Each Trait That Mendel Studied Existed in 2 Discrete Forms

Total Page:16

File Type:pdf, Size:1020Kb

Each Trait That Mendel Studied Existed in 2 Discrete Forms Patterns of Inheritance Objective # 1 In this section we will examine how studying patterns of inheritance has Define the term “monohybrid cross”. allowed scientists to learn about some Describe one of the monohybrid of the basic laws that govern the crosses carried out by Mendel and transmission of genetic information explain how the results of these from one generation to the next. crosses led him to formulate the Law of Segregation and the Law of You will also learn how to use this Dominance. knowledge to predict the outcome of certain types of genetics crosses. 1 2 Objective 1 Objective 1 So far, we have focused on how However, over 50 years before scientists chromosomes get passed from cell to cell understood the role that chromosomes during the eukaryotic cell cycle, and from play in transmitting hereditary one generation to the next during information, an Austrian monk named eukaryotic life cycles. Gregor Mendel discovered the basic Since chromosomes contain the principles of heredity by studying the hereditary information, this shows us how pattern of inheritance for 7 different the hereditary information is transmitted traits in pea plants. from one generation to the next. 3 4 Objective 1 Objective 1 Each trait that Mendel studied existed in 2 The 7 traits that discrete forms. Mendel studied are For example, seed shown in the chart shape could be on the right. wrinkled or Each trait exists in round: 2 forms. 5 6 1 Objective 1 Objective 1 Mendel was successful where many before him had failed because: ¾ he used statistics to mathematically ¾ he simplified the problem by first analyze the results of his crosses and examining just one trait at a time. help determine the general patterns of his results. ¾ he limited his study to traits that existed in 2 discrete forms. ¾ he kept quantitative data over several generations, using large sample sizes. 7 8 Objective 1 Objective 1 Mendel’s success was also due to a Mendel began with crosses where he certain amount of luck because each followed the inheritance of one trait. trait that he followed happened to be Although he didn’t know it, each trait controlled by a single pair of alleles. he studied was controlled by a single This produces the simplest possible gene locus. This type of cross is called a pattern of inheritance. monohybrid cross. For example, Mendel followed the inheritance of flower color, which exists in 2 discrete forms: purple and white. 9 10 Objective 1 Objective 1 When he crossed some pure-breeding Next, he allowed the F1 plants to self- purple flowered plants with some fertilize in order to produce the F2 pure-breeding white flowered plants generation. Again, the results were (this is called the parental or P unexpected: generation) he got some surprising results: ¾ Out of 929 F2 plants, he found 705 ¾ all of the offspring (called the F1 with purple flowers and 224 with white generation) had purple flowers! flowers, a ratio of 3.15 to 1. 11 12 2 Objective 1, One of Mendel’s Monohybrid Crosses Objective 1 Mendel explained his results by proposing the following 4-part hypothesis: 1)Each individual has two “hereditary factors” controlling a given trait. The pure-breeding purple parents have 2 hereditary factors for purple flowers, and the pure-breeding white plants have 2 hereditary factors for white flowers. 13 14 Objective 1 Objective 1 Today we call Mendel’s “hereditary The appearance of an organism is factors” alleles. Scientists use letters to called its phenotype (e.g. purple represent alleles. For example, if we use flowers), and the alleles the organism “A” to represent the purple allele and “a” has is its genotype (e.g. AA). to represent the white allele, then the pure-breeding purple plants would be AA and the pure-breeding white plants would be aa. 15 16 Objective 1 Objective 1 From chromosome studies we know that parents are diploid, so there are 2 If the 2 alleles are identical (e.g. AA), sets of chromosomes in each cell, and the individual is homozygous for that 2 alleles at each gene locus. trait. If the 2 alleles are different (e.g. Aa), the individual is heterozygous for Because flower color is controlled by that trait. one gene locus, each parent must have 2 alleles controlling this trait. 17 18 3 Objective 1 Objective 1 2) When the parents produce gametes, Today we know that homologous the 2 hereditary factors separate, and chromosomes separate during meiosis I, each gamete receives one of the 2 leading to formation of haploid gametes. factors. Therefore, all gametes Because gametes are haploid, each produced by the purple parent (AA) gamete has 1 set of chromosomes, and 1 have one purple allele (A), and all allele at every gene locus. gametes produced by the white parent Because flower color is controlled by one (aa) have 1 white allele (a). This is gene locus, each gamete must have 1 called Mendel’s Law of Segregation. 19 allele controlling this trait. 20 Objective 1 Objective 1 3) The offspring are formed when a Today we know the offspring are gamete from one parent joins with a diploid, so there are 2 sets of gamete from the other parent. chromosomes in each cell, and 2 alleles Therefore, each F1 offspring receives at each gene locus (one inherited from one purple hereditary factor (A) each parent). from the purple parent (AA) and one white hereditary factor (a) from the white parent (aa). 21 22 Objective 1 Objective 1 4) When an individual is heterozygous, One the next slide, you can see how only one of the 2 alleles is expressed. Mendel’s Laws of Inheritance can be Mendel called the expressed allele used to correctly predict the outcome dominant, and the non-expressed of both the F1 and the F2 generations: allele recessive. Because purple is dominant to white, all the F1 plants (Aa) have purple flowers. This is known as Mendel’s Law of dominance. 23 24 4 Objective 1, One of Mendel’s Monohybrid crosses Objective # 2 Explain how a testcross can be used to determine whether an individual with a dominant phenotype is homozygous or heterozygous. 25 26 Objective 2 Objective 2 To determine whether an individual with a dominant phenotype is homozygous for the dominant allele or heterozygous, Mendel crossed the individual in question with an individual that had the recessive phenotype: 27 28 Objective # 3 Objective 3 In a dihybrid cross, we follow alleles at 2 Define the term “dihybrid cross”. gene loci simultaneously: Describe one of the dihybrid ¾ the parents are diploid, so there are 2 crosses carried out by Mendel and alleles at each gene locus = 4 alleles total explain how the results of these ¾ the gametes are haploid, so there is 1 crosses led him to formulate the allele at each gene locus = 2 alleles total Law of Independent Assortment. ¾ the offspring are diploid, so there are 2 alleles at each gene locus = 4 alleles total 29 30 5 Objective 3 Objective 3 For example, in pea plants seed shape is With his monohybrid crosses, Mendel controlled by one gene locus where determined that the 2 alleles at a single round (R) is dominant to wrinkled (r) gene locus segregate when the gametes while seed color is controlled by a are formed. different gene locus where yellow (Y) is With his dihybrid crosses, Mendel was dominant to green (y). interested in determining whether alleles Mendel crossed 2 pure-breeding plants: at 2 different gene loci segregate one with round yellow seeds and the dependently or independently. other with green wrinkled seeds. 31 32 Objective 3 Objective 3, Dependent Assortment R R r r Dependent segregation (assortment) Parents Y Y y y means alleles at the 2 gene loci R r segregate together, and are transmitted Parental Gametes Y y as a unit. Therefore, each plant would F Offspring R r only produce gametes with the same 1 Y y combinations of alleles present in the F Offspring’s Gametes R r gametes inherited from its parents: 1 Y y What is the expected 33 phenotypic ratio for the F2? 34 Objective 3 Objective 3 F2 with dependent assortment: Independent segregation (assortment) R r means alleles at the 2 gene loci Y y segregate independently, and are NOT R R R R r transmitted as a unit. Therefore, each Y Y Y Y y plant would produce some gametes R r r r with allele combinations that were not r present in the gametes inherited from Y y y y y its parents: Ratio is 3 round, yellow : 1 wrinkled, green 35 36 6 Objective 3, Independent Assortment Objective 3 R R r r F2 with independent assortment: Parents Y Y y y RY Ry rY ry R r Parental Gametes RR RR Rr Rr Y y RY R r YY Yy YY Yy F1 Offspring RR RR Rr Rr Y y Ry Yy Yy Yy yy F1 Offspring’s R R r r Rr Rr rr rr Gametes rY Y y Y y YY Yy YY Yy Rr Rr rr rr What is the expected ry Yy yy Yy yy phenotypic ratio for the F2? 37 Phenotypic ratio is 9 : 3 : 3 : 1 38 Objective 3 Objective # 4 Mendel’s dihybrid crosses showed a Explain why some genes do 9:3:3:1 phenotypic ratio for the F2 generation. NOT assort independently. Based on these data, he proposed the Also explain how an experiment Law of Independent Assortment, by Morgan originally which states that when gametes form, demonstrated this.
Recommended publications
  • OUTLINE 12 IV. Mendel's Work D. the Dihybrid Cross 1. Qualitative Results 2
    OUTLINE 12 IV. Mendel's Work D. The dihybrid cross 1. qualitative results 2. quantitative results E. Summary of Mendel's Rules V. Probability Theory and Patterns of Inheritance A. Definitions B. Rules for probability 1. independent outcomes 2. the product rule 3. single event; multiple outcomes 4. the addition rule C. Application to the dihybrid cross VI. Extensions of Mendel’s Rules Fig 14.2 A monohybrid cross Fig 14.3 P Homozygous P P Heterozygous p P p P PP Pp p Pp pp Genotypes: PP, Pp, pp genotype ratio: 1:2:1 Phenotypes: Purple, white phenotype ratio: 3:1 Fig. 14.6 A Test Cross Table 14.1 Fig. 14.7 A Dihybrid Cross Mendel’s Laws (as he stated them) Law of unit factors “Inherited characters are controlled by discrete factors in pairs” Law of segregation “When gametes are formed, the factors segregate…and recombine in the next generation.” Law of dominance: “of the two factors controlling a trait, one may dominate the other.” Law of independent assortment: “one pair of factors can segregate from a second pair of factors.” When all outcomes of an event are equally likely, the probability that a particular outcome will occur is #ways to obtain that outcome / total # possible outcomes Examples: In a coin toss P[heads] - 1/2 (or 0.5) In tossing one die P[2] = 1/6 In tossing one die P[even #] = 3/6 Drawing a card P[Queen of spades] = 1/52 The “AND” rule Probability of observing event 1 AND event 2 = the product of their independent probabilities.
    [Show full text]
  • Dihybrid Crosses
    Dihybrid Crosses: Punnett squares for two traits Genes on Different Chromosomes If two genes are on different chromosomes, all four possible alleles combinations for two different genes in a heterozygous cross are _____________ due to independent assortment. If parents are RrYy (heterozygous for both traits) Equally R r likely to R r OR line up either way y Y Y y when dividing Ry rY RY ry Gametes: ___________________________________ Setting up a Dihybrid Cross: RrYy x RrYy Each side of a Punnett Square represents all the possible allele combinations in a gamete from a parent. Parent gametes always contain one allele for___ _______ .(____________-R or r & Y or y in this case). Four possible combinations of the alleles for the two genes are possible if heterozygous for both traits. (For example: ___________________) Due to independent assortment, each possible combination is equally likely if genes are on separate chromosomes. Therefore Punnett squares indicate probabilities for each outcome. Discuss with your table partner: A. R r Y y Which is correct for a R dihybrid cross of two r heterozygous parents RrYy x RrYy? Y y B. RR Rr rr rR C. RY Ry rY ry YY RY Yy Ry yy rY yY ry Explain how the correct answer relates to the genes passed down in each gamete (egg or sperm) Dihybrid Cross of 2 Heterozygotes 9 3 3 1 Heterozygous Dihybrid Cross Dominant Dominant Recessive Recessive for both 1st trait 1st trait for both traits Recessive Dominant traits 2nd trait 2nd trait Round Round Wrinkled Wrinkled Yellow Green Yellow Green __ __ __ __ ______ = ______ = ______ = _______ = ___ ____ ____ _____ Heterozygous cross __________ratio if independent assortment Mendel developed the Law of Independent Assortment because he realized that the results for his dihybrid crosses matched the probability of the two genes being inherited independently.
    [Show full text]
  • Chapter 10: Dihybrid Cross Worksheet
    Name: __________________________ Period: _____ Date: _________________ Chapter 10: Dihybrid Cross Worksheet In rabbits, gray hair is dominant to white hair. Also in rabbits, black eyes are dominant to red eyes. These letters represent the genotypes of the rabbits: 1. What are the phenotypes (descriptions) of rabbits that have the following genotypes? Ggbb ____________________ ggBB ________________________ ggbb ____________________ GgBb _________________________ 2. A male rabbit with the genotype GGbb is crossed with a female rabbit with the genotype ggBb the square is set up below. Fill it out and determine the phenotypes and proportions in the offspring. How many out of 16 have gray fur and black eyes? ________ How many out of 16 have gray fur and red eyes? ________ How many out of 16 have white fur and black eyes? ________ How many out of 16 have white fur and red eyes________ 3. A male rabbit with the genotype GgBb is crossed with a female rabbit with the genotype GgBb The square is set up below. Fill it out and determine the phenotypes and proportions of offspring How many out of 16 have gray fur and black eyes? ________ How many out of 16 have gray fur and red eyes? ________ How many out of 16 have white fur and black eyes? ________ How many out of 16 have white fur and red eyes? ________ 4. Show the cross between a ggBb and a GGBb. You'll have to set this one up yourself: Punnett Square: 5. An aquatic arthropod called a Cyclops has antennae that are either smooth or barbed.
    [Show full text]
  • Chapter 10: Mendel and Meiosis
    0250-0251 UO4 BDOL-829900 8/4/04 6:16 PM Page 250 1863 Lincoln writes the Emancipation Proclamation. 1865 Mendel discovers the rules of inheritance. Genetics What You’ll Learn Chapter 10 Mendel and Meiosis Chapter 11 DNA and Genes Chapter 12 Patterns of Heredity and Human Genetics Chapter 13 Genetic Technology Unit 4 Review BioDigest & Standardized Test Practice Why It’s Important Physical traits, such as the stripes of these tigers, are encoded in small segments of a chromosome called genes, which are passed from one generation to the next. By studying the inheritance pattern of a trait through several generations, the probability that future offspring will express that trait can be predicted. Indiana Standards The following standards are covered in Unit 4: B.1.8, B.1.21, B.1.22, B.1.23, B.1.24, B.1.25, B.1.26, B.1.27, B.1.28, B.1.29, B.1.30, B.2.4 Understanding the Photo White tigers differ from orange tigers by having ice-blue eyes, a pink nose, and creamy white fur with brown or black stripes. They are not albinos. The only time a white tiger is born is when its parents each carry the white- coloring gene. White tigers are very rare, and today, they are only seen in zoos. 250 in.bdol.glencoe.com/webquest (t)Science Photo Library/Photo Researchers, (crossover)Tom Brakefield/CORBIS 0250-0251 UO4 BDOL-829900 8/4/04 3:08 PM Page 251 1950 1964 The Korean War begins The Beatles make when North Korea their first appearance invades South Korea.
    [Show full text]
  • Mendelian Genetics ARC Workshop for Biology By: Miriam Schmid Agenda
    Mendelian Genetics ARC Workshop for Biology by: Miriam Schmid Agenda • Mendel's Experiments • Mendel's Conclusions • Dominance and Recessiveness • Principle of Segregation • Independent Assortment • Terms to Know • Genotype vs Phenotype • Homozygous vs Heterozygous • Gamete Formation • Punnett Squares o Single Trait Crosses o Dihybrid Crosses • References Mendel’s Experiments Mendel’s Conclusions • Dominance and Recessiveness • Principle of Segregation • Principle of Independent Assortment Dominance and Recessiveness • One “factor” or allele masks the other o Called dominant o Ex. Brown eyes (B) • The “factor” or allele is masked or not evident o Called recessive o Ex. Blue eyes (b) Principle of Segregation • Each reproductive cell (gamete) has only one “factor” for each characteristics. • The two factors or alleles segregate or separate during the gamete formation. Independent Assortment • Factors for different characteristics are distributed to reproductive cells independently. o Ex. Pea color inheritance is independent from height and pod color and flower position. o Exception: traits on same chromosome Terms: • Chromosomes: • Genes: • Allele: Genotype vs. Phenotype • Genotype= exact gene makeup o Ex. AaBBCCDd, TtPP, Bb • Phenotype= how a trait is expressed o Ex. Tall, purple, short, round, pink, etc Homozygous/Heterozygous Gamete formation • Each gamete formed receives one copy of each chromosome with one copy of each allele. o Ex. TtPp . Can make 4 different gametes: TP, Tp, tP, tp o What gametes can an individual with the genotype AaBB make? o What gametes can an individual with the genotype PpttMm make? Punnett Square Setup Single Trait Crosses • In pea plants, yellow seeds are dominant over green seeds. 1. Cross a pure breeding yellow plant with a green plant.
    [Show full text]
  • Determining Acceptance of the 9:3:3:1 Ratio in Fruit Fly Crosses Using the Chi Squared Test
    Determining Acceptance of the 9:3:3:1 Ratio in Fruit Fly Crosses Using the Chi Squared Test Abstract In this experiment we set out to determine whether or not two different fruit fly crosses fit the 9:3:3:1 ratio, which is set up by the law of independent assortment. We did this by setting up a flask with first generation flies that gave rise to a second generation, which could be used to observe inheritance of phenotypes based on the parental phenotypes. We put the flies under a dissecting microscope to determine which phenotypes they exhibited, recorded the phenotypes in a table, used the data to determine the chi squared value, and compared our chi squared value to that of a table to determine if it actually fit the expected ratio. We found that in one cross this was true and that the other cross shouldn’t have fit it because it didn’t follow the law of independent assortment. The second cross shouldn’t have fit the ratio because the traits were linked on one gene, which made it impossible for both phenotypes to be shown at the same time. Introduction Gregor Mendel succeeded where many had failed when it came to genetics. Two important rules Mendel came up with are the law of segregation and independent assortment. The law of segregation Mendel’s first law states that allele pairs separate during gamete formation, and then randomly reform as pairs during the fusion of gametes at fertilization (Campbell and Reece, 2002). An allele is version of a gene.
    [Show full text]
  • Chapter 3. Inheritance of Quantitative Traits in Fish 61 3.1
    2 To my family, friends and colleagues Acknowledgements I would like to acknowledge my colleagues and collaborators in the United States, Israel and Russia with whom I obtained data on fish genetics used in this book. My special thanks to Nina Cherfas, my teacher and long-term collaborator, and Robert Durborow for the help in preparation of this book. I would like to acknowledge all authors whose data I mentioned and considered in this book and whose figures and tables have been reproduced. In order to follow a textbook format, I was obligated to omit formal citations for some presented materials. 3 Table of Content Page Chapter 1. Fish Chromosomes and Cytogenetics of Fish Reproduction 7 1.1. Variability and Evolution of Fish Karyotypes 7 1.1.1. Introduction: Chromosomes and Karyotypes 7 1.1.2. Variability of Fish Karyotypes 8 1.1.3. Evolution of Fish Karyotypes 10 1.2. Sex Chromosomes and Genetics of Sex Determination 15 1.3. Formation of Reproductive System and Sex Differentiation 18 1.4. Gametogenesis and Fertilization 21 1.4.1. Introduction: Gametogenesis and Meiosis 21 1.4.2. Oogenesis 22 1.4.3. Spermatogenesis 28 1.4.4. Fertilization 30 1.5. Natural Gynogenesis and Hybridogenesis 33 Chapter 2. Inheritance of Qualitative Morphological Traits in Fish 37 2.1. Introduction: Main Features of Qualitative Traits 37 2.2. Inheritance of Color Traits in Fish 37 2.2.1. Basic Principles of Color Development and Inheritance 37 2.2.2. Albinism and Its Inheritance 38 2.2.3. Color Modifications in Some Aquaculture and Sport Fish Species 41 2.2.3.1.
    [Show full text]
  • Mendel's Experiments
    11/19/2019 BIOL 230: Cell & Molecular Biology Fall 2019 17-205 W, Nov. 20 http://accounts.smccd.edu/staplesn/biol230/ 1. Pre-Lab writeups due each Mon. (for both M&W!!) WRITTEN!!!: briefly, What? Why? How? for each expt. Question & Hypothesis?! 2. GENETICS PRIMER: http://anthro.palomar.edu/mendel/mendel_1.htm 3. Prelab: do Mendelian Genetics exercises (A-C for Wed., 11/20) – & Ch. 12 Homework Problems: a) http://sonic.net/~nbs/projects/anthro201/; *** http://sonic.net/~nbs/projects/anthro201/exper/ b) http://www.biology.arizona.edu/mendelian_genetics/mendelian_genetics.html *** c) https://www.ndsu.edu/pubweb/~mcclean/plsc431/mendel/mendel1.htm (see left side INDEX!) https://www.ndsu.edu/pubweb/~mcclean/plsc431/mendel/mendel9.htm (see left side INDEX!) d) https://concord.org/teaching-genetics/dragons/ DRAGONS!!! – see Geniverse & Genigames e) http://www.dnaftb.org/ Classical Genetics, and Genetic Organization. f) TURN IN your calculations of your D1S80 Genotype!! Also: ARE you an Alien Clone???? 4. LAB THIS week: Genotypes and Phenotypes!! PROBABILITIES!!! 5. Find Anastasia & Alien GEL DATA under ADDITIONAL MATERIALS. 6. Extra Credit: STEM SPEAKER SERIES, ALL DUE by THIS WEEK!!!! 7. ****NOTEBOOK/Lab MANUAL is due TODAY!! 8. RESEARCH Outlines will be reviewed by tonight!!! FINAL REPORT due week of Wed., Dec. 4th. NO EXCEPTIONS!!! REVIEW 1. Ch. 11: Describe and Diagram the 4 phases of the cell cycle, and how they are regulated by Cyclin/CDK complexes. 2. Diagram and compare the 4 main phases of Mitosis, Meiosis I & Meiosis II. – Chromosome, Chromatid, Centromere, Centriole, Spindle, Cortical MT’s, Spindle fibers/ MT’s, Sister Chromatid, Homologous Chromosome, Nuclear Envelope, Cytokinesis (plants/animals).
    [Show full text]
  • Medel/Genetics/Punnett Squares Marzano Framework Biology HS Start Date: January 16, 2012 End Date : February 03, 2012
    Heredity: Medel/Genetics/Punnett Squares Marzano Framework Biology HS Start Date: January 16, 2012 End Date : February 03, 2012 Why is it important? Enduring Understandings Essential Questions Key Vocabulary genetics Be familiar with Gregor Mendel's studies on heredity and What is a monohybrid cross and what is its heredity use Puniest squares to predict the results of monohybrid and genotypic/phenotypic ratios? dihybrid genetic crosses. What is a dihybrid cross and what is its genotypic/phenotypic trait ratios? pollination What did Mendel’s studies on heredity involve? self-pollination How did Mendel’s discoveries affect modern genetics? cross-pollination Why is a Punnett Square used? true-breeding P generation F1 generation Learning Targets F2 generation Compare and contrast monohybrid and dihybrid crosses. dominant Discover Mendel’s principles of heredity. recessive Construct a Punnett square. law of segregation Identify Mendel’s discoveries and their uses in modern law of independent assortment genetics. Recognize the differences between phenotype and genotype. molecular genetics allele genotype phenotype homozygous heterozygous probability monohybrid cross Punnett Square genotypic ratio phenotypic ratio testcross complete dominance incomplete dominance Heredity: Medel/Genetics/Punnett Squares - Page 1 of 4 Heredity: Medel/Genetics/Punnett Squares Marzano Framework Biology HS Start Date: January 16, 2012 End Date : February 03, 2012 codominance dihybrid cross Standards OH_Academic_Content_Standards - Science (2011) - Biology Content
    [Show full text]
  • In This Lesson, You Will Learn How to Predict the Probable Genetic Makeup and Appearance of Offspring Resulting from Specific Cr
    In this lesson, you will learn how to predict the probable genetic makeup and appearance of offspring resulting from specific crosses.! Probability! n Predicts the likelihood that a specific event will occur.! n May be expressed a a decimal, a percentage, or a fraction.! n Determined by the following formula:! Probability = number of times an event is expected to happen! number of opportunities for an event to happen! Why probability is important to genetics! n Mendel used probability to determine how likely the dominant trait would appear over the recessive trait.! n The yellow pea appeared 6,022 times in the F2 generation. The green pea appeared 2,001 times. ! n The total number of individual was 8023 (6022+2001)! n Using the formula: ! n 6022 ÷ 8023 = 0.75 ! n 2001 ÷ 8023 = 0.25 ! n Percentage: 75% green peas 25% yellow peas! n Ratio: 3:1 ratio of yellow to green peas! n Fraction: 1/4 chance of green peas and 3/4 chance of yellow peas! ! ! Results of the F1 generation! PP Pp x 2 pp ratio: 1:2:1 or 3:1 purple to white! 75% purple to 25% white! F1 generation yielded 100% purple flowers, heterozygous for the purple trait.! white (pp) x purple(PP) ! ! ! ! yields! ! ! ! 100% purple flowers that are heterozygous for the purple flower trait (Pp).! Punnett Square! n A diagram used to predict the probability of certain traits by offspring.! n The following examples will illustrate the outcome of different types of crosses.! How to set up and work a Punnett square! n Draw a four-square box.! n Place one set of alleles on the side of the box as shown at right.! How to set up and work a Punnett square! n One set of alleles for a trait go on top of the box (usually male) and the other set of alleles go on the side of the box.! n Each letter from the set of alleles is placed on top of the square.! Filling in the boxes…! n Fill in the top left box with the alleles from top left and upper left.! n The dominant letter is placed first.
    [Show full text]
  • BIOL 211 Genetics
    South Central College BIOL 211 Genetics Common Course Outline Course Information Description This is an introductory Genetics course which covers the study of biologically inherited traits. It will emphasize Mendelian genetics as well as molecular genetics. Students will explore classical, population and molecular genetics. Students will learn genetics through lecture, solving genetics problems and demonstrating concepts from lecture through laboratory experimentation. (Prerequisites: General Biology I, General Biology II, Chemistry 121) MNTC area 3 Total Credits 4.00 Total Hours 80.00 Types of Instruction Instruction Type Credits/Hours Lecture Lab Pre/Corequisites General Biology I General Biology II Chemistry 121 Course Competencies 1 Develop an understanding of Mendelian genetics. Learning Objectives Discuss how the monohybrid cross reveals how one trait is transmitted from generation to generation. Explain how Mendel's dihybrid cross revealed his fourth postulate: Independent assortment. Describe how the trihybrid cross demonstrates that Mendel's principles apply to inheritance of multiple traits. Demonstrate knowledge of transmission genetics by solving genetics problems. Analyze a pedigree to predict how traits are inherited. 2 Describe the processes of mitosis and meiosis. Common Course Outline August 2015 Learning Objectives List and describe the stages of mitosis. List and describe the stages of meiosis. Compare and contrast mitosis and meiosis in regard to their purposes. Compare and contrast mitosis and meiosis in regard to when each occurs. 3 Describe extensions of Mendelian genetics. Learning Objectives Describe how alleles alter phenotypes in different ways. Explain Dominance, codominance, and incomplete dominance. Explain why phenotypes are often affected by more than one gene. Explain pleiotropy and provide examples.
    [Show full text]
  • Genetics Complete Notes.Pdf
    GENETICS History of genetics Genetics- study of inheritance Trait- characteristic that can be passed from parent to child Ex. Hair color, eye color, etc. Ex. Pea plants- seed shape, height, flower color In the past, people explained heredity by saying that traits from parents were “blended” (blending hypothesis) We now know that during cell division, chromosomes are distributed through gametes Mendel’s experiments Gregor Mendel Father of genetics Austrian monk Began work in 1860’s Used 20,000 pea plants to study how traits are passed from one generation to the next Found that his results did not support the “blending hypothesis” (Why was this? How did he know it wasn’t right?) Mendel’s experiments (cont.) Purebred Organism with same genetic info from parents Pea plants: self-fertilization or true breeding (sperm and egg from same plant) Also called homozygous (GG or gg) Hybrid Organism with different forms of a genetic trait from each parent Pea plants: crossbreeding (sperm and egg from different plant) Also called heterozygous (Gg) Mendel’s observations Started by crossing 2 different purebred plants (called parent or P generation) by cross pollination 1st generation of offspring (what he got from crossing two parent plants) called F1 generation All hybrid offspring only had the character of ONE of the parents (NO BLENDING!) Allowed F1 plants to self-fertilize to produce F2 generation Mendel’s observations (cont.) Generation Cross (pea color) Results P Yellow x Green All yellow F1 Yellow x Yellow 3 Yellow 1 Green F2 Differs Differs Mendel’s observations (cont.) Repeated experiment with 6 other traits Flower color (purple/white) Flower position (axial/terminal) Pea shape (round/wrinkled) Pod color (green/yellow) Pod shape (inflated/constricted) Height (tall/short) Defined each form as dominant (75% of F2) or recessive (25% of F2) Gene Section of a chromosome that codes for a trait Allele Different form of a gene (usually two) Represented by a letter Ex.
    [Show full text]