Exploratory and Live, Programming and Coding: a Literature Study
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An AI Collaborator for Gamified Live Coding Music Performances
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Falmouth University Research Repository (FURR) Autopia: An AI Collaborator for Gamified Live Coding Music Performances Norah Lorway,1 Matthew Jarvis,1 Arthur Wilson,1 Edward J. Powley,2 and John Speakman2 Abstract. Live coding is \the activity of writing (parts of) regards to this dynamic between the performer and audience, a program while it runs" [20]. One significant application of where the level of risk involved in the performance is made ex- live coding is in algorithmic music, where the performer mod- plicit. However, in the context of the system proposed in this ifies the code generating the music in a live context. Utopia3 paper, we are more concerned with the effect that this has on is a software tool for collaborative live coding performances, the performer themselves. Any performer at an algorave must allowing several performers (each with their own laptop pro- be prepared to share their code publicly, which inherently en- ducing its own sound) to communicate and share code during courages a mindset of collaboration and communal learning a performance. We propose an AI bot, Autopia, which can with live coders. participate in such performances, communicating with human performers through Utopia. This form of human-AI collabo- 1.2 Collaborative live coding ration allows us to explore the implications of computational creativity from the perspective of live coding. Collaborative live coding takes its roots from laptop or- chestra/ensemble such as the Princeton Laptop Orchestra (PLOrk), an ensemble of computer based instruments formed 1 Background at Princeton University [19]. -
Chuck: a Strongly Timed Computer Music Language
Ge Wang,∗ Perry R. Cook,† ChucK: A Strongly Timed and Spencer Salazar∗ ∗Center for Computer Research in Music Computer Music Language and Acoustics (CCRMA) Stanford University 660 Lomita Drive, Stanford, California 94306, USA {ge, spencer}@ccrma.stanford.edu †Department of Computer Science Princeton University 35 Olden Street, Princeton, New Jersey 08540, USA [email protected] Abstract: ChucK is a programming language designed for computer music. It aims to be expressive and straightforward to read and write with respect to time and concurrency, and to provide a platform for precise audio synthesis and analysis and for rapid experimentation in computer music. In particular, ChucK defines the notion of a strongly timed audio programming language, comprising a versatile time-based programming model that allows programmers to flexibly and precisely control the flow of time in code and use the keyword now as a time-aware control construct, and gives programmers the ability to use the timing mechanism to realize sample-accurate concurrent programming. Several case studies are presented that illustrate the workings, properties, and personality of the language. We also discuss applications of ChucK in laptop orchestras, computer music pedagogy, and mobile music instruments. Properties and affordances of the language and its future directions are outlined. What Is ChucK? form the notion of a strongly timed computer music programming language. ChucK (Wang 2008) is a computer music program- ming language. First released in 2003, it is designed to support a wide array of real-time and interactive Two Observations about Audio Programming tasks such as sound synthesis, physical modeling, gesture mapping, algorithmic composition, sonifi- Time is intimately connected with sound and is cation, audio analysis, and live performance. -
Confessions-Of-A-Live-Coder.Pdf
Proceedings of the International Computer Music Conference 2011, University of Huddersfield, UK, 31 July - 5 August 2011 CONFESSIONS OF A LIVE CODER Thor Magnusson ixi audio & Faculty of Arts and Media University of Brighton Grand Parade, BN2 0JY, UK ABSTRACT upon writing music with programming languages for very specific reasons and those are rarely comparable. This paper describes the process involved when a live At ICMC 2007, in Copenhagen, I met Andrew coder decides to learn a new musical programming Sorensen, the author of Impromptu and member of the language of another paradigm. The paper introduces the aa-cell ensemble that performed at the conference. We problems of running comparative experiments, or user discussed how one would explore and analyse the studies, within the field of live coding. It suggests that process of learning a new programming environment an autoethnographic account of the process can be for music. One of the prominent questions here is how a helpful for understanding the technological conditioning functional programming language like Impromptu of contemporary musical tools. The author is conducting would influence the thinking of a computer musician a larger research project on this theme: the part with background in an object orientated programming presented in this paper describes the adoption of a new language, such as SuperCollider? Being an avid user of musical programming environment, Impromptu [35], SuperCollider, I was intrigued by the perplexing code and how this affects the author’s musical practice. structure and work patterns demonstrated in the aa-cell performances using Impromptu [36]. I subsequently 1. INTRODUCTION decided to embark upon studying this environment and perform a reflexive study of the process. -
Estuary: Browser-Based Collaborative Projectional Live Coding of Musical Patterns
Estuary: Browser-based Collaborative Projectional Live Coding of Musical Patterns David Ogborn Jamie Beverley Luis Navarro del Angel McMaster University McMaster University McMaster University [email protected] [email protected] [email protected] Eldad Tsabary Alex McLean Concordia University Deutsches Museum [email protected] [email protected] ABSTRACT This paper describes the initial design and development of Estuary, a browser-based collaborative projectional editing environment built on top of the popular TidalCycles language for the live coding of musical pattern. Key features of Estuary include a strict form of structure editing (making syntactical errors impossible), a click-only border-free approach to interface design, explicit notations to modulate the liveness of different parts of the code, and a server-based network collaboration system that can be used for many simultaneous collaborative live coding performances, as well as to present different views of the same live coding activity. Estuary has been developed using Reflex-DOM, a Haskell-based framework for web development whose strictness promises robustness and security advantages. 1 Goals 1.1 Projectional Editing and Live Coding The interface of the text editor is focused on alphabetic characters rather than on larger tokens that directly represent structures specific to a certain way of notating algorithms. Programmers using text editors, including live coding artists using text-based programming languages as their media, then have to devote cognitive resources to dealing with various kinds of mistakes and delays, including but not limited to accidentally typing the wrong character, not recalling the name of an entity, attempting to use a construct from one language in another, and misrecognition of “where one is” in the hierarchy of structures, among many other possible challenges. -
Exploratory Programming for the Arts and Humanities
Exploratory Programming for the Arts and Humanities Exploratory Programming for the Arts and Humanities Second Edition Nick Montfort The MIT Press Cambridge, Massachusetts London, England © 2021 Nick Montfort The open access edition of this work was made possible by generous funding from the MIT Libraries. This work is subject to a Creative Commons CC-BY-NC-SA license. Subject to such license, all rights are reserved. This book was set in ITC Stone Serif Std and ITC Stone Sans Std by New Best-set Typesetters Ltd. Library of Congress Cataloging-in-Publication Data Names: Montfort, Nick, author. Title: Exploratory programming for the arts and humanities / Nick Montfort. Description: Second edition. | Cambridge, Massachusetts : The MIT Press, [2021] | Includes bibliographical references and index. | Summary: "Exploratory Programming for the Arts and Humanities offers a course on programming without prerequisites. It covers both the essentials of computing and the main areas in which computing applies to the arts and humanities"—Provided by publisher. Identifiers: LCCN 2019059151 | ISBN 9780262044608 (hardcover) Subjects: LCSH: Computer programming. | Digital humanities. Classification: LCC QA76.6 .M664 2021 | DDC 005.1—dc23 LC record available at https://lccn.loc.gov/2019059151 10 9 8 7 6 5 4 3 2 1 [Contents] [List of Figures] xv [Acknowledgments] xvii [1] Introduction 1 [1.1] 1 [1.2] Exploration versus Exploitation 4 [1.3] A Justification for Learning to Program? 6 [1.4] Creative Computing and Programming as Inquiry 7 [1.5] Programming Breakthroughs -
Live Coding Practice
Proceedings of the 2007 Conference on New Interfaces for Musical Expression (NIME07), New York, NY, USA Live Coding Practice Click Nilson University of Sussex Department of Informatics Falmer, Brighton, BN1 9QH +44 (0)1273 877837 [email protected] ABSTRACT I wish to discuss the practice of live coding, not only as an area of investigation and activity, but also in the sense of Live coding is almost the antithesis of immediate physical actually practising to improve ability. I shall describe the musicianship, and yet, has attracted the attentions of a number results of a month long experiment where live coding was of computer-literate musicians, as well as the music-savvy undertaken every day in an attempt to cast live coding as akin programmers that might be more expected. It is within the to more familiar forms of musical practice. context of live coding that I seek to explore the question of practising a contemporary digital musical instrument, which is Exercises will be discussed that may be found efficacious to often raised as an aside but more rarely carried out in research improve live coding abilities. In relation to these, literature (though see [12]). At what stage of expertise are the members from developmental and educational psychology (both of of the live coding movement, and what practice regimes might music and computing), and theories of expertise and skill help them to find their true potential? acquisition, were consulted. The possibility of expert performance [7] in live coding is discussed. Keywords I should state at the outset that I will be focusing primarily on Practice, practising, live coding one particular form of live coding in this paper, that of programming a computer on a concert platform as a performance act, often as an unaccompanied soloist. -
Virtual Agents in Live Coding: a Short Review
FINAL DRAFT – Submitted to eContact! (https://econtact.ca) Special issue: 21.1 — Take Back the Stage: Live coding, live audiovisual, laptop orchestra… Virtual Agents in Live Coding: A Short Review ...................................................................................... 2 Introduction ................................................................................................................................................................. 2 Conceptual Foundations .......................................................................................................................................... 3 Broader Context ............................................................................................................................................................................ 3 Virtuality, Agency, and Virtual Agency ............................................................................................................................... 4 Machine Musicianship, Musical Metacreation, and Musical Cyborgs .................................................................... 5 Theoretical Frameworks ........................................................................................................................................................... 6 Examples in Practice ................................................................................................................................................. 7 Betablocker .................................................................................................................................................................................... -
Part I: Julia for Matlab Users
Julia Part I Julia for Matlab Users Prof. Matthew Roughan [email protected] http://www.maths.adelaide.edu.au/matthew.roughan/ UoA Oct 31, 2017 M.Roughan (UoA) Julia Part I Oct 31, 2017 1 / 33 I write to find out what I think about something. Neil Gaiman, The View From the Cheap Seats M.Roughan (UoA) Julia Part I Oct 31, 2017 2 / 33 Section 1 Get Started M.Roughan (UoA) Julia Part I Oct 31, 2017 3 / 33 The reason I feel like we can do this is because (I hope) you all know some Matlab, and Julia is syntactically and operationally very much like Matlab I syntax is very similar 1 I REPL is similar F tab completion, and up arrows work F ? = help F ; = shell escape to OS I JIT compiler I Use cases are similar 1REPL = Read-Evaluate-Print Loop; old-school name is the shell, or CLI. M.Roughan (UoA) Julia Part I Oct 31, 2017 4 / 33 So have a go You should have installed Julia before the workshop Start it up I start up varies depending on IDE, and OS I I am using simplest case (for me): the CLI, on a Mac I it’s all very Unix-y Type some calculations a = 3 b = a + 2 c = a + bˆ2 Create a script, e.g., “test.jl”, and “include” it include("test.jl") I its a little more cumbersome than Matlab M.Roughan (UoA) Julia Part I Oct 31, 2017 5 / 33 Section 2 Julia Isn’t Matlab (or Octave) M.Roughan (UoA) Julia Part I Oct 31, 2017 6 / 33 Julia may look a lot like Matlab but under the hood its very different and there are a lot of changes that affect you otherwise why would we bother? M.Roughan (UoA) Julia Part I Oct 31, 2017 7 / 33 Why Julia? Big -
Exploratory Data Science Using a Literate Programming Tool Mary Beth Kery1 Marissa Radensky2 Mahima Arya1 Bonnie E
The Story in the Notebook: Exploratory Data Science using a Literate Programming Tool Mary Beth Kery1 Marissa Radensky2 Mahima Arya1 Bonnie E. John3 Brad A. Myers1 1Human-Computer Interaction Institute 2Amherst College 3Bloomberg L. P. Carnegie Mellon University Amherst, MA New York City, NY Pittsburgh, PA [email protected] [email protected] mkery, mahimaa, bam @cs.cmu.edu ABSTRACT engineers, many of whom never receive formal training in Literate programming tools are used by millions of software engineering [30]. programmers today, and are intended to facilitate presenting data analyses in the form of a narrative. We interviewed 21 As even more technical novices engage with code and data data scientists to study coding behaviors in a literate manipulations, it is key to have end-user programming programming environment and how data scientists kept track tools that address barriers to doing effective data science. For of variants they explored. For participants who tried to keep instance, programming with data often requires heavy a detailed history of their experimentation, both informal and exploration with different ways to manipulate the data formal versioning attempts led to problems, such as reduced [14,23]. Currently even experts struggle to keep track of the notebook readability. During iteration, participants actively experimentation they do, leading to lost work, confusion curated their notebooks into narratives, although primarily over how a result was achieved, and difficulties effectively through cell structure rather than markdown explanations. ideating [11]. Literate programming has recently arisen as a Next, we surveyed 45 data scientists and asked them to promising direction to address some of these problems [17]. -
Quaverseries: a Live Coding Environment for Music Performance Using Web Technologies
QuaverSeries: A Live Coding Environment for Music Performance Using Web Technologies Qichao Lan Alexander Refsum Jensenius RITMO RITMO Department of Musicology Department of Musicology University of Oslo University of Oslo [email protected] [email protected] ABSTRACT live coding languages is mainly borrowed from other pro- QuaverSeries consists of a domain-specific language and a gramming languages. For example, the use of parentheses single-page web application for collaborative live coding in is ubiquitous in programming languages, and it is adopted music performances. Its domain-specific language borrows in almost every live coding language. That is the case even principles from both programming and digital interface de- though live coding without the parentheses is (more) read- sign in its syntax rules, and hence adopts the paradigm able for humans [12]. of functional programming. The collaborative environment Inheriting standard programming syntax may create dif- features the concept of `virtual rooms', in which performers ficulties for non-programmers who want to get started with can collaborate from different locations, and the audience live coding. We have therefore been exploring how it is pos- can watch the collaboration at the same time. Not only is sible to design a live coding syntax based on the design prin- the code synchronised among all the performers and online ciples of digital musical interface design. This includes ele- audience connected to the server, but the code executing ments such as audio effect chains, sequencers, patches, and command is also broadcast. This communication strategy, so on. The aim has been to only create a rule by 1) bor- achieved by the integration of the language design and the rowing from digital musicians' familiarity with the digital environment design, provides a new form of interaction for interfaces mentioned above, or 2) reusing the syntax from web-based live coding performances. -
Java Makes Scripting Languages Irrelevant?
tools of the trade Editor: Diomidis Spinellis ■ Athens University of Economics and Business ■ [email protected] Java Makes Scripting Languages Irrelevant? Diomidis Spinellis Simplicity does not precede complexity, but follows it. — Alan J. Perlis n computing, we often solve a complex came up with Application Basic as its general- problem by adding another level of indi- purpose scripting language for all its office pro- rection. For example, in Unix file systems, ductivity applications. an index node, or inode, data structure lets Those early developments acquainted pro- I the operating system allocate files concur- grammers with the notion of customizing ap- rently and sparsely while still providing an plications through scripting and opened the efficient random-access capability. When we road for powerful, general-purpose scripting want to customize large, complex systems or languages such as Perl, Python, and Ruby (see express fluid, rapidly changing John Ousterhout’s article, “Scripting: Higher- requirements, we frequently Level Programming for the 21st Century,” in add a scripting layer on top of Computer’s March 1998 issue). Scripting lan- the corresponding system. Back guages glued to applications serve an impor- in 1962 to 1963, Dan Murphy tant purpose: they greatly ease the application’s did this when he developed his configuration and customization and support TECO (text editor and correc- end-user programming by offering a safe and tor) editor on the Digital Equip- friendly development environment. Gone are ment Corp.’s PDP-1; its com- the intricacies of C’s memory management, the mand language also doubled as convoluted string manipulation, and the com- an arcane (to put it politely) plexity of the application’s internal data struc- macro language. -
Data-Driven Tool Construction in Exploratory Programming Environments
Data-driven Tool Construction in Exploratory Programming Environments by Marcel Taeumel A thesis submitted to the Digital Engineering Faculty University of Potsdam in partial fulfllment of the requirements for the degree of Doctor Rerum Naturalium (Dr. rer. nat.) Advisor Prof. Dr. Robert Hirschfeld Software Architecture Group Hasso Plattner Institute University of Potsdam, Germany February 2, 2020 This work is licensed under a Creative Commons License: Attribution – NonCommercial – NoDerivatives 4.0 International. This does not apply to quoted content from other authors. To view a copy of this license visit https://creativecommons.org/licenses/by-nc-nd/4.0/ Published online at the Institutional Repository of the University of Potsdam: https://doi.org/10.25932/publishup-44428 https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-444289 Abstract This work presents a new design for programming environments that promote the exploration of domain-specifc software artifacts and the construction of graphical tools for such program comprehension tasks. In complex software projects, tool building is essential because domain- or task-specifc tools can support decision making by representing concerns concisely with low cognitive efort. In contrast, generic tools can only support anticipated scenarios, which usually align with programming language concepts or well-known project domains. However, the creation and modifcation of interactive tools is expensive because the glue that connects data to graphics is hard to fnd, change, and test. Even if valuable data is available in a common format and even if promising visualizations could be populated, programmers have to invest many resources to make changes in the programming environment.