Higher Derivative Supersymmetric Nonlinear Sigma Models on Hermitian Symmetric Spaces and BPS States Therein

Total Page:16

File Type:pdf, Size:1020Kb

Higher Derivative Supersymmetric Nonlinear Sigma Models on Hermitian Symmetric Spaces and BPS States Therein PHYSICAL REVIEW D 103, 025001 (2021) Higher derivative supersymmetric nonlinear sigma models on Hermitian symmetric spaces and BPS states therein † Muneto Nitta1,* and Shin Sasaki2, 1Department of Physics, and Research and Education Center for Natural Sciences, Keio University, Hiyoshi 4-1-1, Yokohama, Kanagawa 223-8521, Japan 2Department of Physics, Kitasato University, Sagamihara 252-0373, Japan (Received 19 November 2020; accepted 14 December 2020; published 4 January 2021) We formulate four-dimensional N ¼ 1 supersymmetric nonlinear sigma models on Hermitian symmetric spaces with higher derivative terms, free from the auxiliary field problem and the Ostrogradski’s ghosts, as gauged linear sigma models. We then study Bogomol’nyi-Prasad-Sommerfield equations preserving 1=2 or 1=4 supersymmetries. We find that there are distinct branches, that we call canonical (F ¼ 0) and noncanonical (F ≠ 0) branches, associated with solutions to auxiliary fields F in chiral multiplets. For the CPN model, we obtain a supersymmetric CPN Skyrme-Faddeev model in the canonical branch while in the noncanonical branch the Lagrangian consists of solely the CPN Skyrme-Faddeev term without a canonical kinetic term. These structures can be extended to the Grassmann manifold GM;N ¼ SUðMÞ=½SUðM − NÞ × SUðNÞ × Uð1Þ. For other Hermitian symmetric spaces such as the quadric surface QN−2 ¼ SOðNÞ=½SOðN − 2Þ × Uð1ÞÞ, we impose F-term (holomorphic) constraints for embedding them into CPN−1 or Grassmann manifold. We find that these constraints are consistent in the canonical branch but yield additional constraints on the dynamical fields, thus reducing the target spaces in the noncanonical branch. DOI: 10.1103/PhysRevD.103.025001 I. INTRODUCTION called the auxiliary field problem [4,5]. This stems from the fact that the equation of motion for the auxiliary field F in Nonlinear sigma models are typical examples of low- the chiral superfield Φ ceases to be an algebraic equation energy effective theories. When a global symmetry G is and becomes a kinematical one. As a consequence, it is spontaneously broken down to its subgroup H, there appear hard to integrate out the auxiliary field and the interactions massless Nambu-Goldstone bosons dominant at low of physical fields are not apparent. Supersymmetric exten- energy, and their low-energy dynamics can be described sions of the Wess-Zumino-Witten term [6] and the Skyrme- by nonlinear sigma model whose target space is a coset Faddeev model [7,8] are such examples with the auxiliary space G=H [1,2]. If one wants to study physics at higher field problem, while low-energy Lagrangians for super- energy, one needs higher derivative correction terms, symmetric gauge theories in Refs. [9–11] (see also typically appearing in the chiral perturbation theory of Refs. [12–14]), and supersymmetric extensions of Dirac- QCD [3]. Other examples of higher derivative terms can be Born-Infeld action [15,16] and K-field theories [17,18] are found in various contexts such as the Skyrme model, low- free from this problem. A broad class of supersymmetric energy effective theories of superstring theory, and world derivative terms free from the auxiliary field problem and volume theories of topological solitons and branes such as the Ostrogradski’s ghost [19] was found as four-dimen- Nambu-Goto and Dirac-Born-Infeld actions. sional N 1 supersymmetric higher derivative chiral In supersymmetric theories, higher derivative terms often ¼ models formulated in terms of superfields [20–32].1 bring us troubles. It is known that constructing derivative The model consists of a Kähler potential K and a super- terms in the form of ∂ Φ suffers from a technical issue m potential W together with a (2,2) Kähler tensor Λ that determines derivative corrections. It was applied to a new *[email protected] † mechanism of supersymmetry breaking in modulated vacua [email protected] [36] (see also Ref. [37]). The general formulation was extended for other superfields: the most general ghost-free Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, 1Another possibility is to gauge them away [33] if there are and DOI. Funded by SCOAP3. Ostrogradski’s higher derivative ghosts [34,35]. 2470-0010=2021=103(2)=025001(16) 025001-1 Published by the American Physical Society MUNETO NITTA and SHIN SASAKI PHYS. REV. D 103, 025001 (2021) (and tachyon-free) higher derivative N ¼ 1 supersymmet- (the term without fourth order time derivatives). We then ric Lagrangian for vector multiplets (1-form gauge fields) study BPS states in these models and find that lumps (sigma [38] and 3-form gauge field [39]. As for nonlinear sigma model instantons) identical to those without higher deriva- models of chiral superfields, only known examples are the tive terms remain 1=2 BPS states in the canonical branch, supersymmetric CP1 model (or baby Skyrme model) while compact baby skyrmions are 1=4 BPS states in the [24,25,27,40–42] and the supersymmetric Skyrme model noncanonical branch. [30]. When one solves the auxiliary field equations of The organization of this paper is as follows. In the next motion for the auxiliary field F, it in general allows more section, we introduce the supersymmetric higher derivative than one solution F ¼ 0 and F ≠ 0. The former is called term in the gauged chiral models. We show that a derivative the canonical branch and the latter the noncanonical term determined by a (2,2) Kähler tensor provides super- branch. The bosonic part of the Lagrangian of the canonical symmetric higher derivative terms free from the auxiliary branch consists of a canonical kinetic term and a four- field problem. We will see that there are two on-shell derivative term for the CP1 model [43]. This admits lump branches associated with the solutions to the auxiliary field (sigma model instanton) solutions identical to those in the in the chiral multiplets. In Sec. III, we study the sigma model CP1 model without a higher derivative term [44],as limit of the gauged chiral models. We first focus on the sigma Bogomol’nyi-Prasad-Sommerfield (BPS) states preserving models whose target spaces are the Hermitian symmetric C N−1 1=2 supersymmetric charges among the original supersym- spaces P and GM;N. They are defined only by the metry [27]. On the other hand, in the noncanonical branch, D-term constraints. We examine the limit in the two distinct the bosonic part of the Lagrangian consists of only the four- branches and write down the higher derivative terms in derivative term of the Skyrme-Faddeev type [43] (that is the nonlinear sigma models. In Sec. IV, we discuss the without fourth order time derivatives) without any canoni- nonlinear sigma models defined by the F-term constraints in addition to D-term constraints, which include the cal kinetic term. This admits a compact baby Skyrmion [45] −2 1 4 target spaces QN , SOð2NÞ=UðNÞ, SpðNÞ=UðNÞ, which is a BPS state preserving = supersymmetry [27]. 10 1 1 While the general Lagrangian in superspace [20] can be E6=½SOð Þ × Uð Þ, E7=½E6 × Uð Þ. We will show that defined on any Kähler target spaces, solving auxiliary field the F-term constraints give additional conditions on equations consisting of more than one chiral multiplet is the target spaces in the nocanonical branch thus reduc- still an open problem, except for a single matrix chiral ing the target spaces, while they do not in the canonical C N−1 superfield [30]. branch. This distinguishes the situation from the P and The purpose of this paper is to present higher derivative GM;N cases. supersymmetric nonlinear sigma models with a wider class In Sec. V, we discuss the BPS states in the nonlinear of target spaces—Hermitian symmetric spaces, sigma models, and in Sec. VI, we mention fermionic terms in the models. Section VII is devoted to conclusion and CPN−1 ¼ SUðNÞ=½SUðN − 1Þ × Uð1Þ; discussions. As for a superfield notation, we follow the Wess-Bagger convention [50]. GM;N ¼ UðMÞ=½UðM − NÞ × UðNÞ; QN−2 ¼ SOðNÞ=½SOðN − 2Þ × Uð1Þ; II. SUPERSYMMETRIC HIGHER DERIVATIVE TERMS IN THE CHIRAL MODEL SOð2NÞ=UðNÞ;SpðNÞ=UðNÞ; In this section, we briefly introduce the supersymmetric E6=½SOð10Þ × Uð1Þ;E7=½E6 × Uð1Þ; ð1:1Þ higher derivative term to the chiral model that is free from the auxiliary field problem. The Lagrangian is given by [20,29] for which we solve auxiliary field equations. In the case Z without higher derivative terms, supersymmetric nonlinear L 4θ Φ Φ† sigma models on Hermitian symmetric spaces can be ¼ d Kð ; Þ Z constructed by imposing supersymmetric constraints on 1 ¯ ¯ 4 cd † α ia kb ¯ †j ¯ α_ †l d θΛ ¯ ¯ Φ;Φ D Φ DαΦ Dα_ Φ D Φ gauged linear sigma models [27]. This formulation is found þ 16 ijkl;ab ð Þ c d to help us to solve auxiliary field equations even with higher Z derivative terms. We employ the gauged linear sigma models þ d2θWðΦÞþH:c: ; ð2:1Þ with higher derivative terms for chiral multiplets [29] and then take the strong gauge coupling (nonlinear sigma model) † limit. Solving auxiliary field equations yields the canonical where KðΦ; Φ Þ is a Kähler potential, WðΦÞ is a super- Λ Φ Φ† and noncanonical branches for the on-shell actions. For the potential, and ijk¯ l¯ð ; Þ is a (2,2) Kähler tensor defined by N † CP model, we obtain a supersymmetric extension of the the chiral superfields Φ; Φ and their derivatives DαΦ, C N – ¯ † † P Skyrme-Faddeev model [46 49] in the canonical Dα_ Φ , ∂mΦ, and ∂mΦ .
Recommended publications
  • S-Duality, the 4D Superconformal Index and 2D Topological QFT
    Review of superconformal index = 2 : A generalized quivers = 2: A generalized quivers = 4 index = 1 N 1 N 2 N N S-duality, the 4d Superconformal Index and 2d Topological QFT Leonardo Rastelli with A. Gadde, E. Pomoni, S. Razamat and W. Yan arXiv:0910.2225,arXiv:1003.4244, and in progress Yang Institute for Theoretical Physics, Stony Brook Rutgers, November 9 2010 Review of superconformal index = 2 : A generalized quivers = 2: A generalized quivers = 4 index = 1 N 1 N 2 N N A new paradigm for 4d =2 susy gauge theories N (Gaiotto, . ) Compactification of the (2, 0) 6d theory on a 2d surface Σ, with punctures. = =2 superconformal⇒ theories in four dimensions. N Review of superconformal index = 2 : A generalized quivers = 2: A generalized quivers = 4 index = 1 N 1 N 2 N N A new paradigm for 4d =2 susy gauge theories N (Gaiotto, . ) Compactification of the (2, 0) 6d theory on a 2d surface Σ, with punctures. = =2 superconformal⇒ theories in four dimensions. N Space of complex structures Σ = parameter space of the 4d • theory. Moore-Seiberg groupoid of Σ = (generalized) 4d S-duality • Vast generalization of “ =4 S-duality as modular group of T 2”. N Review of superconformal index = 2 : A generalized quivers = 2: A generalized quivers = 4 index = 1 N 1 N 2 N N A new paradigm for 4d =2 susy gauge theories N (Gaiotto, . ) Compactification of the (2, 0) 6d theory on a 2d surface Σ, with punctures. = =2 superconformal⇒ theories in four dimensions. N Space of complex structures Σ = parameter space of the 4d • theory.
    [Show full text]
  • N = 2 Dualities and 2D TQFT Space of Complex Structures Σ = Parameter Space of the 4D Theory
    Short review of superconformal index 2d TQFT and orthogonal polynomials Results and Applications = 2 Dualities and 2d TQFT N Abhijit Gadde with L. Rastelli, S. Razamat and W. Yan arXiv:0910.2225 arXiv:1003.4244 arXiv:1104.3850 arXiv:1110:3740 ... California Institute of Technology Indian Israeli String Meeting 2012 Abhijit Gadde N = 2 Dualities and 2d TQFT Space of complex structures Σ = parameter space of the 4d theory. Mapping class group of Σ = (generalized) 4d S-duality Punctures: SU(2) ! SU(N) = Flavor symmetry: Commutant We will focus on "maximal" puncture: with SU(N) flavor symmetry Sphere with 3 punctures = Theories without parameters Free hypermultiplets Strongly coupled fixed points Vast generalization of “N = 4 S-duality as modular group of T 2”. 6=4+2: beautiful and unexpected 4d/2d connections. For ex., Correlators of Liouville/Toda on Σ compute the 4d partition functions (on S4) Short review of superconformal index 2d TQFT and orthogonal polynomials Results and Applications A new paradigm for 4d = 2 SCFTs [Gaiotto, . ] N Compactify of the 6d (2; 0) AN−1 theory on a 2d surface Σ, with punctures. =)N = 2 superconformal theories in four dimensions. Abhijit Gadde N = 2 Dualities and 2d TQFT We will focus on "maximal" puncture: with SU(N) flavor symmetry Sphere with 3 punctures = Theories without parameters Free hypermultiplets Strongly coupled fixed points Vast generalization of “N = 4 S-duality as modular group of T 2”. 6=4+2: beautiful and unexpected 4d/2d connections. For ex., Correlators of Liouville/Toda on Σ compute the 4d partition functions (on S4) Short review of superconformal index 2d TQFT and orthogonal polynomials Results and Applications A new paradigm for 4d = 2 SCFTs [Gaiotto, .
    [Show full text]
  • Classification of Holomorphic Framed Vertex Operator Algebras of Central Charge 24
    Classification of holomorphic framed vertex operator algebras of central charge 24 Ching Hung Lam, Hiroki Shimakura American Journal of Mathematics, Volume 137, Number 1, February 2015, pp. 111-137 (Article) Published by Johns Hopkins University Press DOI: https://doi.org/10.1353/ajm.2015.0001 For additional information about this article https://muse.jhu.edu/article/570114/summary Access provided by Tsinghua University Library (22 Nov 2018 10:39 GMT) CLASSIFICATION OF HOLOMORPHIC FRAMED VERTEX OPERATOR ALGEBRAS OF CENTRAL CHARGE 24 By CHING HUNG LAM and HIROKI SHIMAKURA Abstract. This article is a continuation of our work on the classification of holomorphic framed vertex operator algebras of central charge 24. We show that a holomorphic framed VOA of central charge 24 is uniquely determined by the Lie algebra structure of its weight one subspace. As a consequence, we completely classify all holomorphic framed vertex operator algebras of central charge 24 and show that there exist exactly 56 such vertex operator algebras, up to isomorphism. 1. Introduction. The classification of holomorphic vertex operator alge- bras (VOAs) of central charge 24 is one of the fundamental problems in vertex operator algebras and mathematical physics. In 1993 Schellekens [Sc93] obtained a partial classification by determining possible Lie algebra structures for the weight one subspaces of holomorphic VOAs of central charge 24. There are 71 cases in his list but only 39 of the 71 cases were known explicitly at that time. It is also an open question if the Lie algebra structure of the weight one subspace will determine the VOA structure uniquely when the central charge is 24.
    [Show full text]
  • Supersymmetric Nonlinear Sigma Models
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server OU-HET 348 TIT/HET-448 hep-th/0006025 June 2000 Supersymmetric Nonlinear Sigma Models a b Kiyoshi Higashijima ∗ and Muneto Nitta † aDepartment of Physics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan bDepartment of Physics, Tokyo Institute of Technology, Oh-okayama, Meguro, Tokyo 152-8551, Japan Abstract Supersymmetric nonlinear sigma models are formulated as gauge theo- ries. Auxiliary chiral superfields are introduced to impose supersymmetric constraints of F-type. Target manifolds defined by F-type constraints are al- ways non-compact. In order to obtain nonlinear sigma models on compact manifolds, we have to introduce gauge symmetry to eliminate the degrees of freedom in non-compact directions. All supersymmetric nonlinear sigma models defined on the hermitian symmetric spaces are successfully formulated as gauge theories. 1Talk given at the International Symposium on \Quantum Chromodynamics and Color Con- finement" (Confinement 2000) , 7-10 March 2000, RCNP, Osaka, Japan. ∗e-mail: [email protected]. †e-mail: [email protected] 1 Introduction Two dimensional (2D) nonlinear sigma models and four dimensional non-abelian gauge theories have several similarities. Both of them enjoy the property of the asymptotic freedom. They are both massless in the perturbation theory, whereas they acquire the mass gap or the string tension in the non-perturbative treatment. Although it is difficult to solve QCD in analytical way, 2D nonlinear sigma models can be solved by the large N expansion and helps us to understand various non- perturbative phenomena in four dimensional gauge theories.
    [Show full text]
  • S-Duality-And-M5-Mit
    N . More on = 2 S-dualities and M5-branes .. Yuji Tachikawa based on works in collaboration with L. F. Alday, B. Wecht, F. Benini, S. Benvenuti, D. Gaiotto November 2009 Yuji Tachikawa (IAS) November 2009 1 / 47 Contents 1. Introduction 2. S-dualities 3. A few words on TN 4. 4d CFT vs 2d CFT Yuji Tachikawa (IAS) November 2009 2 / 47 Montonen-Olive duality • N = 4 SU(N) SYM at coupling τ = θ=(2π) + (4πi)=g2 equivalent to the same theory coupling τ 0 = −1/τ • One way to ‘understand’ it: start from 6d N = (2; 0) theory, i.e. the theory on N M5-branes, put on a torus −1/τ τ 0 1 0 1 • Low energy physics depends only on the complex structure S-duality! Yuji Tachikawa (IAS) November 2009 3 / 47 S-dualities in N = 2 theories • You can wrap N M5-branes on a more general Riemann surface, possibly with punctures, to get N = 2 superconformal field theories • Different limits of the shape of the Riemann surface gives different weakly-coupled descriptions, giving S-dualities among them • Anticipated by [Witten,9703166], but not well-appreciated until [Gaiotto,0904.2715] Yuji Tachikawa (IAS) November 2009 4 / 47 Contents 1. Introduction 2. S-dualities 3. A few words on TN 4. 4d CFT vs 2d CFT Yuji Tachikawa (IAS) November 2009 5 / 47 Contents 1. Introduction 2. S-dualities 3. A few words on TN 4. 4d CFT vs 2d CFT Yuji Tachikawa (IAS) November 2009 6 / 47 S-duality in N = 2 . SU(2) with Nf = 4 .
    [Show full text]
  • Exceptional Field Theory and Supergravity Arnaud Baguet
    Exceptional Field Theory and Supergravity Arnaud Baguet To cite this version: Arnaud Baguet. Exceptional Field Theory and Supergravity. High Energy Physics - Experiment [hep-ex]. Université de Lyon, 2017. English. NNT : 2017LYSEN022. tel-01563063 HAL Id: tel-01563063 https://tel.archives-ouvertes.fr/tel-01563063 Submitted on 17 Jul 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Numéro National de Thèse : 2017LYSEN022 Thèse de Doctorat de l’Université de Lyon opérée par l’École Normale Supérieure de Lyon École Doctorale 52 École Doctorale de Physique et d’Astrophysique de Lyon Soutenue publiquement le 30/06/2017, par : Arnaud Baguet Exceptional Field Theory and Supergravity - Théorie des Champs Exceptionnels et Supergravité Devant le jury composé de : Martin Cederwall Chalmers University of Technology Rapporteur François Delduc École Normale Supérieure de Lyon Examinateur Axel Kleinschmidt Max Planck Institute Postdam Rapporteur Michela Petrini Université Pierre et Marie Curie Examinatrice Henning Samtleben École Normale Supérieure de Lyon Directeur Contents 1 Introduction 9 1.1 String theory, dualities and supergravity . 11 1.2 The bosonic string . 13 1.3 Compactification and T-duality . 18 1.4 Double Field Theory . 21 1.5 Exceptional Field Theory .
    [Show full text]
  • A Supersymmetry Primer
    hep-ph/9709356 version 7, January 2016 A Supersymmetry Primer Stephen P. Martin Department of Physics, Northern Illinois University, DeKalb IL 60115 I provide a pedagogical introduction to supersymmetry. The level of discussion is aimed at readers who are familiar with the Standard Model and quantum field theory, but who have had little or no prior exposure to supersymmetry. Topics covered include: motiva- tions for supersymmetry, the construction of supersymmetric Lagrangians, superspace and superfields, soft supersymmetry-breaking interactions, the Minimal Supersymmetric Standard Model (MSSM), R-parity and its consequences, the origins of supersymmetry breaking, the mass spectrum of the MSSM, decays of supersymmetric particles, experi- mental signals for supersymmetry, and some extensions of the minimal framework. Contents 1 Introduction 3 2 Interlude: Notations and Conventions 13 3 Supersymmetric Lagrangians 17 3.1 The simplest supersymmetric model: a free chiral supermultiplet ............. 18 3.2 Interactions of chiral supermultiplets . ................ 22 3.3 Lagrangians for gauge supermultiplets . .............. 25 3.4 Supersymmetric gauge interactions . ............. 26 3.5 Summary: How to build a supersymmetricmodel . ............ 28 4 Superspace and superfields 30 4.1 Supercoordinates, general superfields, and superspace differentiation and integration . 31 4.2 Supersymmetry transformations the superspace way . ................ 33 4.3 Chiral covariant derivatives . ............ 35 4.4 Chiralsuperfields................................ ........ 37 arXiv:hep-ph/9709356v7 27 Jan 2016 4.5 Vectorsuperfields................................ ........ 38 4.6 How to make a Lagrangian in superspace . .......... 40 4.7 Superspace Lagrangians for chiral supermultiplets . ................... 41 4.8 Superspace Lagrangians for Abelian gauge theory . ................ 43 4.9 Superspace Lagrangians for general gauge theories . ................. 46 4.10 Non-renormalizable supersymmetric Lagrangians . .................. 49 4.11 R symmetries........................................
    [Show full text]
  • Construction and Classification of Holomorphic Vertex Operator Algebras
    Construction and classification of holomorphic vertex operator algebras Jethro van Ekeren1, Sven Möller2, Nils R. Scheithauer2 1Universidade Federal Fluminense, Niterói, RJ, Brazil 2Technische Universität Darmstadt, Darmstadt, Germany We develop an orbifold theory for finite, cyclic groups acting on holomorphic vertex operator algebras. Then we show that Schellekens’ classification of V1-structures of meromorphic confor- mal field theories of central charge 24 is a theorem on vertex operator algebras. Finally we use these results to construct some new holomorphic vertex operator algebras of central charge 24 as lattice orbifolds. 1 Introduction Vertex algebras give a mathematically rigorous description of 2-dimensional quantum field the- ories. They were introduced into mathematics by R. E. Borcherds [B1]. The most prominent example is the moonshine module V \ constructed by Frenkel, Lepowsky and Meurman [FLM]. This vertex algebra is Z-graded and carries an action of the largest sporadic simple group, the monster. Borcherds showed that the corresponding twisted traces are hauptmoduls for genus 0 groups [B2]. The moonshine module was the first example of an orbifold in the theory of vertex algebras. The (−1)-involution of the Leech lattice Λ lifts to an involution g of the associated lattice vertex g algebra VΛ. The fixed points VΛ of VΛ under g form a simple subalgebra of VΛ. Let VΛ(g) be the unique irreducible g-twisted module of VΛ and VΛ(g)Z the subspace of vectors with integral g g L0-weight. Then the vertex algebra structure on VΛ can be extended to VΛ ⊕ VΛ(g)Z. This sum \ g is the moonshine module V .
    [Show full text]
  • Fusion Rules of Virasoro Vertex Operator Algebras
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 143, Number 9, September 2015, Pages 3765–3776 http://dx.doi.org/10.1090/proc/12552 Article electronically published on May 1, 2015 FUSION RULES OF VIRASORO VERTEX OPERATOR ALGEBRAS XIANZU LIN (Communicated by Kailash C. Misra) Abstract. In this paper we prove the fusion rules of Virasoro vertex operator algebras L(c1,q, 0), for q ≥ 1. Roughly speaking, we consider L(c1,q, 0) as the limit of L(cn,nq−1, 0), for n →∞, and the fusion rules of L(c1,q, 0) follow as the limits of the fusion rules of L(cn,nq−1, 0). 1. Introduction In classical representation theories (of compact groups or semi-simple Lie al- gebras), we can define the tensor product for two modules. The famous Clebsch- Gordan problem is: given irreducible representations U and V , describe the decom- position, with multiplicities, of the representation U ⊗ V . For the representation theory of vertex operator algebras, the difference is that we cannot define the tensor product of two modules over a vertex operator algebra A. Nevertheless, we still have the analogue of the Clebsch-Gordan problem via the notion of intertwining operator. In particular, for three irreducible modules U, V and W over a vertex N W operator algebra A, we can define the fusion rule U,V , the analogue of the Clebsch- Gordan coefficient. For the representation theory of vertex operator algebras, it is N W also very important to determine the fusion rules U,V . The Virasoro vertex operator algebras constitute one of the most important classes of vertex operator algebras.
    [Show full text]
  • Structure and Representation Theory of Infinite-Dimensional Lie Algebras
    Structure and Representation Theory of Infinite-dimensional Lie Algebras David Mehrle Abstract Kac-Moody algebras are a generalization of the finite-dimensional semisimple Lie algebras that have many characteristics similar to the finite-dimensional ones. These possibly infinite-dimensional Lie algebras have found applica- tions everywhere from modular forms to conformal field theory in physics. In this thesis we give two main results of the theory of Kac-Moody algebras. First, we present the classification of affine Kac-Moody algebras by Dynkin di- agrams, which extends the Cartan-Killing classification of finite-dimensional semisimple Lie algebras. Second, we prove the Kac Character formula, which a generalization of the Weyl character formula for Kac-Moody algebras. In the course of presenting these results, we develop some theory as well. Contents 1 Structure 1 1.1 First example: affine sl2(C) .....................2 1.2 Building Lie algebras from complex matrices . .4 1.3 Three types of generalized Cartan matrices . .9 1.4 Symmetrizable GCMs . 14 1.5 Dynkin diagrams . 19 1.6 Classification of affine Lie algebras . 20 1.7 Odds and ends: the root system, the standard invariant form and Weyl group . 29 2 Representation Theory 32 2.1 The Universal Enveloping Algebra . 32 2.2 The Category O ............................ 35 2.3 Characters of g-modules . 39 2.4 The Generalized Casimir Operator . 45 2.5 Kac Character Formula . 47 1 Acknowledgements First, I’d like to thank Bogdan Ion for being such a great advisor. I’m glad that you agreed to supervise this project, and I’m grateful for your patience and many helpful suggestions.
    [Show full text]
  • Polyvector Deformations in Eleven-Dimensional Supergravity
    PHYSICAL REVIEW D 103, 066021 (2021) Polyvector deformations in eleven-dimensional supergravity † Kirill Gubarev * and Edvard T. Musaev Moscow Institute of Physics and Technology, Institutskii pereulok 9, Dolgoprudny 141700, Russia (Received 8 December 2020; accepted 3 March 2021; published 26 March 2021) We consider 3- and 6-vector deformations of 11-dimensional supergravity backgrounds of the form M5 × M6 admitting at least three Killing vectors. Using flux formulation of the E6ð6Þ exceptional field theory, we derive (sufficient) conditions for the deformations to generate a solution. In the group manifold case, these generalizations of the classical Yang-Baxter equation for the case of r-matrices with three and six indices are shown to reproduce those obtained from exceptional Drinfeld algebra for E6ð6Þ. In general, we see an additional constraint, which might be related to higher exceptional Drinfeld algebras. DOI: 10.1103/PhysRevD.103.066021 I. INTRODUCTION transformations that keep the string sigma-model in a consistent vacuum, however changing it in a controllable Vacua of string theory understood as a perturbative way. Particularly interesting examples are based on mani- formulation of the nonlinear two-dimensional sigma-model folds with an AdS factor known to be holographically dual to are known to be represented by a vast landscape of 10-dimensional manifolds equipped by various gauge superconformal field theories. While in general, CFTs are an fields: Kalb-Ramond 2-form and Ramond-Ramond p-form isolated point in the space of couplings corresponding to a gauge fields. In the full nonperturbative formulation, one fixed point of renormalization group flow, SCFTs belong to finds that the space of string vacua is mostly populated a family of theories connected by varying couplings.
    [Show full text]
  • Three Dimensional Conformal Sigma Models
    Lectures on exact renormalization group-2 Etsuko Itou (YITP, Japan) Progress of Theoretical Physics 109 (2003) 751 Progress of Theoretical Physics 110 (2003) 563 Progress of Theoretical Physics 117 (2007)1139 Collaborated with K.Higashijima and T.Higashi (Osaka U.) 2008/2/20, NCTS Plan to talk First lecture: Wilsonian renormalization group Second lecture: Scalar field theory (sigma model) Third lecture: Gauge theory There are some Wilsonian renormalization group equations. Wegner-Houghton equation (sharp cutoff) K-I. Aoki, H. Terao, K.Higashijima… local potential, Nambu-Jona-Lasinio, NLσM Polchinski equation (smooth cutoff) Lecture-3 T.Morris, K. Itoh, Y. Igarashi, H. Sonoda, M. Bonini,… YM theory, QED, SUSY… Exact evolution equation ( for 1PI effective action) C. Wetterich, M. Reuter, N. Tetradis, J. Pawlowski,… quantum gravity, Yang-Mills theory, higher-dimensional gauge theory… The WRG equation (Wegner-Houghton equation) describes the variation of effective action when energy scale Λ is changed to Λ(δt)=Λ exp[−δt] . Sigma model approximation We expand the most generic action as In today talk, we expand the action up to second order in derivative and constraint it =2 supersymmetry. N-components Lagrangian : the metric of target spaces :functional of field variables and coupling constants The point of view of non-linear sigma model: Two-dimensional case In perturbative analysis, the 1-loop beta- function for 2-dimensional non-linear sigma model proportional to Ricci tensor of target spaces. Alvarez-Gaume, Freedman and Mukhi Ann. of Phys. 134 (1982) 392 The perturbative results Ricci flat (Calabi-Yau) Non-perturbative? D=2 (3) N =2 supersymmetric non linear sigma model i=1~N:N is the dimensions of target spaces Where K is Kaehler potential and Φ is chiral superfield.
    [Show full text]