgcs Anomaly detection and identification scheme for VM live migration in cloud infrastructureI Tian Huang a, Yongxin Zhu a,∗, Yafei Wu a, Stéphane Bressan b, Gillian Dobbie c a School of Microelectronics, Shanghai Jiao Tong University, China b School of Computing, National University of Singapore, Singapore c Department of Computer Science, University of Auckland, New Zealand h i g h l i g h t s • We extend Local Outlier Factors to detect anomalies in time series and adapt to smooth environmental changes. • We propose Dimension Reasoning LOF (DR-LOF) that can point out the ``most anomalous'' dimension of the performance profile. DR-LOF provides clues for administrators to pinpoint and clear the anomalies. • We incorporate DR-LOF and Symbolic Aggregate ApproXimation (SAX) measurement as a scheme to detect and identify the anomalies in the progress of VM live migration. • In experiments, we deploy a typical computing application on small scale clusters and evaluate our anomaly detection and identification scheme by imposing two kinds of common anomalies onto VMs. article info a b s t r a c t Article history: Virtual machines (VM) offer simple and practical mechanisms to address many of the manageability Received 3 March 2015 problems of leveraging heterogeneous computing resources. VM live migration is an important feature Received in revised form of virtualization in cloud computing: it allows administrators to transparently tune the performance 11 May 2015 of the computing infrastructure. However, VM live migration may open the door to security threats.
    [Show full text]
  • Matrox Imaging Library (MIL) 9.0 Update 58
    ------------------------------------------------------------------------------- Matrox Imaging Library (MIL) 9.0 Update 58. Release Notes (Whatsnew) September 2012 (c) Copyright Matrox Electronic Systems Ltd., 1992-2012. ------------------------------------------------------------------------------- For more information and what's new in processing, display, drivers, Linux, ActiveMIL, and all MIL 9 updates, consult their respective readme files. Main table of contents Section 1 : What's new in Mil 9.0 Update 58 Section 2 : What's new in MIL 9.0 Release 2. Section 3 : What's new in MIL 9.0. Section 4 : Differences between MIL Lite 8.0 and 7.5 Section 5 : Differences between MIL Lite 7.5 and 7.1 Section 6 : Differences between MIL Lite 7.1 and 7.0 ------------------------------------------------------------------------------- ------------------------------------------------------------------------------- Section 1: What's new in MIL 9.0 Update 58. Table of Contents for Section 1 1. Overview. 2. Mseq API function definition 2.1 MseqAlloc 2.2 MseqControl 2.3 MseqDefine 2.4 MseqFeed 2.5 MseqFree 2.6 MseqGetHookInfo 2.7 MseqHookFunction 2.8 MseqInquire 2.9 MseqProcess 3. Examples 4. Operating system information 1. Overview. The main goal for MIL 9.0 Update 58 is to add a new module called Mseq, which offers a user-friendly interface for H.264 compression. 2. Mseq API function definition 2.1 MseqAlloc - Synopsis: Allocate a sequence context. - Syntax: MIL_ID MseqAlloc( MIL_ID SystemID, MIL_INT64 SequenceType, MIL_INT64 Operation, MIL_UINT32 OutputFormat, MIL_INT64 InitFlag, MIL_ID* ContextSeqIdPtr) - Parameters: * SystemID: Specifies the identifier of the system on which to allocate the sequence context. This parameter must be given a valid system identifier. * SequenceType: Specifies the type of sequence to allocate: Values: M_DEFAULT - Specifies the sequence as a context in which the related operation should be performed.
    [Show full text]
  • A Decidable Logic for Tree Data-Structures with Measurements
    A Decidable Logic for Tree Data-Structures with Measurements Xiaokang Qiu and Yanjun Wang Purdue University fxkqiu,[email protected] Abstract. We present Dryaddec, a decidable logic that allows reason- ing about tree data-structures with measurements. This logic supports user-defined recursive measure functions based on Max or Sum, and re- cursive predicates based on these measure functions, such as AVL trees or red-black trees. We prove that the logic's satisfiability is decidable. The crux of the decidability proof is a small model property which al- lows us to reduce the satisfiability of Dryaddec to quantifier-free lin- ear arithmetic theory which can be solved efficiently using SMT solvers. We also show that Dryaddec can encode a variety of verification and synthesis problems, including natural proof verification conditions for functional correctness of recursive tree-manipulating programs, legal- ity conditions for fusing tree traversals, synthesis conditions for con- ditional linear-integer arithmetic functions. We developed the decision procedure and successfully solved 220+ Dryaddec formulae raised from these application scenarios, including verifying functional correctness of programs manipulating AVL trees, red-black trees and treaps, check- ing the fusibility of height-based mutually recursive tree traversals, and counterexample-guided synthesis from linear integer arithmetic specifi- cations. To our knowledge, Dryaddec is the first decidable logic that can solve such a wide variety of problems requiring flexible combination of measure-related, data-related and shape-related properties for trees. 1 Introduction Logical reasoning about tree data-structures has been needed in various applica- tion scenarios such as program verification [32,24,26,42,49,4,14], compiler opti- mization [17,18,9,44] and webpage layout engines [30,31].
    [Show full text]
  • Data Intensive Computing with Linq to Hpc Technical
    DATA INTENSIVE COMPUTING WITH LINQ TO HPC TECHNICAL OVERVIEW Ade Miller, Principal Program Manager, LINQ to HPC Agenda Introduction to LINQ to HPC Using LINQ to HPC Systems Management Integrating with Other Data Technologies The Data Spectrum One extreme is analyzing raw, unstructured data. The analyst does not know exactly what the data contains, nor LINQ to HPC what cube would be justified. The analyst needs to do ad-hoc analyses that may never be run again. Another extreme is analytics targeting a traditional data warehouse. The analyst Parallel Data knows the cube he or she wants to build, Warehouse and the analyst knows the data sources. What kind of Data? Large Data Volume . 100s of TBs to 10s of PBs New Questions & Non-Traditional data Types New Technologies New Insights . Unstructured & Semi structured . How popular is my product? . Weak relational schema . Distributed Parallel Processing . What is the best ad to serve? . Text, Images, Videos, Logs Frameworks . Is this a fraudulent transaction? . Easy to Scale on commodity hardware . MapReduce-style programming models New Data Sources . Sensors & Devices . Traditional applications . Web Servers . Public data Overview MOVING THE DATA TO THE COMPUTE So how does it work? FIRST, STORE THE DATA Data Intensive Computing with HPC Server Windows HPC Server 2008 R2 Service Pack 2 So how does it work? SECOND, TAKE THE PROCESSING TO THE DATA Data Intensive Computing with HPC Server var logentries = from line in logs where !line.StartsWith("#") select new LogEntry(line); var user = from access
    [Show full text]
  • An FPGA-Accelerated Embedded Convolutional Neural Network
    Master Thesis Report ZynqNet: An FPGA-Accelerated Embedded Convolutional Neural Network (edit) (edit) 1000ch 1000ch FPGA 1000ch Network Analysis Network Analysis 2x512 > 1024 2x512 > 1024 David Gschwend [email protected] SqueezeNet v1.1 b2a ext7 conv10 2x416 > SqueezeNet SqueezeNet v1.1 b2a ext7 conv10 2x416 > SqueezeNet arXiv:2005.06892v1 [cs.CV] 14 May 2020 Supervisors: Emanuel Schmid Felix Eberli Professor: Prof. Dr. Anton Gunzinger August 2016, ETH Zürich, Department of Information Technology and Electrical Engineering Abstract Image Understanding is becoming a vital feature in ever more applications ranging from medical diagnostics to autonomous vehicles. Many applications demand for embedded solutions that integrate into existing systems with tight real-time and power constraints. Convolutional Neural Networks (CNNs) presently achieve record-breaking accuracies in all image understanding benchmarks, but have a very high computational complexity. Embedded CNNs thus call for small and efficient, yet very powerful computing platforms. This master thesis explores the potential of FPGA-based CNN acceleration and demonstrates a fully functional proof-of-concept CNN implementation on a Zynq System-on-Chip. The ZynqNet Embedded CNN is designed for image classification on ImageNet and consists of ZynqNet CNN, an optimized and customized CNN topology, and the ZynqNet FPGA Accelerator, an FPGA-based architecture for its evaluation. ZynqNet CNN is a highly efficient CNN topology. Detailed analysis and optimization of prior topologies using the custom-designed Netscope CNN Analyzer have enabled a CNN with 84.5 % top-5 accuracy at a computational complexity of only 530 million multiply- accumulate operations. The topology is highly regular and consists exclusively of convolu- tional layers, ReLU nonlinearities and one global pooling layer.
    [Show full text]
  • Cloud Computing Paradigms for Pleasingly Parallel Biomedical
    Cloud Computing Paradigms for Pleasingly Parallel Biomedical Applications Thilina Gunarathne, Tak-Lon Wu, Jong Youl Choi, Seung-Hee Bae, Judy Qiu School of Informatics and Computing / Pervasive Technology Institute Indiana University, Bloomington. {tgunarat, taklwu, jychoi, sebae, xqiu}@indiana.edu Abstract Cloud computing offers exciting new approaches for scientific computing that leverages the hardware and software investments on large scale data centers by major commercial players. Loosely coupled problems are very important in many scientific fields and are on the rise with the ongoing move towards data intensive computing. There exist several approaches to leverage clouds & cloud oriented data processing frameworks to perform pleasingly parallel computations. In this paper we present three pleasingly parallel biomedical applications, 1) assembly of genome fragments 2) sequence alignment and similarity search 3) dimension reduction in the analysis of chemical structures, implemented utilizing cloud infrastructure service based utility computing models of Amazon Web Services and Microsoft Windows Azure as well as utilizing MapReduce based data processing frameworks, Apache Hadoop and Microsoft DryadLINQ. We review and compare each of the frameworks and perform a comparative study among them based on performance, efficiency, cost and the usability. Cloud service based utility computing model and the managed parallelism (MapReduce) exhibited comparable performance and efficiencies for the applications we considered. We analyze the variations in cost between the different platform choices (eg: EC2 instance types), highlighting the need to select the appropriate platform based on the nature of the computation. 1. Introduction Scientists are overwhelmed with the increasing amount of data processing needs arising from the storm of data that is flowing through virtually every field of science.
    [Show full text]
  • Characterization and Prediction of Deep Learning Workloads in Large-Scale GPU Datacenters
    Characterization and Prediction of Deep Learning Workloads in Large-Scale GPU Datacenters Qinghao Hu1,2 Peng Sun3 Shengen Yan3 Yonggang Wen1 Tianwei Zhang1∗ 1School of Computer Science and Engineering, Nanyang Technological University 2S-Lab, Nanyang Technological University 3SenseTime {qinghao.hu, ygwen, tianwei.zhang}@ntu.edu.sg {sunpeng1, yanshengen}@sensetime.com ABSTRACT 1 INTRODUCTION Modern GPU datacenters are critical for delivering Deep Learn- Over the years, we have witnessed the remarkable impact of Deep ing (DL) models and services in both the research community and Learning (DL) technology and applications on every aspect of our industry. When operating a datacenter, optimization of resource daily life, e.g., face recognition [65], language translation [64], adver- scheduling and management can bring significant financial bene- tisement recommendation [21], etc. The outstanding performance fits. Achieving this goal requires a deep understanding of thejob of DL models comes from the complex neural network structures features and user behaviors. We present a comprehensive study and may contain trillions of parameters [25]. Training a production about the characteristics of DL jobs and resource management. model may require large amounts of GPU resources to support First, we perform a large-scale analysis of real-world job traces thousands of petaflops operations [15]. Hence, it is a common prac- from SenseTime. We uncover some interesting conclusions from tice for research institutes, AI companies and cloud providers to the perspectives of clusters, jobs and users, which can facilitate the build large-scale GPU clusters to facilitate DL model development. cluster system designs. Second, we introduce a general-purpose These clusters are managed in a multi-tenancy fashion, offering framework, which manages resources based on historical data.
    [Show full text]