Direct Shear Testing

Total Page:16

File Type:pdf, Size:1020Kb

Direct Shear Testing Department of Construction Engineering Advanced Geotechnical Laboratory Chaoyang University of Technology -- Direct Shear Testing -- DIRECT SHEAR TESTING Prepared by Dr. Roy E. Olson on Fall 1989 Modified by Jiunnren Lai on Spring 2004 ______ INTRODUCTION The direct shear device is used to determine failure envelopes for soils. The device is not suitable for determination of stress-strain properties of soils. Various aspects of the device and resulting data have been discussed previously and will not be repeated. Most of this chapter will be written with the assumption that the tests are of the fully drained type. A later section will cover undrained testing. STANDARD SPECIFICATIONS Direct shear testing is covered in ASTM standard D-3080, "Standard Method for Direct Shear Test on Soils under Consolidated Drained Conditions". GENERAL CONFIGURATION OF THE DIRECT SHEAR DEVICE A cross section through a typical direct shear device is shown in Fig. 1. The soil sample has a porous stone at the top and bottom to allow free drainage (impervious plates could be used for "undrained" tests). Above the upper stone is a metal loading cap which is, in turn, subjected to the normal force. The sample and rings are mounted in a tank which is typically filled with water, but will be empty if tests are being performed on "unsoaked" soil. Several device configurations are in use but, typically, the shearing force is applied to the outside of the tank, which is on rollers (Fig. 1). The tank transmits the load to the lower porous stone and hence to the lower part of the sample. Load is then transferred through the shearing surface to the top part of the system and hence to a load measuring device. Most laboratory direct shear tests are performed on samples with widths of the order of two to three inches. However, samples up to a meter in width have been used for soils containing gravel-sized particles (Nonveiller, 1954; Schultze, 1957; Bishop, __). OVERALL REVIEW OF TESTING PROCEDURE Introduction The overall testing procedure will be reviewed first, without covering details, and then each aspect of the test will be considered separately. It is assumed that the test is to be fully drained and the sample is undisturbed and cohesive, and is in a sampling tube. Minor modifications cover other cases. 1 Department of Construction Engineering Advanced Geotechnical Laboratory Chaoyang University of Technology -- Direct Shear Testing -- Fig. 1 Apparatus Schematic Drawing of Direct Shear 2 Department of Construction Engineering Advanced Geotechnical Laboratory Chaoyang University of Technology -- Direct Shear Testing -- Trimming the Sample The soil sample is extruded from the sampling tube. The extruded sample must typically be trimmed to fit into the shear box. The soil cannot conveniently be trimmed directly into most direct shear devices because the shear box is typically too large and heavy to be handled conveniently. Instead, a special trimming ring is used. The trimming ring has a height that is standard for that laboratory. If a thinner sample is desired, then after the soil has been trimmed into the ring and one face has been trimmed, a spacer plate is used on the surface just trimmed, to push the soil up into the ring an appropriate distance, and then the other face is trimmed (Fig. 2). Fig. 2 Trimming a Specimen to a Height Less Than That of the Trimming Ring The trimmings can be used to obtain an initial water content but they tend to dry out so fast that such water contents usually turn out to be significantly too low. It is better to weigh the soil in the trimming ring, subtract out the known weight of the ring, and then dry the sample after the test, being sure not to lose any of the sample. Apparatus Assembly The shear box is then assembled with the top and the bottom halves of the box screwed (or otherwise rigidly attached) together. The inside of the shear box is typically lightly greased to minimize side friction, just as for consolidation tests. The lower porous stone is placed in the shear box. Sometimes spacer disks are placed below this stone to adjust the elevation of its top to accommodate soil samples of different thicknesses. The trimming ring is then carefully aligned with the top of the shear box. Sometimes the trimming ring and top shear box have been machined so the ring fits into the shallow slot in the top of the shear box, to provide proper alignment. The sample is then slowly extruded into the shear box by pressing on its top surface, typically using the top porous stone or a suitable disk. The upper porous stone and loading cap are placed in the shear box, and the system to apply the normal-toad is brought into place and a small normal load (seating load) is applied. Consolidation Stage A dial indicator, or other suitable device for measuring the change in thickness of the sample, is quickly mounted and a zero reading taken. A consolidation pressure is then added to the top of the sample using the load-application system of the apparatus (typically a lever arm or a pneumatic system). The consolidation stage proceeds as for a standard incremental one- dimensional consolidation test. Loads are typically applied with a load increment ratio of one, to minimize problems with soil extrusion. Readings of settlement or expansion are taken as a function of time to allow appropriate calculation of consolidation coefficients and to ensure that the sample has come to equilibrium prior to the start of shear. 3 Department of Construction Engineering Advanced Geotechnical Laboratory Chaoyang University of Technology -- Direct Shear Testing -- Preparation for the Shearing Stage During the consolidation stage, the upper and lower halves of the shear box have been tightly screwed together (Fig. 3) to prevent the soil from extruding out from between the boxes. Typically, only two locking screws are used. Prior to shearing the sample, the upper half of the box is typically raised to provide a small separation between the boxes and ensure that the shearing and normal stresses are actually transmitted through the soil rather than from box to box. The boxes are usually separated before the final shearing stage by removing the locking screws, and then using screws that are threaded through the top box but not the bottom box, to lift the upper box (Fig. 3). lifting screws stainless steel loading cap loading arm two at 180 degree locking screws two at 180 degree top porous stone soil sample upper shear box bottom porous stone lower shear box existing aluminum bottom disk Fig. 3 Assembly Drawing of Direct Shear Box For normally consolidated samples, of the order of 5-8% of the applied load has been transferred into side shear in the, upper half of the box so lifting the box momentarily reverses the side shear and causes a small amount of sample disturbance, thus causing a small amount of additional time-dependent consolidation. Prior to starting the shearing stage, the screws used to lift the top box must be withdrawn so the full applied stress plus the weight of the upper half of the shear box, acts on the soil in the potential failure zone, and another stage of a small amount of consolidation begins. If the top half of the shear box is heavy, and not counterbalanced, and the sample is soft, a significant amount of additional consolidation may result. To minimize the time during this stage of the test, the top half of the box is usually raised and then it is released at once; and then readings of sample thickness are continued until the sample has come back to equilibrium. Shearing Stage The shearing stage is usually performed at a constant rate of deformation. Methods of selecting the deformation rate will be discussed subsequently. A rate is selected and the shearing stage begin. Readings are taken of horizontal displacement, vertical movement of the top cap, and shearing force, as a function of time. Stress conditions in the sample become increasingly uncertain as deformation continues so the test is usually stopped at a horizontal deflection of about 0.25 inch even if the shearing stress has not reached a peak value. 4 Department of Construction Engineering Advanced Geotechnical Laboratory Chaoyang University of Technology -- Direct Shear Testing -- Dismantling Stage When the test is over, the shearing stress is reduced to zero. Equipment for measuring deformations is removed. The normal load is then reduced to zero as quickly as possible and the apparatus dismantled. The soil sample starts to rebound as soon as the normal load begins to decrease so the dismantling stage must be quite rapid if there is any desire to measure the water content at the failure stage. Once the apparatus has been dismantled, the two halves of the shear box are separated. Often, a water content sample is taken from the shear zone, and then the water content sample and the rest of the specimen are dried to obtain a final dry weight (and thus an initial water content). Data Reduction The data are reduced by calculating the normal and shearing stresses, plotting a curve of shearing force vs. horizontal movement, and perhaps plotting change in sample thickness vs horizontal movement. The failure condition is plotted in a Coulomb diagram. There are numerous options in the above procedure, e.g., it may be desired to determine the residual strength as well as, or in place of, the peak strength. These options will be discussed in later sections. SAMPLE SHAPE AND SIZE Direct shear samples are shaped like flat disks or flat rectangular prisms.
Recommended publications
  • Direct Shear Tests Used in Soil-Geomembrane Interface Friction Studies
    DIRECT SHEAR TESTS USED IN SOIL-GEOMEMBRANE INTERFACE FRICTION STUDIES August 1994 U.S. DEPARTMENT OF THE INTERIOR Bureau of Reclamation Denver Off ice Research and Laboratory Services Division Materials Engineering Branch 7-2090 (4-81) Bureau of Reclamat~on ..........................................................................................TECHNICAL REPORT STANDARD TITLE PAGE I I. REPORT NO. ................................................................................................. ................................................................................................. I 4. TITLE AND SUBTITLE 1 5. REPORT DATE August 1994 Direct Shear Tests Used in 6. PERFORMING ORGANIZATION CODE Soil-Geomembrane Interface Friction Studies 7. AUTHOR(S) 8. PERFORMING ORGANIZATION Richard A. Young REPORT NO. R-94-09 9. PERFORMING ORGANIZATION NAME AND ADDRESS lo. WORK UNIT NO. Bureau of Reclamation Denver Office Denver CO 80225 12. SPONSORING AGENCY NAME AND ADDRESS Same 1 14. SPONSORING AGENCY CODE DIBR 15. SUPPLEMENTARY NOTES Microfiche and hard copy available at the Denver Office, Denver, Colorado 16. ABSTRACT The Bureau of Reclamation Canal Lining Systems Program funded a series of direct shear tests on interfaces between a typical cover soil and different geomembrane liner materials. The purposes of the testing program were to determine the shear strength parameters at the soil-geomembrane interface and to examine the precision of the direct shear test. This report presents the results of the testing program. 17. KEY WORDS AND DOCUMENT ANALYSIS a. DESCRIPTORS-- water conservation1 geosyntheticsl canal lining/ b. IDENTIFIERS- c. COSA TI Field/Group CO WRR: SRIM: 18. DISTRIBUTION STATEMENT 19. SECURITY CLASS 21. NO. OF PAGES (THIS REPORT) 59 Available from the National Technical Information Service, Operations Division UNCLASSIFIED 20. SECURITY CLASS 22. PRICE 5285 Port Royal Road, Springfield, Virginia 22161 (THIS PAGn UNCLASSIFIED DIRECT SHEAR TESTS USED IN SOIL-GEOMEMBRANE INTERFACE FRICTION STUDIES by Richard A.
    [Show full text]
  • SL372 HB.Pdf
    Direct Digital Shear Apparatus SL372 Impact Test Equipment Ltd www.impact-test.co.uk & www.impact-test.com User Guide User Guide Impact Test Equipment Ltd. Building 21 Stevenston Ind. Est. Stevenston Ayrshire KA20 3LR T: 01294 602626 F: 01294 461168 E: [email protected] Test Equipment Web Site www.impact-test.co.uk Test Sieves & Accessories Web Site www.impact-test.com - 2 - Direct Digital Shearbox Digital direct shear box, floor mounted with carriage assembly and load hanger with 10:1 lever loading device. • Microprocessor controlled digital stepper motor • Control via the digital display with keyboard • Return datum facility • Fully steplessly variable speed over the range of 0.00001 to 9.99999mm/minute • RS232 port • Forward/reverse travel limit switches • Will accept either analogue or digital measuring devices Introduction: In all soil stability, problems such as the analysis and design of foundations of retaining walls and embankments, knowledge of the strength of the soil involved is required. The Direct Shear Test is one of the tests for measurement of shear strength of soil. The Direct Digital Shear Apparatus meets the general requirements of BS1377 and has a normal load capacity of 8kg/sq. cm when the loads are applied through lever and 1.6kg/sq. cm when the loads are applied directly. The following tests can be performed with this apparatus. I) Immediated, Undrained or quick II) Consolidated Quick or Consolidated Undrained III) Slow or Drained IV) Residual Shear Strength Test - 1 - Description: The shear box complete with bottom and top plates, porous stones gripper plates, plain or perforated, and a water jacket is mounted on a loading unit.
    [Show full text]
  • Influence of Relative Compaction on the Shear Strength of Compacted Surface Sands
    International Journal of Environmental Science and Development, Vol. 5, No. 1, February 2014 Influence of Relative Compaction on the Shear Strength of Compacted Surface Sands Nabil F. Ismael and Mariam Behbehani strength characteristics of the compacted fill. Abstract—Construction of structures always involves This paper aims to answer these questions and to learn excavation, and recompaction following foundation installation. more about the properties of compacted sand fills by means In some cases foundations are placed on compacted sandy soils. of a laboratory-testing program. Testing included basic The influence of relative compaction on the strength of sandy characteristics, compaction tests, and direct shear tests. In soils in Kuwait is examined herein by a comprehensive laboratory testing program on surface samples. The program view of recent work indicating significant soil improvement includes basic properties, compaction and, direct shear tests. with artificial cementation [6], the effect of using 1 % by Various soil parameters were determined including the weight ordinary Portland cement additive (Type I) on the compaction characteristics, the cohesion c, angle of friction φ. shear strength parameters of compacted surface sands is also The results indicate that as the relative compaction increases examined. towards 100%, the strength increases and the soil compressibility decreases. A comparison was made between the soil parameters for the samples compacted on the dry side, and on the wet side of optimum moisture content at several relative II. TESTING PROGRAM compaction ratios. The difference in the values obtained for the The testing program consisted of: two cases are explained. The effect of using 1% by weight 1) Collecting large bulk sample of surface sand from one cement additive is also examined.
    [Show full text]
  • Slope Stabilization and Repair Solutions for Local Government Engineers
    Slope Stabilization and Repair Solutions for Local Government Engineers David Saftner, Principal Investigator Department of Civil Engineering University of Minnesota Duluth June 2017 Research Project Final Report 2017-17 • mndot.gov/research To request this document in an alternative format, such as braille or large print, call 651-366-4718 or 1- 800-657-3774 (Greater Minnesota) or email your request to [email protected]. Please request at least one week in advance. Technical Report Documentation Page 1. Report No. 2. 3. Recipients Accession No. MN/RC 2017-17 4. Title and Subtitle 5. Report Date Slope Stabilization and Repair Solutions for Local Government June 2017 Engineers 6. 7. Author(s) 8. Performing Organization Report No. David Saftner, Carlos Carranza-Torres, and Mitchell Nelson 9. Performing Organization Name and Address 10. Project/Task/Work Unit No. Department of Civil Engineering CTS #2016011 University of Minnesota Duluth 11. Contract (C) or Grant (G) No. 1405 University Dr. (c) 99008 (wo) 190 Duluth, MN 55812 12. Sponsoring Organization Name and Address 13. Type of Report and Period Covered Minnesota Local Road Research Board Final Report Minnesota Department of Transportation Research Services & Library 14. Sponsoring Agency Code 395 John Ireland Boulevard, MS 330 St. Paul, Minnesota 55155-1899 15. Supplementary Notes http:// mndot.gov/research/reports/2017/201717.pdf 16. Abstract (Limit: 250 words) The purpose of this project is to create a user-friendly guide focusing on locally maintained slopes requiring reoccurring maintenance in Minnesota. This study addresses the need to provide a consistent, logical approach to slope stabilization that is founded in geotechnical research and experience and applies to common slope failures.
    [Show full text]
  • Slope Stability
    Slope stability Causes of instability Mechanics of slopes Analysis of translational slip Analysis of rotational slip Site investigation Remedial measures Soil or rock masses with sloping surfaces, either natural or constructed, are subject to forces associated with gravity and seepage which cause instability. Resistance to failure is derived mainly from a combination of slope geometry and the shear strength of the soil or rock itself. The different types of instability can be characterised by spatial considerations, particle size and speed of movement. One of the simplest methods of classification is that proposed by Varnes in 1978: I. Falls II. Topples III. Slides rotational and translational IV. Lateral spreads V. Flows in Bedrock and in Soils VI. Complex Falls In which the mass in motion travels most of the distance through the air. Falls include: free fall, movement by leaps and bounds, and rolling of fragments of bedrock or soil. Topples Toppling occurs as movement due to forces that cause an over-turning moment about a pivot point below the centre of gravity of the unit. If unchecked it will result in a fall or slide. The potential for toppling can be identified using the graphical construction on a stereonet. The stereonet allows the spatial distribution of discontinuities to be presented alongside the slope surface. On a stereoplot toppling is indicated by a concentration of poles "in front" of the slope's great circle and within ± 30º of the direction of true dip. Lateral Spreads Lateral spreads are disturbed lateral extension movements in a fractured mass. Two subgroups are identified: A.
    [Show full text]
  • Evaluation of the Shear Strength Behavior of TDA Mixed with Fine and Coarse Aggregates for Backfilling Around Buried Structures
    sustainability Article Evaluation of the Shear Strength Behavior of TDA Mixed with Fine and Coarse Aggregates for Backfilling around Buried Structures Hany El Naggar * and Ali Iranikhah Department of Civil and Resource Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-902-494-3904 Abstract: Although some discarded tires are reused in various applications, a considerable number end up in landfills, where they pose diverse environmental problems. Waste tires that are shredded to produce tire-derived aggregates (TDA) can be reused in geotechnical engineering applications. Many studies have already been conducted to examine the behavior of pure TDA and soil-TDA mixtures. However, few studies have investigated the behavior of larger TDA particles, 20 to 75 mm in size, mixed with various types of soil at percentages ranging from 0% to 100%. In this study, TDA was mixed with gravelly, sandy, and clayey soils to determine the optimum soil-TDA mixtures for each soil type. A large-scale direct shear box (305 mm × 305 mm × 220 mm) was used, and the mixtures were examined with a series of direct shear tests at confining pressures of 50.1, 98.8, and 196.4 kPa. The test results indicated that the addition of TDA to the considered soils significantly reduces the dry unit weight, making the mixtures attractive for applications requiring lightweight fill materials. It was found that adding TDA to gravel decreases the shear resistance for all considered TDA contents. On the contrary, adding up to 10% TDA by weight to the sandy or clayey soils was Citation: El Naggar, H.; Iranikhah, A.
    [Show full text]
  • Determining Characteristic Sand Shear Parameters of Strength Via a Direct Shear Test
    JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT ISSN 1392-3730 / eISSN 1822-3605 2016 Volume 22(2): 271–278 10.3846/13923730.2015.1073174 DETERMINING CHARACTERISTIC SAND SHEAR PARAMETERS OF STRENGTH VIA A DIRECT SHEAR TEST Šarūnas SKUODISa, Arnoldas NORKUSa, Neringa DIRGĖLIENĖa, Liudvikas RIMKUSb aDepartment of Geotechnical Engineering, Civil Engineering Faculty, Vilnius Gediminas Technical University, Saulėtekio al. 11, LT-10223, Vilnius, Lithuania bDepartment of Structural Mechanics, Civil Engineering Faculty, Vilnius Gediminas Technical University, Saulėtekio al. 11, LT-10223, Vilnius, Lithuania Received 29 March 2015; accepted 11 Jun 2015 Abstract. The article considers the peculiarities of determining quartz sand shear strength according to the Mohr-Coulomb strength criterion, via a direct shear test and that of factors influencing the characteristic angle of internal friction and cohe- sion values of the obtained strength parameters. The air-dry sand of the Baltic Sea region from Lithuanian coastal area near 3 Klaipėda city has been analyzed. The solid density of the investigated sand grains was ρs = 2.65 g/cm . The initial density of the tested samples made ~1.48–1.50 g/cm3. Processing data on the shear test yielded that the quantity of 18 tests was sufficient for the relevant accuracy of determining characteristic sand shear parameters of strength. This quantity of tests allow avoiding the influence of statistical coefficient tα that depends on a degree of freedom (K = n – 2). The paper presents additionally analyzed three different approaches to determining the characteristic shear parameters of strength and that of a comparative analysis of the applied approaches. Keywords: Mohr-Coulomb strength criterion, direct shear test, angle of internal friction, cohesion, loose sand, quartz, characteristic shear strength.
    [Show full text]
  • Shear Strength Examples.Pdf
    444 Chapter 12: Shear Strength of Soil Example 12.2 Following are the results of four drained direct shear tests on an overconsolidated clay: • Diameter of specimen ϭ 50 mm • Height of specimen ϭ 25 mm Normal Shear force at Residual shear Test force, N failure, Speak force, Sresidual no. (N) (N) (N) 1 150 157.5 44.2 2 250 199.9 56.6 3 350 257.6 102.9 4 550 363.4 144.5 © Cengage Learning 2014 t t Determine the relationships for peak shear strength ( f) and residual shear strength ( r). Solution 50 2 Area of the specimen 1A2 ϭ 1p/42 a b ϭ 0.0019634 m2. Now the following 1000 table can be prepared. Residual S shear peak S force, T ϭ residual ؍ Normal Normal Peak shearT S؅ f r Test force, N stress, force, Speak A Sresidual A no. (N) (kN/m2) (N) (kN/m2) (N) (kN/m2) 1 150 76.4 157.5 80.2 44.2 22.5 2 250 127.3 199.9 101.8 56.6 28.8 3 350 178.3 257.6 131.2 102.9 52.4 4 550 280.1 363.4 185.1 144.5 73.6 © Cengage Learning 2014 t t sЈ The variations of f and r with are plotted in Figure 12.19. From the plots, we find that t 2 ϭ ؉ S؅ Peak strength: f (kN/m ) 40 tan 27 t 2 ϭ S؅ Residual strength: r(kN/m ) tan 14.6 (Note: For all overconsolidated clays, the residual shear strength can be expressed as t ϭ sœ fœ r tan r fœ ϭ where r effective residual friction angle.) Copyright 2012 Cengage Learning.
    [Show full text]
  • Soil Mechanics
    soil and rock 1.2 soil mechanics 1.2.1 consolidation test page 56 1.2.2 direct shear test page 61 1.2.3 triaxial test page 69 1.2.4 DATA ACQUISITION page 85 items page buyer’s guide 88-91 consolidation bench 65 consolidation cells 58 constant pressure sources 77-78 data acquisition unit 89-92 direct shear annular apparatus 67-68 direct shear apparatus 61-66 measuring instruments (triaxial) 82 oedometer 56-60 sampling tube, hand extruder, lathe 73-74 shear boxes 64 triaxial cells 73-76 triaxial load frames 79-81 triaxial test 69-72 volume change 83-84 56 1.2.1 consolidation test tecnotest data acquisition generally speaking, tests performed in the laboratory to determine the mechanical properties of soil are length and require numerous measurements to be made at various intervals. Automatic data acquisition is therefore recommended to lighten the technicians’ workload, to avoid errors and, above all, to enable tests to be continued into the night and during weekends/holidays. TECNOTEST has a specific hardware and software system for such needs, allowing the single channel data acquisition unit applied to each machine, to be arranged in a network. The unit is the well known gEOTRONIC. AD 002 geotronic (ad 002) microprocessor-Based readout control unit • graphic display (backlit): 60 x 32 mm • “HOLD” value key • “TARE” key • Peak value memorisation • Unit of measurement: kN, daN, N, mm, micron, cm3, kPa • ± 30,000 divisions • Power supply (via external adaptor): 110-240V, 50-60Hz, single phase - 10 Watts • Transducer input: 2 mV/V; 3 mV/V; 7 mV/V • Current loop interface • Up to 32 gEOTRONIC units may be connected to create a network.
    [Show full text]
  • In Situ Tests for the Determination of Rock Mass Shear Strength
    TECHNICAL REPORT S-72-12 IN SITU TESTS FOR THE DETERMINATION OF ROCK MASS SHEAR STRENGTH by T. W. Zeigler November I972 TA 7 Sponsored by Office, Chief of Engineers, U. S. Army .W 34t S-7 2-1 2 Conducted by U. S. Army Engineer Waterways Experiment Station 1972 Soils and Pavements Laboratory Vicksburg, Mississippi APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED Ä * « %M • ¿ i s I LIBRARY FE B 2 3 1973 Bureau of Reclamation Denver, Colorado Destroy this report when no longer needed. Do not return it to the originator. The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents. k. BUREAU OF RECLAMATION DEI 92021814 IN SITU TESTS FOR THE DETERMINATION OF ROCK MASS SHEAR STRENGTH by T. W. Zeigler JOI ioiu u u lOlIffiDD]IDI November 1972 Sponsored by Office, Chief of Engineers, U. S. Army Engineering Study 553 Conducted by U. S. Army Engineer Waterways Experiment Station Soils and Pavements Laboratory Vicksburg, Mississippi ARMY-MRC VICKSBURG, MISS. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED / FOREWORD This study was conducted by the U. S. Army Engineer Waterways Experi­ ment Station (WES). The work was sponsored by the Office, Chief of Engi­ neers (OCE), under Engineering Study (ES) 553. The study was conducted intermittently during the period from July 1969 to July 1971. Mr. T. W. Zeigler conducted the research under the general supervision of Messrs. W. C. Sherman, Chief, Soil and Rock Mechanics Branch, and D. C. Banks, Chief, Rock Mechanics Section.
    [Show full text]
  • Direct Shear Test
    158 EXPERIMENT 13 DIRECT SHEAR TEST Purpose: This test is performed to determine the consolidated-drained shear strength of a sandy to silty soil. The shear strength is one of the most important engineering properties of a soil, because it is required whenever a structure is dependent on the soil’s shearing resistance. The shear strength is needed for engineering situations such as determining the stability of slopes or cuts, finding the bearing capacity for foundations, and calculating the pressure exerted by a soil on a retaining wall. Standard Reference: ASTM D 3080 - Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions Significance: The direct shear test is one of the oldest strength tests for soils. In this laboratory, a direct shear device will be used to determine the shear strength of a cohesionless soil (i.e. angle of internal friction (f)). From the plot of the shear stress versus the horizontal displacement, the maximum shear stress is obtained for a specific vertical confining stress. After the experiment is run several times for various vertical-confining stresses, a plot of the maxi mum shear stresses versus the vertical (normal) confining stresses for each of the tests is produced. From the plot, a straight-line approximation of the Mohr-Coulomb failure envelope curve can be drawn, f may be determined, and, for cohesionless soils (c = 0), the shear strength can be computed from the following equation: s = s tan f Engineering Properties of Soils Based on Laboratory Testing Prof. Krishna Reddy, UIC 159 Equipment: Direct shear device, Load and deformation dial gauges, Balance.
    [Show full text]
  • Drained-Strength Parameters from Direct Shear Tests for Slope Stability Analyses in Overconsolidated Fissured Residual Soils
    102 TRANSPORTATION RESEARCH RECORD 1089 Drained-Strength Parameters from Direct Shear Tests for Slope Stability Analyses in Overconsolidated Fissured Residual Soils RoY H. BoRDEN AND STEVEN F. PuTRICH An experimental investigation of the drained shear strength of overconsolidated fissured clays occurred years after the soils from three sites within the Durham Triassic Basin of excavation because of the slow dissipation of excess negative North Carolina is described. Multistage direct shear tests con­ pore pressures. This study shows that the overconsolidated ducted on specimens trimmed from block samples were uti­ fissured residual soils investigated in this experimental pro­ lized to evaluate the postpeak shear strength of these mate­ rials. In general, the observed reduction In strength with gram may be viewed in a similar manner. accumulated displacement beyond the peak strength was In good agreement with data reported In the literature for other overconsolidated soils. The residual friction angle for the soils GEOGRAPHIC AND GEOLOGIC BACKGROUND tested was found to follow the trend of decreasing friction angle with increasing plasticity index. These results support Three sites have been investigated in this study; two are sites of the need for utilizing drained shear strength parameters and effective stress analyses for predicting the stability of slopes cut future cut slopes that will result from construction of the East­ in overconsolidated residual soils. In a companion paper in this West Freeway through Durham, North Carolina, referred to as Record a case study is presented of a well-documented slope the Anderson Street and LaSalle Street sites, and the third is the failure within the Durham Triassic Basin that indicates the site of a previously documented slope failure in nearby Apex, appropriateness of using nonclrcular failure geometrics and North Carolina, the Railroad Underpass/US-64 site.
    [Show full text]