Towards an Active Network Architecture

Total Page:16

File Type:pdf, Size:1020Kb

Towards an Active Network Architecture Towards an Active Network Architecture David L. Tennenhouse and David J. Wetherall* Telemedia, Networks and Systems Group, MIT ABSTRACT particularly interesting, replaces the passive packets of present day architectures with active “capsules” – Active networks allow their users to inject miniature programs that are executed at each router customized programs into the nodes of the network. An they traverse. This change in architectural perspective, extreme case, in which we are most interested, replaces from passive packets to active capsules, packets with “capsules” – program fragments that are simultaneously addresses both of the “active” executed at each network router/switch they traverse. properties described above. User data can be Active architectures permit a massive increase in the embedded within these mini-programs, in much the sophistication of the computation that is performed way a page’s contents are embedded within a fragment within the network. They will enable new applications, of PostScript code. Furthermore, capsules can invoke especially those based on application-specific multicast, pre-defined program methods or plant new ones within information fusion, and other services that leverage network nodes. network-based computation and storage. Furthermore, Our work is motivated by both technology “push” they will accelerate the pace of innovation by and user “pull”. The technology “push” is the decoupling network services from the underlying emergence of “active” technologies, compiled and hardware and allowing new services to be loaded into interpreted, supporting the encapsulation, transfer, the infrastructure on demand. interposition, and safe and efficient execution of In this paper, we describe our vision of an active program fragments. Today, active technologies are network architecture, outline our approach to its design, applied within individual end systems and above the and survey the technologies that can be brought to bear end-to-end network layer; for example, to allow Web on its implementation. We propose that the research servers and clients to exchange program fragments. community mount a joint effort to develop and deploy a Our innovation is to leverage and extend these wide area ActiveNet. technologies for use within the network – in ways that will fundamentally change today’s model of what is 1. INTRODUCTION “in” the network. Traditional data networks passively transport bits The “pull” comes from the ad hoc collection of from one end system to another. Ideally, the user data firewalls, Web proxies, multicast routers, mobile is transferred opaquely, i.e., the network is insensitive proxies, video gateways, etc. that perform user-driven to the bits it carries and they are transferred between computation at nodes “within” the network. Despite end systems without modification. The role of architectural injunctions against them, these nodes are computation within such networks is extremely limited, flourishing, suggesting user and management demand e.g., header processing in packet-switched networks for their services. We are developing the architectural and signaling in connection-oriented networks. support and common programming platforms to support the diversity and dynamic deployment requirements of Active Networks break with tradition by allowing these “interposed” services. Our goal is to replace the the network to perform customized computations on the numerous ad hoc approaches to their implementation user data. For example, a user of an active network with a generic capability that allows users to program could send a customized compression program to a their networks. node within the network (e.g., a router) and request that the node execute that program when processing their There are three principal advantages to basing the packets. These networks are “active” in two ways: network architecture on the exchange of active • Switches perform computations on the user data programs, rather than passive packets: flowing through them. • Exchanging code provides a basis for adaptive • Individuals can inject programs into the network, protocols, enabling richer interactions than the thereby tailoring the node processing to be user- exchange of fixed data formats. and application-specific. • Capsules provide a means of implementing fine grained application-specific functions at We have identified several architectural approaches strategic points within the network. to active networks. One approach, which we find ____________________________________ *{dlt,djw}@lcs.mit.edu. http://www.tns.lcs.mit.edu/. An earlier version of this paper was delivered during the keynote session of Multimedia Computing and Networking, San Jose, CA, January 1996. • The programming abstraction provides a discontinuities in the available bandwidth, e.g., powerful platform for user-driven customization the base stations of wireless networks. of the infrastructure, allowing new services to be These lead applications demonstrate that there is deployed at a faster pace than can be sustained user “pull” towards active networks. In the absence of by vendor driven standardization processes. a coherent approach to interposition they have adopted This paper presents our vision of an active network a variety of ad hoc strategies. In many cases the architecture and the approach we are following towards interposed platforms present the facade of network the deployment of an operational ActiveNet. The layer routers, but actually perform application- or user- active network approach opens a Pandora’s box of specific functions. Active networks will rationalize safety, security, and resource allocation issues. these diverse activities by providing a uniform platform Although we do not present a complete design, we for network-based computation. identify a number of specific research issues, outline the approach we are following towards their resolution Firewalls and identify the technologies we intend to leverage. Firewalls implement filters that determine which Our plan is to bootstrap a wide area ActiveNet using packets should be passed transparently and which similar techniques to those used by the prototype should be blocked. Although they have a peer MBONE, i.e., by locating platforms at strategic relationship to other routers, they implement locations and “tunneling” through existing transmission application- and user- specific functions, in addition to facilities, such as the Internet. packet routing. The need to update the firewall to In the next section we provide a description of some enable the use of new applications is an impediment to of the “lead user” applications that motivate an their adoption. In an Active Network, this process architecture that facilitates computation within the could be automated by allowing applications from network. In section 3, we provide an overview of approved vendors to authenticate themselves to the active networks, a high-level perspective on how we firewall and inject the appropriate modules into it. propose to organize their platforms and an introduction Web Proxies to the research issues that must be addressed. Section 4 describes the “instruction set” issues associated with Web proxies are an example of an application- an interoperable programming model and how “active specific service that is tailored to the serving and technologies” can be leveraged to effect the safe and caching of World Wide Web pages. Harvest [1] efficient evaluation of capsules. We then discuss the employs a hierarchical scheme in which cache nodes management of node resources, such as storage and are located near the edges of the network, i.e., within link bandwidth, followed by our plan for the the end user organizations. This system is scalable and deployment of a research ActiveNet. We realize that could be extended by allowing nodes of the hierarchy our work challenges some key assumptions that have to be located at strategic points within the networks of guided recent networking research and so the final the access providers and inter-exchange carriers. An sections of this paper discuss the architectural and interesting problem is the development of algorithms structural questions raised by our approach. and tools that automatically balance the hierarchy by re-positioning the caches themselves, not just the cached information. Schemes such as dynamic 2. LEAD USERS hierarchical caching [2] and geographical push-caching Recently, there has been considerable interest in: [3] begin to address this issue. agent technologies, which allow mobile code to travel A further argument in favor of using active from clients to servers; and in Web applets, which technologies for web caching is that a significant allow mobile code to travel from servers to clients. fraction of web pages are dynamically computed and Active networks bridge this dichotomy by allowing not susceptible to traditional (passive) caching. This applications to dispatch computation to where it is suggests the development of web proxy schemes that needed. support “active” caches that store and execute the We are encouraged by the observation that a programs that generate web pages. number of lead users have pressing requirements for the transparent interposition of computation within the Mobile/Nomadic Computing network. These include the developers of: Interposition strategies are used by a number of • Firewalls, which are typically located at researchers addressing mobility. For example, administrative boundaries. Kleinrock [4] describes a
Recommended publications
  • A DATA-ORIENTED NETWORK ARCHITECTURE Doctoral Dissertation
    TKK Dissertations 140 Espoo 2008 A DATA-ORIENTED NETWORK ARCHITECTURE Doctoral Dissertation Teemu Koponen Helsinki University of Technology Faculty of Information and Natural Sciences Department of Computer Science and Engineering TKK Dissertations 140 Espoo 2008 A DATA-ORIENTED NETWORK ARCHITECTURE Doctoral Dissertation Teemu Koponen Dissertation for the degree of Doctor of Science in Technology to be presented with due permission of the Faculty of Information and Natural Sciences for public examination and debate in Auditorium T1 at Helsinki University of Technology (Espoo, Finland) on the 2nd of October, 2008, at 12 noon. Helsinki University of Technology Faculty of Information and Natural Sciences Department of Computer Science and Engineering Teknillinen korkeakoulu Informaatio- ja luonnontieteiden tiedekunta Tietotekniikan laitos Distribution: Helsinki University of Technology Faculty of Information and Natural Sciences Department of Computer Science and Engineering P.O. Box 5400 FI - 02015 TKK FINLAND URL: http://cse.tkk.fi/ Tel. +358-9-4511 © 2008 Teemu Koponen ISBN 978-951-22-9559-3 ISBN 978-951-22-9560-9 (PDF) ISSN 1795-2239 ISSN 1795-4584 (PDF) URL: http://lib.tkk.fi/Diss/2008/isbn9789512295609/ TKK-DISS-2510 Picaset Oy Helsinki 2008 AB ABSTRACT OF DOCTORAL DISSERTATION HELSINKI UNIVERSITY OF TECHNOLOGY P. O. BOX 1000, FI-02015 TKK http://www.tkk.fi Author Teemu Koponen Name of the dissertation A Data-Oriented Network Architecture Manuscript submitted 09.06.2008 Manuscript revised 12.09.2008 Date of the defence 02.10.2008 Monograph X Article dissertation (summary + original articles) Faculty Information and Natural Sciences Department Computer Science and Engineering Field of research Networking Opponent(s) Professor Jon Crowcroft Supervisor Professor Antti Ylä-Jääski Instructor(s) Dr.
    [Show full text]
  • Network‐Based Approaches for Pathway Level Analysis
    Network-Based Approaches for Pathway UNIT 8.25 Level Analysis Tin Nguyen,1 Cristina Mitrea,2 and Sorin Draghici2,3 1Department of Computer Science and Engineering, University of Nevada, Reno, Nevada 2Department of Computer Science, Wayne State University, Detroit, Michigan 3Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan Identification of impacted pathways is an important problem because it allows us to gain insights into the underlying biology beyond the detection of differ- entially expressed genes. In the past decade, a plethora of methods have been developed for this purpose. The last generation of pathway analysis methods are designed to take into account various aspects of pathway topology in order to increase the accuracy of the findings. Here, we cover 34 such topology-based pathway analysis methods published in the past 13 years. We compare these methods on categories related to implementation, availability, input format, graph models, and statistical approaches used to compute pathway level statis- tics and statistical significance. We also discuss a number of critical challenges that need to be addressed, arising both in methodology and pathway repre- sentation, including inconsistent terminology, data format, lack of meaningful benchmarks, and, more importantly, a systematic bias that is present in most existing methods. C 2018 by John Wiley & Sons, Inc. Keywords: systems biology r pathway r topology r gene network r survey r pathway analysis How to cite this article: Nguyen, T., Mitrea, C., & Draghici, S. (2018). Network-based approaches for pathway level analysis. Current Protocols in Bioinformatics, 61, 8.25.1–8.25.24. doi: 10.1002/cpbi.42 INTRODUCTION this gap is the fact that living organisms are With rapid advances in high-throughput complex systems whose emerging phenotypes technologies, various kinds of genomic are the results of multiple complex interactions data have become prevalent in most of taking place on various metabolic and signal- biomedical research.
    [Show full text]
  • Architecture of Low Duty-Cycle Mechanisms Nadjib Aitsaadi, Paul Muhlethaler, Mohamed-Haykel Zayani
    Architecture of low duty-cycle mechanisms Nadjib Aitsaadi, Paul Muhlethaler, Mohamed-Haykel Zayani To cite this version: Nadjib Aitsaadi, Paul Muhlethaler, Mohamed-Haykel Zayani. Architecture of low duty-cycle mecha- nisms. 2014. hal-01068788 HAL Id: hal-01068788 https://hal.archives-ouvertes.fr/hal-01068788 Submitted on 26 Sep 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. GETRF delivrable 4: Architecture of low duty-cycle mechanisms Nadjib Aitsaadi, Paul M¨uhlethaler, Mohamed-Haykel Zayani Hipercom Project-Team Inria Paris-Rocquencourt February 2014 1 Contents 1 Introduction 4 2 Principlesofthearchitecture 5 2.1 Routingprotocols......................... 5 2.2 MACrendezvousprotocols. 6 2.2.1 Sender-oriented rendezvous algorithm . 6 2.2.2 Receiver-oriented rendezvous algorithms . 9 2.3 Building a low duty-cycle protocol in multihop wireless networks 9 3 Descriptionofourcontributions 10 3.1 Receiver-orientedproposal . 10 3.1.1 Description ........................ 10 3.1.2 Analyticalmodel . 12 3.1.3 Simulationresults. 15 3.2 Sender-orientedproposal . 24 3.2.1 Description ........................ 24 3.2.2 Analyticalmodel . 27 3.2.3 Simulationresults. 28 3.3 Comparisonanddiscussion . 32 4 Conclusion 34 2 3 1 Introduction A Wireless Sensor Network (WSN) is composed of sensor nodes deployed within an area to monitor predefined phenomena (e.g.
    [Show full text]
  • Lesson 5: Web Based E Commerce Architecture
    E-COMMERCE LESSON 5: WEB BASED E COMMERCE ARCHITECTURE Topic: other over the internet. This protocol is called the Hypertext Transfer · Introduction Protocol (HTTP). · Web System Architecture Uniform Resource Locator · Generation Of Dynamic Web Pages To identify web pages, an addressing scheme is needed. Basically, a Web page is given an address called a Uniform Resource Locator · Cookies (URL). At the application level, this URL · Summary provides the unique address for a web page, which can be treated · Exercise as an internet resource. The general format for a URL is as follows: Objectives protocol://domain_name:port/directory/resource After this lecture the students will be able to: The protocol defines the protocol being used. Here are some · Understand web based E Commerce architecture examples: All of you might have understood that web system together with · http: hypertext transfer protocol the internet forms the basic infrastructure for supporting E · https: secure hypertext transfer protocol Commerce. In this lecture we will discuss in detail what are the · ftp: file transfer protocol components a web bases system is consist of assuming that you have a knowledge of basic network architecture of the internet · telnet: telnet protocol for accessing a remote host (i.e. Layered model of the Internet) The domain_name, port, directory and resource specify the domain Web System Architecture name of the destined computer, the port number of the connection, the corresponding directory of the resource and the Figure 5.1 gives the general architecture of a web-based ecommerce requested resource, respectively. system. For example, the URL of the welcome page (main.html) of our Basically, it consists of the following components: VBS may be writ-ten as http://www.vbs.com/welcome/ · Web browser: It is the client interface.
    [Show full text]
  • Research on Network Architecture of the E-Commerce Platform and Optimization of the System Performance
    Send Orders for Reprints to [email protected] 2266 The Open Cybernetics & Systemics Journal, 2015, 9, 2266-2271 Open Access Research on Network Architecture of the E-commerce Platform and Optimization of the System Performance Zhanwei Chen* College of Computer Science and Technology, Zhoukou Normal University, Zhoukou 466001, Henan, China Abstract: With the rapid development of computer technology, especially the rapid development of network technology and the acceleration of global economic integration, electronic commerce has been used more and more widely. This also puts forward a new standard for the enterprise application computer to business activities. On one hand, we should take into account the advanced nature of the electronic commerce platform, on the other hand, we should make the existing business system of the enterprise more smoothly into the new business platform. Aiming at the problem of resource bot- tleneck in current e-commerce system, the application model of grid based electronic commerce system is put forward to be based on the application background of grid technology. How to make full use of the existing software and hardware resources, to obtain the largest data processing capacity has become an important part of the electronic commerce plat- form application system. Keywords: Electronic commerce, framework, grid, system optimization. 1. INTRODUCTION network transactions and online electronic payment and a variety of business activities, trading activities, financial With the rapid development of economic globalization activities and comprehensive service activities without the and the rapid development of Internet technology, e- meeting between the buyers and sellers, in a wide range of commerce which is a new business model has been the commercial and trading activities around the world, in the world's attention and recognition.
    [Show full text]
  • Arxiv:2103.15954V1 [Cs.CV] 29 Mar 2021 Better Performing Architectures
    DiNTS: Differentiable Neural Network Topology Search for 3D Medical Image Segmentation Yufan He1 Dong Yang2 Holger Roth2 Can Zhao2 Daguang Xu2 1Johns Hopkins University 2NVIDIA Abstract 0.1 0.9 휷 0.9 0.1 ퟏ Search Discretization 0.8 0.8 휷ퟐ Recently, neural architecture search (NAS) has been ap- 0.1 0.1 plied to automatically search high-performance networks 0.1 0.1 Gap 휷ퟑ 0.9 0.9 for medical image segmentation. The NAS search space 0.1 0.1 usually contains a network topology level (controlling con- 휷ퟏ+휷ퟐ+휷ퟑ=1 Continuous Model Discrete Model nections among cells with different spatial scales) and a cell level (operations within each cell). Existing meth- Figure 1. Limitations of existing differentiable topology search ods either require long searching time for large-scale 3D formulation. E.g. in Auto-DeepLab [21], each edge in the topol- image datasets, or are limited to pre-defined topologies ogy search space is given a probability β. The probabilities of in- (such as U-shaped or single-path) . In this work, we fo- put edges to a node sum to one, which means only one input edge cus on three important aspects of NAS in 3D medical image for each node would be selected. A single-path discrete model (red segmentation: flexible multi-path network topology, high path) is extracted from the continuous searched model. This can result in a large “discretization gap” between the feature flow of search efficiency, and budgeted GPU memory usage. A the searched continuous model and the final discrete model.
    [Show full text]
  • UNE Postgraduate Conference 2017
    UNE Postgraduate Conference 2017 ‘Intersections of Knowledge’ 17-18 January 2017 Conference Proceedings Postgraduate Conference Conference Proceedings “Intersections of Knowledge” UNE Postgraduate Conference 2017 17th and 18th January 2017 Resource Management Building University of New England Acknowledgement Phillip Thomas – UNE Research Services Co-chair and convenor Postgraduate Conference Organising Committee: – Stuart Fisher (Co-Chair) Eliza Kent, Grace Jeffery, Emma Lockyer, Bezaye Tessema, Kristal Spreadborough, Kerry Gleeson, Marguerite Jones, Anne O’Donnell-Ostini, Rubeca Fancy, Maximillian Obiakor, Jane Michie, John Cook, Sanaz Alian, Julie Orr, Vivek Nemane, Nadiezhda Ramirez Cabral. Back row left to right: Stuart Fisher, Julie Orr, Vivek Nemane, Philip Thomas, Maximillian Obiakor Front row left to right: Emma Lockyer, Bezaye Tessema, Nadiezhda Ramirez Cabral, Kerry Gleeson, Kristal Spreadborough, Rubeca Fancy, Anne O’Donnell-Ostini, Grace Jeffery. Absent: Eliza Kent, Marguerite Jones, John Cook, Jane Michie, UNE Areas: IT Training, Research Services, Audio-Visual Support, Marketing and Public Relations, Corporate Communications, Strategic Projects Group, School of Science and Technology, VC’s Unit, Workforce Strategy, Information Technology Directorate and Development Unit. Sponsor: UNE Life, University of New England Student Association (UNESA) Research creates knowledge and when we share what we have discovered we create rich intersections that self-generate new thinking, ideas and actions within and across networks. With
    [Show full text]
  • A Service Oriented Middleware Architecture for Wireless Sensor Networks
    Future Network & MobileSummit 2010 Conference Proceedings Paul Cunningham and Miriam Cunningham (Eds) IIMC International Information Management Corporation, 2010 ISBN: 978-1-905824-16-8 Showcase Paper A Service Oriented Middleware Architecture for Wireless Sensor Networks Hamidreza Abangar, Payam Barnaghi, Klaus Moessner, Anita Nnaemego, Karthik Balaskandan, Rahim Tafazolli Centre for Communication Systems Research, University of Surrey, Guildford, UK Tel: +44 (0)1483 300800, Fax: +44 (0)1483 300803, {h.abangar, p.barnaghi, k.moessner, a.nnaemego, k.balaskandan, r.tafazolli}@surrey.ac.uk Abstract: Increasingly distributed sensor networks and in particular Wireless Sensor Network (WSN) platforms are available on the market, these platforms usually implement protocols such as 6LowPan or other IEEE 802.15 based protocols. This leads to a certain degree of heterogeneity which in turn limits the potential interoperability between the individual nodes and platforms. This paper argues for a middleware platform that closes this interoperability gap. It discusses the range of potential technologies that could be deployed and evaluates their advantages and disadvantages. Finally it provides a SOA based middle approach along with the description of a proof of concept implementation. Keywords: Sensor Networks, Middleware, Service Oriented Architecture. 1. Introduction Sensor nodes usually consist of small computational devices which have limited processing capabilities and power resources. These devices are often provided by different vendors and have various hardware and software platforms. The variation of specifications and operations in sensor nodes introduces a major issue in providing interoperable environments in heterogeneous sensor networks. Introducing sensor middleware to the sensor network architecture, as common interfaces, enables the systems to utilise sensor nodes in heterogeneous environments without being involved in diversity and heterogeneity of sensor node platforms.
    [Show full text]
  • Unit-1 E-Commerce Or Electronics Commerce Is a Methodology Of
    Institute of Management Sciences, Notes for MBA-(5YR.) 4TH SEM-ECOMMERCE Unit-1 E-Commerce or Electronics Commerce is a methodology of modern business, which addresses the need of business organizations, vendors and customers to reduce cost and improve the quality of goods and services while increasing the speed of delivery. E-commerce refers to the paperless exchange of business information using the following ways: Electronic Data Exchange (EDI) Electronic Mail (e-mail) Electronic Bulletin Boards Electronic Fund Transfer (EFT) Other Network-based technologies Features E-Commerce provides the following features: Non-Cash Payment: E-Commerce enables the use of credit cards, debit cards, smart cards, electronic fund transfer via bank's website, and other modes of electronics payment. Institute of Management Sciences, Notes for BBA-(IB) 601 Computer Application –III Paper 24x7 Service availability: E-commerce automates the business of enterprises and the way they provide services to their customers. It is available anytime, anywhere. Advertising/Marketing: E-commerce increases the reach of advertising of products and services of businesses. It helps in better marketing management of products/services. Improved Sales: Using e-commerce, orders for the products can be generated anytime, anywhere without any human intervention. It gives a big boost to existing sales volumes. Support: E-commerce provides various ways to provide pre-sales and post-sales assistance to provide better services to customers. Inventory Management: E-commerce automates inventory management. Reports get generated instantly when required. Product inventory management becomes very efficient and easy to maintain. Communication improvement: E-commerce provides ways for faster, efficient, reliable communication with customers and partners.
    [Show full text]
  • Energy Technology and Management
    ENERGY TECHNOLOGY AND MANAGEMENT Edited by Tauseef Aized Energy Technology and Management Edited by Tauseef Aized Published by InTech Janeza Trdine 9, 51000 Rijeka, Croatia Copyright © 2011 InTech All chapters are Open Access articles distributed under the Creative Commons Non Commercial Share Alike Attribution 3.0 license, which permits to copy, distribute, transmit, and adapt the work in any medium, so long as the original work is properly cited. After this work has been published by InTech, authors have the right to republish it, in whole or part, in any publication of which they are the author, and to make other personal use of the work. Any republication, referencing or personal use of the work must explicitly identify the original source. Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published articles. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the use of any materials, instructions, methods or ideas contained in the book. Publishing Process Manager Iva Simcic Technical Editor Teodora Smiljanic Cover Designer Jan Hyrat Image Copyright Sideways Design, 2011. Used under license from Shutterstock.com First published September, 2011 Printed in Croatia A free online edition of this book is available at www.intechopen.com Additional hard copies can be obtained from [email protected] Energy Technology and Management, Edited by Tauseef Aized p. cm. ISBN 978-953-307-742-0 free online editions of InTech Books and Journals can be found at www.intechopen.com Contents Preface IX Part 1 Energy Technology 1 Chapter 1 Centralizing the Power Saving Mode for 802.11 Infrastructure Networks 3 Yi Xie, Xiapu Luo and Rocky K.
    [Show full text]
  • Introduction to Enterprise Architecture
    Data Communications & Networks Session 1 – Main Theme Introduction and Overview Dr. Jean-Claude Franchitti New York University Computer Science Department Courant Institute of Mathematical Sciences Adapted from course textbook resources Computer Networking: A Top-Down Approach, 6/E Copyright 1996-2012 J.F. Kurose and K.W. Ross, All Rights Reserved 1 Agenda 1 Instructor and Course Introduction 2 Introduction and Overview 3 Summary and Conclusion 2 Who am I? - Profile - 30 years of experience in the Information Technology Industry, including twelve years of experience working for leading IT consulting firms such as Computer Sciences Corporation PhD in Computer Science from University of Colorado at Boulder Past CEO and CTO Held senior management and technical leadership roles in many large IT Strategy and Modernization projects for fortune 500 corporations in the insurance, banking, investment banking, pharmaceutical, retail, and information management industries Contributed to several high-profile ARPA and NSF research projects Played an active role as a member of the OMG, ODMG, and X3H2 standards committees and as a Professor of Computer Science at Columbia initially and New York University since 1997 Proven record of delivering business solutions on time and on budget Original designer and developer of jcrew.com and the suite of products now known as IBM InfoSphere DataStage Creator of the Enterprise Architecture Management Framework (EAMF) and main contributor to the creation of various maturity assessment methodology Developed
    [Show full text]
  • PART of the PICTURE: the TCP/IP Communications Architecture 1
    PART OF THE PICTURE: The TCP/IP Communications Architecture 1 PART OF THE PICTURE: The TCP/IP Communications Architecture BY WILLIAM STALLINGS The key to the success of distributed applications is that all the terminals and computers in the community “speak” the same language. This is the role of the underlying interconnection software. This software must ensure that all the devices transmit messages in such a way that they can be understood by the other computers and terminals in the community. With the introduction of the Systems Network Architecture (SNA) by IBM in the 1970s, this concept became a reality. However, SNA worked only with IBM equip- ment. Soon other vendors followed with their own proprietary communications architectures to tie together their equipment. Such an approach may be good business for the vendor, but it is bad business for the customer. Happily, that situation has changed radically with the adoption of standards for intercon- nection software. TCP/IP ARCHITECTURE AND OPERATION When communication is desired among computers from different vendors, the software development effort can be a nightmare. Different vendors use different data formats and data exchange protocols. Even within one vendor’s product line, different model computers may communicate in unique ways. As the use of computer communications and computer networking proliferates, a one-at-a-time spe- cial-purpose approach to communications software development is too costly to be acceptable. The only alternative is for computer vendors to adopt and implement a common set of conventions. For this to hap- pen, standards are needed. However, no single standard will suffice.
    [Show full text]