General  !" #$ 

          !"   •    #    • $ (Chemical Bonding) • "%&  '()  *  !  + • !"  " () '() VSEPR • '() ! < ++  (Molecular Orbtial Theory; MO) • '()  G+ (; VB)         '()  * * ! K            K

2

 (Chemical Bonding) 1. 6""" (Ionic bond)

6""" L M K KS    L  M <  M   N! $ S  N  M&K $   EN  (An attractive force that holds atoms together to form molecules)  NZ [  M < S\\] (coulombic attraction) • "N  • "" EN ; : *K  _  → S (! K) (O*K  "P  M&) • "" EN = :   _  → S  (! K) • O N <    M + (g) + X− (g) → MX(s) + lattice energy   N%K    & 1.S  (Ionic Bond) 2.!  + () 3.! K (Metallic Bond)

3 4

2. ?  (Covalent Bond) 3. ? (Metallic Bond)

?  L M K K $   EN ? L  M  ! KS *Z M (K *   (  EN  )    [*      EN O)  G+  _ * O*K"P M& •  G+  _ ! K L S*    S  " • "" EN = : S  * "   _  •   _  "OK  M <   "     - - - - + - - + - + ------+ - - - + - +

- -

------Sea of - - - electrons  - - - - + + - + - () - - - -

- + - + - - + + - - - -

------

- - - -

+ - + - + - +

------+ + - + Shared - - - - electrons  E"F"    F    5 6

1   (Bond Energy)  O ; (Average Bond Energy)

  KL     (Bond dissociation  O ; Nq  "  energy, D) L    * *"    "OK    *! $   (N! ) *! $ ( N)  

H2(g)→2H(g) D(HfH) = 436 kJ/mol     *! $   [   "     C-H • → CH4(g) CH3(g) + H(g) D(H-C)CH4= 436 kJ/mol • → CH3(g) CH2(g) + H(g) D(H-C)CH3= 368 kJ/mol • → CH2(g) CH(g) + H(g) D(H-C)CH2 = 519 kJ/mol • CH(g) →→→ C(g) + H(g) D(H-C)CH = 335 kJ/mol

7 8

 S" " R (Heat of Reaction)     T  S" " R

 QR  L    Q  "T [K     #    S & (" & )  S #T("Z %r+) CH4(g) + Cl2(g) →→→ CH3Cl (g) + HCl(g)  S" " R (∆Hrxn)L  s     S*<L #    "PK S [ H DD rxn ∑ −=∆ ∑ • ∑ D( " & ) = 4D(C-H) + D(Cl-Cl) reactants products reactants !"" !#$ !"" !#$ • ∑ D ( Z %r+ ) = D(C-Cl) + 3D(C-H) + D(Cl-H) %"!*"+ %"&'!() products ∆ • ∆H N  #      Hrxn = 4D(C-H) + D(Cl-Cl) – [D(C-Cl) + 3D(C-H) + D(Cl-H)] rxn × × • ∆H N *  L*K #    ( <  ) = (4 414 + 243) – (339 + 3 414 + 431) kJ/mol = –104 kJ/mol rxn #    &[ 104 kJ/mol

9 10

   (Bond Length)   O ; " ?_T `

   LKK <  " ! N O K  &" M < S   "$    O"$ KL "P % "$  !  +"+   •   > < > " •    < < < "

Bond Bond Length Energy

11 12

2 _ a  ! "  (Bond Polarity)

_ L$  M& L  106.0° a  ! "  L [  "Z 2       _  * *"K    "    "%&!  +M&<  EN  & 104.0° " P EN  &"  [   ! $   "<    $[S   _ * K &"[S"O" GM • ° ° [ !  +  & H2O = 104.5 • H2S = 92 Xδδδ+−−−Yδδδ-  ;" EN " Y >>> X  O!"! $   $ [ON  v<    _ *! $ H + F H F

δδδ+ δδδ- 13 14

ef  ;#S"$ ?  f"" (Octet Rule)

 f""     G+  _   * (  1. $$g " "  " (Lewis Structure) [    _ KL x"qL*K< 8A)[ "P        2. ef ?_ ""$ (, MO)      !   "#(% & ') • * S   $* s  p block 3. ef  E (Valence Bond, VB) • * S  "  + •   ! q  Be B  Al *  f"" H  He g E"F"$ "

Noble Gas (8A) valence e−−− <<< 8 valence e−−− = 8

15 16

1. $$g " "  " (Lewis structure) ? S $$g_Q"F"

 G.N. Lewis " "!  +K *   !"  "KL!" [$   _  ! $ [NS  f"" (Octet rule) L q""#Q `  (Lewis|s dot structure) N   L "  G+  ?S ;g S  ;"#S  E"F"$   _  "!  +K * Qr L [ [    _ KL x"qL*K< 8A)GM ! $ O*K&! $  "P  "$  !"  "  • "*[q G+  _     • * [$  G+  _  • * S   $* s  p block

Carbon Hydrogen CHCH44 17 18

3 ? S  " " ?_   ? S  "

 !"  "! $ 1.  Q"" (S"   valence electron   )   • !  +L*   _ "  gQ  ""#?_ • KM "  _  (2 shared electrons) 2. $g   E"F" " _""#?_ 6"""$: ;g  "F"T $g  g_$ " 6""" • − }    [$ 2 [$ (:) KL KM" ( ) } 6"""$ : $g  "F"T $g  g_$  " 6""" ♦   _  * *"   bonding electron 3.  ;"""QS Q ; ( T "" $"" ♦   _  S "  non-bonding electron  ) ?Q#S 2 "F"#  S Q ; T 4.  E"F"#S$"" #S$8 ( S H T $ 2) H H 5. "F" ; "#S$"" (" g  T 8) H C H H−C−H 6. uS g   E"F" ;"" 6T$ 8 #S H H "F" ;6TT  (unshared pair electron) " "" N N N≡N "$`  S =T "  7. g   E"F" S" T $ ;6QSg  S" 1. 19 20

 "T ? S  " " NF3  "T ? S  " " HCN

1. ""  " N 1. ""  " C 2. g   E"F" = 5 + (7x3) = 26 "F" (g   E"F" " N = 5 F = 7) 2. g   E"F" " HCN 1 + 4 + 5 =10 "F" 3.  Q ;  T "" $""  3.  Q ;  T "" $"" ;  F N F F N F H C N ,- F F 4.  "F" " ""  #S$ 8 ( " 2) 4.  "F" " "" #S$ 8 H C N F N F

F 5. "F" ; "#S$"" (10-10 = 0) 5. "F" ; "#S$"" (26-24 = 2 .!"/$012/1$34 "F") 6.  "F" ;6TT  " """$` (N)  S  F N F F N F F N F =T "  g""  "F"$Q ,- ,- F F F H C N H C N H−C≡N

21 22

S" S " f"" g_{"  (Formal charge)

1. ?_ ; "F"y  ; T g_{"  y T  T g   E"F" " ""Q ; $ " ""#? S  " y     a  • ClO2  "F"  T $ 19 • NO  "F"  T $ 11 ! " ?_"T T ` • NO2  "F"  T $ 17    g_{"  " "" 2. ?_ ;""  "F"S" T 8 • = − − 1 BNV BF3 B  "F"T $ 6 formal charge 2 eee • BeH Be  "F"T $ 6 2 • V  E"F" " ""Q ; 3. ?_ ;""  "F"  T 8 • N  E"F" ;6T6QS S  • PCl5  "F" T $ 10 F • B  E"F"! Q ; S "$""! • XeF4  "F" T $ 12 F S F

F • SF4  "F" T $ 10

23 24

4  "T g  g_{"  " T"" ?EE ()

|  [IO3] O−−−I−−−O *! $ KLS "P  [O   "S  O  1    CO2  SO2 +1 -1 -1 +1 • −−−1 +2 −−−1 ≡ − − ≡ I = 7  2  ½ (6) = +2 O−−−I−−−O O≡≡C −−OO = C = OO − C ≡≡ O • O = 6  6  ½ (2) = -1 +1 +1 O S S [$ = +2  1  1  1 = -1 −−−1 O O -1 O-1 O |  [NHH 3C 2COO]  Q <[O    #+ &  R ?EE !   H H O [O [     [   O  KL"    + H−N−C−C   N   G+ 5   3  - [  _ * H H O P  [N P S[N 

25 26

?EE (Resonance) ? S Lewis  ;y66QS

K * [!"* N!"  !"  " O3 +1 +1 NSS   "$  K   & O O 1. NS )  "$ O O O O -1 -1 2. !"  [$\+ O "$ [  K O &" 3.     EN "< [$\+ N  " ! $ O3 S & 2   !"  4.     S [$\+ 

  !"!G G+ (Resonance structure) O≡ C −−− O O = C = OO − C ≡≡≡ O CO2 +1 0 -1 0 0 0 -1 0 +1 1.278 Å O 1.278 Å − N N N N N N N N N O O N3 -2 +1 0 -1 +1 -1 0 +1 -2

27 28

ef  ~_T"F"#  E  ~ " _T"F"

Valence Shell Electron Pair Repulsion(VSEPR) L'()  *     (  < KL ") N O<! $ KLS M  ! G+   _ " $  &   $[ [O ! !"! $ [M&<[O $  _  *    _    "   _ !   S[ON  Z  $  _ M&  $ • 2   _   [q G+  _ &   _  (P $  _   *K‚ [  <[M •   _ N $   (<  _ ; electron pair) "PZ  $  _ LSS  ) ♦ "F" S   (2, 4, 6   _     L  , <, " )   $  _  >>> >>> >>> >>> ♦ "F"=T?QQQ ; (2   _ ) =T?QQQ ;   =T Q ; "F"Q ; ♦ "F"?QQQ ; (1   _ )   $  _ "[ P EN   •  $  _ [[    *KK "$ L*K   M& (Z [ ) Z  "$ Q  u   ; _Q

29 30

5  gQ T " _T"F"(m+n)    =T ?_?Q VSEPR

 _T"F"" gy"F" S  "6T S F6QS 1.  "< !"  " 2.  "<  AXmEn 180° • A    • X    120° !  m L g  _T"F" ; S  • E  $  _    SS " 109.5° !  n L g  _T"F" ;6T6QS S  3. O[   O K $  _  (m+n) 90,120° 4.  [ O K<  _ !   ( L&   "$ ) KL   _ !   ( L&  "$ ) 90° 5. O<! $ !  <[[ O K

31 32

=T " ?_ =T " ?_

 2  $  _  (n+m=2)  4  $  _  (n+m=4) • AX2 +" • AX4 4"89,+  3  $  _  (n+m=3) $,89.$ • • AX3 :;; XA 3E 8$=> $,89.$ X• A 2E $<$" (<120°) • AX E 2 2 $<$" (<109.5°)

33 34

=T " ?_ =T " ?_

 5  $  _  (n+m=5)  6  $  _  (n+m=6)

• AX 8$=?@0> • AX 5 $,89.$ 6 4":1=,+

X• A 4E =, X• A E 8$=> 5 89,89.$ !48 • AX3E2 89,89.$ • +" AX4E2 :;; •XA 2E3

35 36

6  "T    =T ?_  "T    =T ?_*

= " = AXmEn  T _T =T ?_  ! $      1   *K [  "F"  CH4     H H H C O H H C H AX E 4 0 H H

AX4 AX2E2  ;S _ "  NH3 E H ∼∼∼ ° AX E 109.5 H N H 3 1

∼∼∼104.5°

37 38

_ ; ;6* ~ " T EN T"_*

  EN    (EN  $ ) 120°°° >120°°° >120°°° PI PBr PCl PF AX3 3 3 3 3

<120°°° <120°°° EN(X) 2.66 2.96 3.16 3.98 H Cl angle 102.0 101.5 100.3 97.8 H 109.5°°° H >>109.5°°° <109.5°°° °°° H >109.5   EN    (EN  $) H <<109.5°°° H X H >109.5°°° AsH PH NH <109.5°°° AX3 3 3 3 A EN(A) 2.17 2.19 3.04 X 90°°° >90°°° °°° X <90 angle 91.6 93.8 107.0 °°° 120 >120°°°

39 40

_ = " * a  ! " ?_ (Polarity of Molecule)

 "PO"<   "S [$! $ a  ! " ?_L"%&"$ (net dipole)$ *! $

104.5°°° 90°°° 107°°° AX E AX E AX E 2 ? 3 ? 4 ?  "%&! $ KS ! "%&$   +

AX H O 4 AX2E2 110°°° 104°°° | || 118°°° H–C–C–O–H AX3 | H

41 42

7  "T a  ! " ?_ 2. ef ?_ ""$" (MO Theory)

 BCl ef ?_T ""$ () 3   !  +! * +  ! $

 NH3 "" "" ?_ AO + AO MO

 CHCl3  ""$ " ?_ (MO) L <  _ *  SF ! $  [+    (AO)   5 Z  "  (Linear Combination of , LCAO)  HCN  [O MO   M&[O AO &K

43 44

  S ?= ""$   S ?= ""$*

+  ! $  [GK L (overlap)  AO   ES" ;" " ""$ " "" (AO Overlap)  $$  (Bonding): N AO    ;"  ( ) " L AO  GK L[ N MO  Q""$#  ;"""; ‚!  u   ‚! •  $$   (Antibonding): N AO    ;"  ( )T  $$ (bonding molecular orbital, BMO) +  [  Q""$#  ;"""Q  u S" ( ;)  *K‚M&*  LK  "P  M& • $$S  (antibonding molecular orbital, AMO) +  ~~ Q$  " ?= ""$ (Molecular Orbital Diagram) L ZZ  "  [  *K‚M&*  LK  "P      MO   AO   ES" ;" " AO gQ ‚!6QS ;" 1sA − 1sB Antibonding antibonding • AO   *   • AO    K"

Energy 1s 1sA B • AO  <  v K" 1s + 1s Bonding A B bonding

45 46

  ES" ;" " ""$* Q " ?= ""$

 <+  *      MO M&<   AO y  sigma bond ( σ,σ*): GK L  1-lobe  Aos z (head-on overlap) x σσσ bonding σ antibonding  pi-bond ( π,π*): GK L  2-lobe  AOs 2s orbital  GK LK+   A  B (side-on overlap)

πππ bonding πππ antibonding πππ bonding  delta-bond ( δ,δ*): GK L  4-lobe  AOs

A(p ) B(p ) A(s) B(s) A( s) B(px) x x A(py) B(py) A(s) B(py)

δδδ bonding 47 48

8 Q " * Molecular Orbital Diagram*

~~ Q$  " ?_ ""$ L ZZ   Sigma antibonding (σ*)  Pi antibonding (π*) "    MO     AO  AOs [ " KLO  •  O [S  AMO (E  ) •  " [S  BMO (E ) E >>> E >>> E  Sigma bonding (σ)  Pi bonding (π) AMO AO BMO  P AO  GK L EAMO EAO EBMO  "P*GK LM&  

s+s px+px py+py σ > π > δ

49 50

Q$  " MOs*   ES" ;" " AO„s

 AOs Q$ T   AOs Q$ T   Sigma bonding  Pi bonding E > E > E E > E > E > E AMO AO BMO AMO AO-H AO-L BMO s+s py+py • • ∆Ed: destabilization energy AMO g $S  AO-H • • ∆∆∆Es: stabilization energy BMO g $S  AO-L

px+px

y Q " ""$ ‚!$  ES" x AO: Atomic orbital  ;" " AO BMO: Bonding Molecular Orbital z AMO: Antibonding Molecular Orbital 51 52

Molecular Orbital Diagram  $g_"F"# MOs

σ 2 σσσ 2 σσσ 2 πππ 4 πππ 4 σσσ 2 EE--configurationconfiguration: ( 2s) ( 2s*) ( 2px) ( 2p) ( 2p*) ( 2px*) 1. "*[q G+  _  2.   MO    _ S S  2    "   3. [   _ *"* MO     O "$  4. P MO   *K[ )†$ + E n e r ner gy E 5. [O  _ * MO Z [O  _   [  " 6.  !   _ O        +  N  σ, π, δ, σ*, π*, δ*

53 54

9  $g_"F"# MOs "Q$()

 H2 molecule  He2 molecule   LO _ !  + KL"P ! $ !  <[[O  _ * Antibonding

Antibonding BMO  AMO •   = ½ (  _ * BMO |   _ * AMO) • ! $    "<[ "P    H1s H1s

He1s He1s

Bonding Bonding

+ – 2 2 σ 2 H2 H2 H2 H2 = (σσσ1s) He2 = (σσσ1s) (σ1s*) Bond energy = 431 kJ/mol (K 2 )   : 1 0.5 0.5

55 56

MO Diagram of Li2 & Be2 MO Diagram of N2 & O2

  q valence electrons  ( q valence electrons) i L 2 (2 x 3 electrons) e B 2 (2 x 4 electrons) N2 ( ) O2 • Li = 1s2 2s1 • Be = 1s2 2s2 • N = 1s2 2s2 2p3 • O = 1s2 2s2 2p4 • Bond order = 1 • Bond order = 0 (no bond) •   = 1 •   = 2 •  "  +  σp  πp • • N $8 MO ?+. B2 : C2  O  MO  E n e r r gy ne E E n e r ner gy E

σσσ 2 σ 2 σ 2 σ 2 σ 2 σ 2 σ 2 MO of Li2 ( 1s) ( 1s*) ( 2s) MO of Be2 (σ1s) (σ1s*) (σ2s) (σ2s*) σσσ 2 σσσ 2 πππ 4 σσσ 2 σ 2 σ 2 σ 2 π 4 π 2 MO of N2 ( 2s) ( 2s*) ( 2p) ( 2px) MO of O2 (σ2s) (σσ2s*) (σσ2px) (ππ2p) (ππ2p*) 57 58

$ TF " ?_ 3. ef  E (Valence Bond Theory)

 6Q"(Diamagnetic)"  [O  _ " M&  ef  E (VB) L'()  *   ! "  " K _  O ! $ Nv<+   +* !  [GK LK AO      (Paramagnetic) "    _   O*K   <*K !  +     L   M < " K _ O    _ K  • AO 489$8=89.40!* "P"!  + • *['() MO "P  organic molecule S  M&'() !"  "  GK L AO N$$ S  (Bonding) & (  σ,π,δ)  S* +      _  _  (  2   _ )* " G [K Z& K _ 59 60

10  Q#ef VB  Q#ef VB *

 L[+      _    ˆ‚KL[ !"! GK L AO   [[    _ *   [[    _ * + 1s 2s 2px 2py 2pz • − − − − − 1s 2s 2px 2py 2pz H =    _   1 AO [ 1  • C = − − − − −    _   2 AO [ 2  • N = − − − − −    _   3 AO [ 3  • O = − − − − −    _   2 AO [ 2  • F = − − − − −    _   1 AO [ 1   !"  ˆ‚K • C = − − − − −    _   2 AO [  2 ? • +[ S  "&  !  +[GK L AO     _   • H2O [ v+  $ 90° ([ L 104.5) H− H N≡ N • H2 • N2 O H F• H H− F H

61 62

6†$6QE (Hybridization)* 6†$6QE (Hybridization)

 P [  _ * 2s +P< $M&S  2p O*K  $   S 6†$Q""$ L Z"    [O AO     _  M& +  * L"+  $ *K  <   1s 2s 2px 2py 2pz   L*K"P "S  M& • C = − − − − −    _   2 AO [ 2  • S† S G [ S _ L    " AO  T • C = − − − − −    _   4 AO [ 4  #S     &" +KL$ • +  *K   S† +  (Hybrid orbital) ♦  =T Q$ T T  T     &" Š+  &"  (s px py pz) [Z" N +  *K   S† S G  S S† +  4 • [OS† +  =   +          v  1s sp3 CH4 p Hybridization • C = − − − − − 3 s sp ""$ " "" 6†$Q""$ " "" 63 64

Q " 6†$Q""$ sp 6†$Q""$

  S† +  M&  [O AO  Z" sp-Hybridization LZ"K • sp  2 ""$ (Linear) s-orbital  p-orbital • sp2  3 ""$ (Trigonal planar) <S† +  [   S  sp-hybrid orbital 2 +  • sp3  4 ""$ (Tetrahedral) [ p +  [  N"  • sp3d  5 ""$ (Trigonal bipyramidal) π 3 2  p-orbital  K L[  • sp d  6 ""$ (Octahedral) 1 KL 2   [O   S [O AO &K     _   (&+   S† +  ) 2 p p p py pz  S† +  (sp, sp , Œ) "P G &*  x y z Hybridization sp +   (s,p,d Œ) "P G  S   ... s = 2 σ-bond = 2 πππ-bond 65 66

11 sp2 6†$Q""$ sp3 6†$Q""$ sp2-Hybridization LZ"K sp3-Hybridization  [ s-orbital  2 p-orbitals s-orbital  3 p-orbitals  S  sp2-hybrid orbital  3 +   S  sp3-hybrid orbital  4 +  [  N "K  [  N " K  p-orbital  K L[  π  S p orbital K L*K" π

p p p p x y z px py pz z Hybridization Hybridization sp3 sp2 s s = 4 σ-bond (,-$KT = 3 σ-bond = 1 πππ-bond p-orbital ;4!489$8=89.)

67 68

sp3 d  sp3d2 6†$Q""$  "T   S ?Q6†$Q

 $*  3 M&S [*  d +  *S†    Bes (1s22 2)  S  [ p  Linear 3 2px 2py 2pz 2p 2p H Be H  sp d Hybridization Hybridization y z 3 sp • 5 sp d hybrid orbitals 2s BeH2 • [  N  <Š"K  3 2  Cs (1s22 22p2)  sp d Hybridization H 3 2 • 6 sp d hybrid orbitals Tetrahedral 2p 2p 2p • [  N  K x y z Hybridization sp3 C 2s H Cl H

CH3Cl 69 70

 "T   S ?Q6†$Q =T ()

2 2 3  <    sN (1s 2 2p ) Trigonal Pyramidal •  sigma (σ) [ hybrid orbital • π 2px 2py 2pz N  pi ( ) [ p-orbital Hybridization H sp3 H 2s H NH3 2 2 2  Os (1s 2 2p ) H Bent 2p 2p 2p x y z Hybridization O sp3 2s H

H2O

71 72

12 =T# H2C=CH2   ()

 <* H2C=CH2    <   •  sigma [ sp-orbital + •  sigma (σ) [ hybrid orbital KL p-orbital •  pi [ p-orbital + •  pi (π) 2  [ 2 p-orbital ♦ N≡N (3  [ px py pz) ♦ ≡≡≡ + + + HC CH (3  [ sp px py)

- - - + + + - - - + + + + + + ------

73 74

Coordinate Covalent Bond* ?$$g " "F"

 ?""Q?  (KL  dative covalent ! K [$ K K "< OS\\] S   *KN Z bond) L!  +  [*   _  [ S   L P< " "S   KMK "  • " K  &NZ [! K • !+  !  + " KL!  + • '()  "P*  ! KS   [O   $  O    _   '() P  H2O Coordinate 1. $$g " "F" (Electron sea model) + H2O OH2 H H bond Al3+ +   "GM [$< [$  + OH →  H2O 2 H N H + H H N H H N H H2O  G " G+  _  N N N H2O 3+  L S  " H F H2O OH2 H F H F •   + Al ! K [  M < K   →   H N + B F H N B F H N B F H O OH   2 2   _  " [$ N F N F N F H2O 75 76

ef u$  (Energy band theory)   T ?_ (Intermolecular Force)

 AO [S +  ! $   (bonding) +  ! $   (anti-bonding)  K! $ L M K S\\]K! $  L  M& [O+  ! $ M&   [*  KL" [KLN P L  P  (energy band) • Cohesive Force M K K! $       _ [   S %* P KL L S*  + • Adhesive Force M K K! $      * P GK L&   ! KOS\\]S L[  _ "P L S  "*L&! K   K! $ LP< $! Z P P&OS\\]KL P G+   < Type of Intermolecular Forces relative strength Ionic bonds Ions 1000

""$ x Hydrogen bonds Strong dipoles 100  ; T Dipole-Dipole Permanent dipoles 10 ""$ ;u= $g_FS London Induced dipoles 1

77 78

13   Q"   (van de Waals Attraction) 6†?Qg (Hydrogen bond)

   + "+L M K K! $   N K! $  &  K! $ GM [ S N   H   L   EN "<   •   [OK   _   F O KL N O*K! $  "%&"< ! $  &GM S !  ! $  M K  &    [ dipole- P (permanent dipole)   dipole interaction "Z *K"  S†! [ [$  L  dipole-dipole interaction [$ K K "< δ δ+δ+δ+ •   K! $   & ! $ L S & P< δ+δ+δ+ δδ–  Boiling Point (°C) K O*K &   dipole-induced dipole interaction δδδ – δδδ – • • • K! $  S &  N K& K - H2O 100.0 • HF 19.5 Hydrogen bond • • δ+δ+δ+ δ+δ+δ+ O (induced dipole) KL&   (temporary fluctuation NH3 -33.3 H2S -60.7 δδδ – • HCl -85.1 ••• CH -161.6 δδδ – dipole)  L q:"= (London Force) 4 δ+δ+δ+

79 80

$$ˆ‰Q $$ˆ‰Q

 !"  "! $ S S &  H2S  N2O • PH3 3-  PO4  NO2 • H2S H N 3  BrF3 • lCH C 2 2  PCl5 F P 5 • 3-  PO4 H C 2O F S 6 • -  CH OH  BrO3 3 XeF4 • NO+  BeCl2  BrO2 OS 3 H C 3CH2OH

81 82

14