RED CLOVER (Trifolium Pratense) R

Total Page:16

File Type:pdf, Size:1020Kb

RED CLOVER (Trifolium Pratense) R EM 8701 January 1998 50¢ RED CLOVER (Trifolium pratense) R. Sattell, R. Dick, D. Hemphill, and D. McGrath Red clover is an herbaceous concentrations of estrogen-like colonized by an appropriate strain of perennial or biennial legume with compounds may cause infertility. rhizobia bacteria to be able to erect, leafy stems that originate from Red clover residues can supply convert atmospheric nitrogen into a thick crown and terminate with a significant amounts of nitrogen (N) to plant-available forms. Inoculating flower head. Height at maturity is subsequent crops, and the large, seed with the proper rhizobia about 2 feet. deep taproot is effective for loosen- bacteria ensures that the bacteria will Leaves are composed of three ing soils and cycling nutrients to the be presentDATE. when the seed germi- oblong leaflets that usually have surface. Vigorous spring growth is nates. light-colored “V” markings at their effective for suppressing weeds. Use fresh inoculant, protect it from center. Both leaves and stems usually OFheat and light, and apply it to seeds are hairy. Dry matter and N accumulation just before planting according to the Flowers are pink-purple or In a 5-year trial in the mid- manufacturer’s directions. Cover magenta. Seeds are small (approxi- Willamette Valley, ‘Kenland’ red broadcast seed with soil to protect mately 240,000 seeds/lb), oblong, clover planted in mid-September inoculant from sunlight. and yellow, reddish-brown, or dark accumulated a maximum OUTof 3.3, mini- You may not need to inoculate if gray. mum of 0.2, and mean of 1.7 tons the appropriate rhizobia bacteria Red clover has a branched taproot dry matter/acre, and a maximum of already are present in the soil. You and extensive surface roots. 168, minimum of 10,IS and mean of 83 can find out by planting a section of When used in annual rotations, fall lb N/acre by mid-April. the field with raw (non-inoculated) and winter growth is slow, but spring seed and watching for differences in growth is rapid. Management growth. Suggested fall planting dates are When relay interplanting, broad- Environmental preferences from mid-September through early cast seed into a standing vegetable and limitations October, or earlierinformation: if irrigation is crop before the final cultivation. Red clover grows well on loams, available or soils are moist. Increase irrigation frequency to keep silt loams, and sandy loams as well as Seeding rates for use as a cover the soil surface moist until the clover on clayey soils. It can survive winter crop vary from 15 to 25 lb/acre. Drill is established under the summer crop temperatures as low as -30°F and seed into a fine seedbed at a depth canopy (about 2 weeks). 1 tolerates temporary waterlogging, but of ⁄2 inch for best stand establish- cannot survive prolonged waterlog- ment. Alternative ging or flooding. The optimum pH seeding methods Quick facts: Red clover range is 6.6–7.6, but a range of 4.5–currentthat can reduce 8.2 is tolerated. PUBLICATIONseedbed prepara- Common names Red clover tion but require Hardiness zone 4 (see Figure 1) Uses higher seeding pH tolerance 4.5–8.2; optimum near 7.0 Red clover is used successfully in rates are: drill into Best soil type Wide range Oregon as a fall-plantedmost cover crop a rough seedbed Flood tolerance Moderate andTHIS green manure in rotations with prepared by Drought tolerance Moderate vegetable crops. It also is used as a disking, or Shade tolerance Moderate broadcast over a relay interplanted cover crop Mowing tolerance High if mown higher than 5 inches For rough or smooth (i.e., planted into a standing crop) Dry matter accumulation 1.7 tons/acre and makes excellent forage, hay, seedbed and then N accumulation 85 lb/acre and silage, although it should not disk lightly to http://extension.oregonstate.edu/catalogN to following crop Half of accumulated N be used as sheep pasture during cover seed. breeding season because its high Red clover Uses Use as relay-interplanted or winter annual cover crop in rotations, or as a cover in roots need to be orchards to smother spring weeds, fix N, and improve soil tilth. Often grown with cereal grains. Tolerates frozen soils. Cautions May become weed in annual crop rotations. Red clover has performed well clover stems begin to grow confers a majority of red clovers sown in when relay interplanted into short- competitive advantage to the clover. Oregon. They produce tall, erect statured crops. When relay inter- Red clover can be killed with an flowering stems with leaves at the planted into tall-statured crops such appropriate herbicide. Consult your nodes, the spring after they are as sweet corn, intense shade, heavy county agent of the OSU Extension planted. Although they are perenni- harvest residue, and harvest traffic Service for herbicide recommenda- als, early flowering red clovers most result in patchy stands. However, red tions. Follow all label restrictions. often are treated as winter annuals clover appears to be better adapted (turned under or killed in spring) to these adverse conditions than the Pest interactions when used as a cover crop. Seed vetches, peas, or crimson clover, Red clover is not an appropriate often is marketed simply as “Medium accumulating as much as cover crop to grow in rotation with a Red clover” and, if locally produced, 1 1 ⁄2 tons dry matter/acre and 80 lb cash crop legume because they are may be well adapted. N/acre by the end of April in the susceptible to many of the same ‘Kenland’ red clover has been Willamette Valley. pathogens, allowing pathogen used successfully in the Willamette In western Oregon, red clover populations to grow quickly. Valley as both a fall-planted and generally is allowed to grow until at Incorporation of succulent red relay-interplantedDATE. cover crop. It is least mid-April, because nearly all dry clover residues often causes a sharp resistant to Sclerotinia crown rot and matter and N accumulation occur in increase in soil-borne pathogen is tolerant of waterlogged soils. spring with the onset of warm populations, especially damping-off OF‘Kenland’ red clover is nearly dor- weather. Incorporating red clover fungi (e.g., pythium). If susceptible mant during late fall and winter but residues approximately 3 weeks seed is planted shortly after incorpo- grows rapidly in spring with the before the summer crop is planted ration, you may have more problems onset of warmer temperatures. maximizes red clover spring growth with disease. Avoid this problem by while minimizing pythium problems waiting several weeks betweenOUT For more information (see below). residue incorporation and planting, World Wide Web When grown alone, red clover’s and by ensuring that soil temperature Orchard floor management informa- succulent residues are incorporated and seedbed preparationIS are optimal tion—http://www.orst.edu/dept/hort/ for rapid summer crop seedling weeds/floormgt.htm easily with a moldboard plow or disk OSU Extension Service publications— emergence. and decompose very rapidly, releas- eesc.orst.edu ing part of the accumulated N for use Varieties/cultivars The University of California, Davis by the following crop. cover crop information—http:// Red clover often is planted with a Cultivated red clovers are grouped www.sarep.ucdavis.edu/sarep/ccrop/ cereal grain companion crop that is as early flowering or late flowering types. ‘Mammothinformation: Red’ is one of the Oregon Cover Crop Handbook able to scavenge N and protect the This publication also is part of Using soil during fall and winter. Plant most common late flowering, or single cut, varieties, and is used at Cover Crops in Oregon, EM 8704, which companion crops at approximately contains an overview of cover crop usage one-half, and clover at two-thirds, of high elevations or where the growing and descriptions of 13 individual cover their monoculture seeding rate. If the season is short. It is a winter-hardy crops. To order copies of EM 8704, send companion crop is too dense in biennial that grows in a round clump your request and $5.50 per copy to: spring, grazing or clipping it before without flowering stems the first year. Publication Orders currentThe early flowering types, also Extension & Station Communications PUBLICATIONcalled ‘Medium Red’ or double cut Oregon State University (because they can be cut several 422 Kerr Administration times in a year for hay), comprise the Corvallis, OR 97331-2119 most Fax: 541-737-0817 THIS © 1998 Oregon State University. This publication may be photocopied or reprinted in its entirety for noncommercial purposes. Robert Sattell, faculty research assistant in crop and soil science; Richard Dick, professor of soil For science; Delbert Hemphill, professor of agriculture; and Dan McGrath, Extension agent, Willamette Valley; Oregon State University. Figure 1.—Oregon http://extension.oregonstate.edu/catalogplant hardiness zone Funding for this project was provided by the Oregon Department of Agriculture. map. Red clover normally will survive in This publication was produced and distributed in furtherance of the Acts of Congress of May 8 and Zone 4 or any warmer zone. (Extracted June 30, 1914. Extension work is a cooperative program of Oregon State University, the U.S. from the USDA’s national plant hardiness Department of Agriculture, and Oregon counties. Oregon State University Extension Service offers zone map, based on average annual educational programs, activities, and materials—without regard to race, color, religion, sex, sexual minimum temperature in °F.) orientation, national origin, age, marital status, disability, and disabled veteran or Vietnam-era Zone 4 = -30 to -20; Zone 5 = -20 to -10 veteran status—as required by Title VI of the Civil Rights Act of 1964, Title IX of the Education Zone 6 = -10 to 0; Zone 7 = 0 to 10 Amendments of 1972, and Section 504 of the Rehabilitation Act of 1973.
Recommended publications
  • Seed Maturity in White Fir and Red Fir. Pacific Southwest Forest and Range Exp
    PACIFIC SOUTHWEST Forest and Range FOREST SERVICE U. S. DEPARTMENT OF AGRICULTURE P.O. BOX 245, BERKELEY, CALIFORNIA 94701 Experiment Station USDA FOREST SERVICE RESEARCH PAPER PSW-99 /1974 CONTENTS Page Summary ................................................... 1 Introduction ................................................. 3 Methods .................................................... 3 Testing Fresh Seeds ....................................... 3 Testing Stratified Seeds .................................... 3 Seedling Vigor Tests ...................................... 4 Artificial Ripening Trial ................................... 4 Other Observations ........................................ 4 Results and Discussion ....................................... 5 Cone Specific Gravity ..................................... 5 Seed Germination, byCollection Date ....................... 5 Seed GerminationandCone Specific Gravity ................ 7 Red Fir Seedling Vigor .................................... 9 ArtificialRipening of White Fir Seeds ....................... 9 OtherMaturity Indices ..................................... 9 Application ................................................. 10 Literature Cited.............................................. 12 THE AUTHOR WILLIAM W. OLIVER is doing silvicultural research on Sierra Nevada conifer types with headquarters at Redding, California. He earned a B.S. degree (1956) in forestry from the University of New Hampshire, and an M.F. degree (1960) from the University of Michigan. A native of
    [Show full text]
  • Report on the AES Candidates
    Rep ort on the AES Candidates 1 2 1 3 Olivier Baudron , Henri Gilb ert , Louis Granb oulan , Helena Handschuh , 4 1 5 1 Antoine Joux , Phong Nguyen ,Fabrice Noilhan ,David Pointcheval , 1 1 1 1 Thomas Pornin , Guillaume Poupard , Jacques Stern , and Serge Vaudenay 1 Ecole Normale Sup erieure { CNRS 2 France Telecom 3 Gemplus { ENST 4 SCSSI 5 Universit e d'Orsay { LRI Contact e-mail: [email protected] Abstract This do cument rep orts the activities of the AES working group organized at the Ecole Normale Sup erieure. Several candidates are evaluated. In particular we outline some weaknesses in the designs of some candidates. We mainly discuss selection criteria b etween the can- didates, and make case-by-case comments. We nally recommend the selection of Mars, RC6, Serp ent, ... and DFC. As the rep ort is b eing nalized, we also added some new preliminary cryptanalysis on RC6 and Crypton in the App endix which are not considered in the main b o dy of the rep ort. Designing the encryption standard of the rst twentyyears of the twenty rst century is a challenging task: we need to predict p ossible future technologies, and wehavetotake unknown future attacks in account. Following the AES pro cess initiated by NIST, we organized an op en working group at the Ecole Normale Sup erieure. This group met two hours a week to review the AES candidates. The present do cument rep orts its results. Another task of this group was to up date the DFC candidate submitted by CNRS [16, 17] and to answer questions which had b een omitted in previous 1 rep orts on DFC.
    [Show full text]
  • Development of the Advanced Encryption Standard
    Volume 126, Article No. 126024 (2021) https://doi.org/10.6028/jres.126.024 Journal of Research of the National Institute of Standards and Technology Development of the Advanced Encryption Standard Miles E. Smid Formerly: Computer Security Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA [email protected] Strong cryptographic algorithms are essential for the protection of stored and transmitted data throughout the world. This publication discusses the development of Federal Information Processing Standards Publication (FIPS) 197, which specifies a cryptographic algorithm known as the Advanced Encryption Standard (AES). The AES was the result of a cooperative multiyear effort involving the U.S. government, industry, and the academic community. Several difficult problems that had to be resolved during the standard’s development are discussed, and the eventual solutions are presented. The author writes from his viewpoint as former leader of the Security Technology Group and later as acting director of the Computer Security Division at the National Institute of Standards and Technology, where he was responsible for the AES development. Key words: Advanced Encryption Standard (AES); consensus process; cryptography; Data Encryption Standard (DES); security requirements, SKIPJACK. Accepted: June 18, 2021 Published: August 16, 2021; Current Version: August 23, 2021 This article was sponsored by James Foti, Computer Security Division, Information Technology Laboratory, National Institute of Standards and Technology (NIST). The views expressed represent those of the author and not necessarily those of NIST. https://doi.org/10.6028/jres.126.024 1. Introduction In the late 1990s, the National Institute of Standards and Technology (NIST) was about to decide if it was going to specify a new cryptographic algorithm standard for the protection of U.S.
    [Show full text]
  • Symmetric Encryption: AES
    Symmetric Encryption: AES Yan Huang Credits: David Evans (UVA) Advanced Encryption Standard ▪ 1997: NIST initiates program to choose Advanced Encryption Standard to replace DES ▪ Why not just use 3DES? 2 AES Process ▪ Open Design • DES: design criteria for S-boxes kept secret ▪ Many good choices • DES: only one acceptable algorithm ▪ Public cryptanalysis efforts before choice • Heavy involvements of academic community, leading public cryptographers ▪ Conservative (but “quick”): 4 year process 3 AES Requirements ▪ Secure for next 50-100 years ▪ Royalty free ▪ Performance: faster than 3DES ▪ Support 128, 192 and 256 bit keys • Brute force search of 2128 keys at 1 Trillion keys/ second would take 1019 years (109 * age of universe) 4 AES Round 1 ▪ 15 submissions accepted ▪ Weak ciphers quickly eliminated • Magenta broken at conference! ▪ 5 finalists selected: • MARS (IBM) • RC6 (Rivest, et. al.) • Rijndael (Belgian cryptographers) • Serpent (Anderson, Biham, Knudsen) • Twofish (Schneier, et. al.) 5 AES Evaluation Criteria 1. Security Most important, but hardest to measure Resistance to cryptanalysis, randomness of output 2. Cost and Implementation Characteristics Licensing, Computational, Memory Flexibility (different key/block sizes), hardware implementation 6 AES Criteria Tradeoffs ▪ Security v. Performance • How do you measure security? ▪ Simplicity v. Complexity • Need complexity for confusion • Need simplicity to be able to analyze and implement efficiently 7 Breaking a Cipher ▪ Intuitive Impression • Attacker can decrypt secret messages • Reasonable amount of work, actual amount of ciphertext ▪ “Academic” Ideology • Attacker can determine something about the message • Given unlimited number of chosen plaintext-ciphertext pairs • Can perform a very large number of computations, up to, but not including, 2n, where n is the key size in bits (i.e.
    [Show full text]
  • Critical Assessment of Reaction Mechanisms Using the Lisbon Kinetics Tool Suit
    XXXIV ICPIG & ICRP-10, July 14-19, 2019, Sapporo, Hokkaido, Japan Critical assessment of reaction mechanisms using the LisbOn KInetics tool suit 1 1 1 2 P P P P P A. Tejero-del-Caz P , V.U Guerra UP , M. Lino da Silva P , L. Marques P , 1 1,3 1 1 P P P N. Pinhão P , C. D. Pintassilgo P , T. Silva P and L. L. Alves P 1 P P Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, Portugal 2 P P Centro de Física da Universidade do Minho, Campus de Gualtar, Braga, Portugal 3 P P Faculdade de Engenharia da Universidade do Porto, Porto, Portugal This work uses the LisbOn KInetics (LoKI) tool suit to perform a critical assessment and correction of the collisional, radiative and transport mechanisms and data describing the kinetics of several gas/plasma systems. LoKI comprises two modules: a Boltzmann solver, LoKI-B (to become open- source), and a chemistry solver, LoKI-C. Both modules can run as standalone tools or coupled in a self-consistent manner. LoKI handles simulations in any atomic / molecular gas mixture, considering collisions with any target state (electronic, vibrational and rotational), specified in the reaction mechanism adopted. As output, the tool provides the electron energy distribution function and the corresponding electron macroscopic parameters, along with the densities of species and the corresponding creation / destruction rates. 1. Introduction for the heavy species (charged and neutral) present in Predictive tools for non-equilibrium low- the plasma, receiving as input data the KIT(s) for the temperature plasmas (LTPs) should properly describe gas/plasma system under study, and using several the kinetics of both the electrons and the heavy- modules to describe the mechanisms (collisional, species, the former responsible for inducing plasma radiative and transport) controlling the creation / reactivity and the latter providing the pathways for destruction of species.
    [Show full text]
  • Bruce Schneier 2
    Committee on Energy and Commerce U.S. House of Representatives Witness Disclosure Requirement - "Truth in Testimony" Required by House Rule XI, Clause 2(g)(5) 1. Your Name: Bruce Schneier 2. Your Title: none 3. The Entity(ies) You are Representing: none 4. Are you testifying on behalf of the Federal, or a State or local Yes No government entity? X 5. Please list any Federal grants or contracts, or contracts or payments originating with a foreign government, that you or the entity(ies) you represent have received on or after January 1, 2015. Only grants, contracts, or payments related to the subject matter of the hearing must be listed. 6. Please attach your curriculum vitae to your completed disclosure form. Signatur Date: 31 October 2017 Bruce Schneier Background Bruce Schneier is an internationally renowned security technologist, called a security guru by the Economist. He is the author of 14 books—including the New York Times best-seller Data and Goliath: The Hidden Battles to Collect Your Data and Control Your World—as well as hundreds of articles, essays, and academic papers. His influential newsletter Crypto-Gram and blog Schneier on Security are read by over 250,000 people. Schneier is a fellow at the Berkman Klein Center for Internet and Society at Harvard University, a Lecturer in Public Policy at the Harvard Kennedy School, a board member of the Electronic Frontier Foundation and the Tor Project, and an advisory board member of EPIC and VerifiedVoting.org. He is also a special advisor to IBM Security and the Chief Technology Officer of IBM Resilient.
    [Show full text]
  • Philopatry and Migration of Pacific White Sharks
    Proc. R. Soc. B doi:10.1098/rspb.2009.1155 Published online Philopatry and migration of Pacific white sharks Salvador J. Jorgensen1,*, Carol A. Reeb1, Taylor K. Chapple2, Scot Anderson3, Christopher Perle1, Sean R. Van Sommeran4, Callaghan Fritz-Cope4, Adam C. Brown5, A. Peter Klimley2 and Barbara A. Block1 1Department of Biology, Stanford University, Pacific Grove, CA 93950, USA 2Department of Wildlife, Fish and Conservation Biology, University of California, Davis, CA 95616, USA 3Point Reyes National Seashore, P. O. Box 390, Inverness, California 94937, USA 4Pelagic Shark Research Foundation, Santa Cruz Yacht Harbor, Santa Cruz, CA 95062, USA 5PRBO Conservation Science, 3820 Cypress Drive #11, Petaluma, CA 94954, USA Advances in electronic tagging and genetic research are making it possible to discern population structure for pelagic marine predators once thought to be panmictic. However, reconciling migration patterns and gene flow to define the resolution of discrete population management units remains a major challenge, and a vital conservation priority for threatened species such as oceanic sharks. Many such species have been flagged for international protection, yet effective population assessments and management actions are hindered by lack of knowledge about the geographical extent and size of distinct populations. Combin- ing satellite tagging, passive acoustic monitoring and genetics, we reveal how eastern Pacific white sharks (Carcharodon carcharias) adhere to a highly predictable migratory cycle. Individuals persistently return to the same network of coastal hotspots following distant oceanic migrations and comprise a population genetically distinct from previously identified phylogenetic clades. We hypothesize that this strong homing behaviour has maintained the separation of a northeastern Pacific population following a historical introduction from Australia/New Zealand migrants during the Late Pleistocene.
    [Show full text]
  • Identifying Open Research Problems in Cryptography by Surveying Cryptographic Functions and Operations 1
    International Journal of Grid and Distributed Computing Vol. 10, No. 11 (2017), pp.79-98 http://dx.doi.org/10.14257/ijgdc.2017.10.11.08 Identifying Open Research Problems in Cryptography by Surveying Cryptographic Functions and Operations 1 Rahul Saha1, G. Geetha2, Gulshan Kumar3 and Hye-Jim Kim4 1,3School of Computer Science and Engineering, Lovely Professional University, Punjab, India 2Division of Research and Development, Lovely Professional University, Punjab, India 4Business Administration Research Institute, Sungshin W. University, 2 Bomun-ro 34da gil, Seongbuk-gu, Seoul, Republic of Korea Abstract Cryptography has always been a core component of security domain. Different security services such as confidentiality, integrity, availability, authentication, non-repudiation and access control, are provided by a number of cryptographic algorithms including block ciphers, stream ciphers and hash functions. Though the algorithms are public and cryptographic strength depends on the usage of the keys, the ciphertext analysis using different functions and operations used in the algorithms can lead to the path of revealing a key completely or partially. It is hard to find any survey till date which identifies different operations and functions used in cryptography. In this paper, we have categorized our survey of cryptographic functions and operations in the algorithms in three categories: block ciphers, stream ciphers and cryptanalysis attacks which are executable in different parts of the algorithms. This survey will help the budding researchers in the society of crypto for identifying different operations and functions in cryptographic algorithms. Keywords: cryptography; block; stream; cipher; plaintext; ciphertext; functions; research problems 1. Introduction Cryptography [1] in the previous time was analogous to encryption where the main task was to convert the readable message to an unreadable format.
    [Show full text]
  • 2022 Kientzler Catalog
    TRIOMIO – COLOR COMBOS WITH UNIFORM PERFORMANCESRMANCES The consumer's enthusiasm for these trendy, three-coloured combos remains extremely strong! SSUPERCALUPERCAL BIDENS BIDENSBIDENS DUO CYPERUS TRIOMIO SUPERCAL ‘Summer Sensation’ TRIOMIO ‘Tweety Pop’ Bidens Duo ‘Sunshine’ ‘Southern‘Southehern Blues’BBlues’ No. 7298: SUPERCAL No. 7210: Bidens ‘Tweety’, No. 7318: Bidens ‘Sweetie’ No. 7363: Cyperus ‘Cleopatra’, ‘Blue’, ‘Light Yellow’ and ‘Pink’ Verbena VEPITA™ ‘Blue Violet’ and ‘Scarlet’ and ‘Funny Honey’ SURDIVA® ‘Blue Violet’ and SURDIVA® ‘White’ CCALIBRACHOAALIBRACHOA PPOCKETOCKET™ CALIBRACHOACALIBRACHOA UNIQUEUNIQQUE CALENDN ULA Calibrachoa POCKET™ ‘Mini Zumba’ TRIOMIO ‘Zumba’ TRIOMIO ‘Mango Punch’ TRIOMIO CALENDULA ‘Color me Spring’ No. 6981: CALIBRACHOA POCKET™ No.o. 7217:: CaCalibrachoa a oa UNIQUEU QU No.o. 7311: Calibrachoa UNIQUE ‘Mango Punch’, No. 7236: Calendula ‘Power Daisy’, ‘Yellow’, ‘Blue’ and ‘Red’ ‘Golden‘Golden Yellow’, ‘Lilac’‘Lilac’ and ‘Dark‘Dark Red’Red’ ‘Golden Yellow’ and ‘Dark Red’ Calibrachoa ‘Lilac’ and ‘Dark Red’ NEMENEMESISIA SUS PERCAL TRIOMIO NESSIE PLUS ‘Alegria’ TRIOMIO BABYCAKE ‘Little Alegria’rii’a’ TRIOMIO SUPERCAL TRIOMIO SUPERCAL ‘Garden Magic’ No. 7200: Nemesia NESSIE PLUS No. 7202: Nemesia BABYCAKE ‘Little Coco’, No. 7221: SUPERCAL ‘Blushing Pink’, No. 7234: SUPERCAL ‘Light Yellow’, ‘White’, ‘Yellow’ and ‘Red’ ‘Little Banana’ and ‘Little Cherry’ ‘Cherryh Improved’ and ‘Dark Blue’ ‘Blue’ and ‘Cherry Improved’ SUPERCAL PREMIUM VEERBR ENENAA VEPPITA™ TRIOMIO SUPERCAL PREMIUM ‘Magic’ TRIOMIO SUPERCAL
    [Show full text]
  • 2021 4.5'' Premium Potted Annuals
    2021 4.5'' Premium Potted Annuals AGERATUM MECADONIA Horizon Blue Magic Carpet Yellow ALTERNANTHERA MELAMPODIUM Fancy Filler - Choco Chili Showstar Fancy Filler - Tru Yellow MIMOSA ANGELONIA Sensative Plant Angel Face - Blue MUELENBECKIA Angel Face - Pink Wirevine Serenita White NEMESIA ARGYRANTHEMUM Blood Orange Butterfly Yellow Nessie Burgandy Grandaisy Combo Assortment Nessie Sunshine Granddasisy Beauty Yellow Rasberry Lemonade Granddasiy Yellow ORNAMENTAL CABBAGE/KALE ARTEMESIA Misc. Varieties Sea Salt OSTEOSPERMUM Silver Brocade Bright Lights Double Moon Glow BABY TEARS Osticade Pink Aquamarine Osticade White Blush BACOPA Tradewinds Cinnomon Calypso Jumbo Pinkeye Zion Denim Blue Calypso Jumbo White Zion Morning Sun Double Snowball Zion Sunset Gulliver Blue PILEA (Baby Tears) Snowstorm Giant Snowflake Baby Tears Snowstorm Snowglobe PLECTRATHUS BEGONIA Candlestick Lemon Twist Super Olympia Mix Iboza Coleoides Super Olympia Red PORTULACA - PURSLANE BIDENS Colorblast Double Magenta Mexican Gold Colorblast Lemon Twist Goldilock Rocks Colorblast Pink Lady BRIDAL VEIL Colorblast Watermelon Punch Tahitian Happy Hour Mix BROWALLIA Sundial Mix Endless White Flirtation PETUNIAS-MILLION BELLS Illumination Aloha Tiki Soft Pink CALENDULA Calitastic Aubergine Star Caleo Orange Calitastic Mango Caleo Yellow Calitastic Mango CELOSIA Calitastic MB Butterpop New Look Calitastic Orange Imp Fresh Look Mix Chameleon Frozen Ice CLEOME Colibri Cherry Lace Clemantine Assorted MF Neo Dark Blue Clio Magenta MF Neo Double Red Clio Pink Lady MF Neo Double Yellow COLEUS MF Neo Lava Red Eye Beauty of Lyon MF Neo Pink Light Eye Chocolate Mint MF Neo Vampire Kingswood Torch MF Neo White Kong Lime Sprite Million Bells Light Blue Kong Mosiac Million Bells Mound Yellow Kong Red Million Bells True Blue Kong- Rose Million Bells True Yellow Kong Salmon Pink Million Bells White Limetime Mini Famous Eclipse Lilac Mainstreet Alligater Alley Mini Famous Orange/Yellow Mainstreet Riverwalk Mini Famous Raspberry Star Mainstreet Ruby Road Mini Famous Tart Deco Mainstreet Sunset Blvd.
    [Show full text]
  • SHARK ECONO 2512__Dec17 Roll Fed Media Remove
    PRINTER SPECIFICATIONS MEDIA w w w . s t r a t o j e t u s a . c o m Handling 4 zone vacuum table Rigid media support 100”x48” & 11 lb/ft2 (254 x 122 cm & 50 Kg/m2) Max thickness 4” (10 cm) PRINT SPEEDS (Vary depending on final configuration) Maximum speed 1100 ft2/hr (102 m2/hr), (34 Boards/hr)** Production 540 ft2/hr (50 m2/hr), (17 Boards/hr)** PRINTING Max print resolution 1200 dpi Drop size Variable 5, 15 & 30 Picoliter Margin Full bleed capable Printhead Ricoh Gen5 UV curable lamp type LED, estimated life 18,000* hrs Ink type Sola UV curable ink Ink capacity 2.5 Liter reservoirs Connectivity USB Supported RIP Software Caldera / Onyx / SAi DIMENSIONS Assembled dimensions (L x W x H) 175” x 80” x 60” (445 x 205 x 153 cm) Weight assembled (approx) 2650 lb (1202 Kg) Shipping dimensions (L x W x H) 185” x 90” x 75” (470 x 230 x 191 cm) SHARK EFB-2512 Rigid/Flexible Substrate Printers Weight shipping (approx) 3310 lb (1502 Kg) OPERATION CONDITIONS Temperature 68 to 86 oF (20 to 30 oC) Max versatility Print the widest variety of rigid and flexible substrates Humidity 40% to 70% non-condensing Electrical 220 VAC (± 10%) 50/60 Hz 30A Increased quality and productivity Benefit from 1200 dpi grayscale output and feature rich design Warranty Limited one year parts & labour Robust design Experience years of production with confidence Affordability Choose the Shark EFB-2512 for its simplicity, affordability and to save money by printing North / South America Europe / Middle East / Africa India / Asia / Pacific direct to rigids.
    [Show full text]
  • Magenta and Magenta Production
    MAGENTA AND MAGENTA PRODUCTION Historically, the name Magenta has been used to refer to the mixture of the four major constituents comprising Basic Fuchsin, namely Basic Red 9 (Magenta 0), Magenta I (Rosaniline), Magenta II, and Magenta III (New fuchsin). Although samples of Basic Fuchsin can vary considerably in the proportions of these four constituents, today each of these compounds except Magenta II is available commercially under its own name. Magenta I and Basic Red 9 are the most widely available. 1. Exposure Data 1.1 Chemical and physical data 1.1.1 Magenta I (a) Nomenclature Chem. Abstr. Serv. Reg. No.: 632–99–5 CAS Name: 4-[(4-Aminophenyl)(4-imino-2,5-cyclohexadien-1-ylidene)methyl]-2- methylbenzenamine, hydrochloride (1:1) Synonyms: 4-[(4-Aminophenyl)(4-imino-2,5-cyclohexadien-1-ylidene)methyl]-2- methylbenzenamine, monohydrochloride; Basic Fuchsin hydrochloride; C.I. 42510; C.I. Basic Red; C.I. Basic Violet 14; C.I. Basic Violet 14, monohydrochloride; 2- methyl-4,4'-[(4-imino-2,5-cyclohexadien-1-ylidene)methylene]dianiline hydrochloride; rosaniline chloride; rosaniline hydrochloride –297– 298 IARC MONOGRAPHS VOLUME 99 (b) Structural formula, molecular formula, and relative molecular mass NH HCl H2N NH2 CH3 C20H19N3.HCl Rel. mol. mass: 337.85 (c) Chemical and physical properties of the pure substance Description: Metallic green, lustrous crystals (O’Neil, 2006; Lide, 2008) Melting-point: Decomposes above 200 °C (O’Neil, 2006; Lide, 2008) Solubility: Slightly soluble in water (4 mg/mL); soluble in ethanol (30 mg/mL) and ethylene
    [Show full text]