Lecture 10: “Practical”
Total Page:16
File Type:pdf, Size:1020Kb
/INFOMOV/ Optimization & Vectorization J. Bikker - Sep-Nov 2015 - Lecture 10: “Practical” Welcome! Today’s Agenda: . DotCloud: profiling & high-level (1) . DotCloud: low-level and blind stupidity . DotCloud: high-level (2) . Billiards: high level . Digest INFOMOV – Lecture 10 – “Practical” 3 Practical Matters Re-introducting DotCloud Application breakdown: Tick Sort Transform Render DrawScaled INFOMOV – Lecture 10 – “Practical” 4 Practical Matters Performance Analysis & Scalability ms per frame 256 1024 4096 16384 Transform 0.002 0.005 0.016 0.061 Sort 0.090 1.190 21.600 480.100 Render 0.650 1.420 5.130 19.681 ms per dot 256 1024 4096 16384 Transform 0.0000 0.0000 0.0000 0.0000 Sort 0.0004 0.0011 0.0053 0.0293 Render 0.0025 0.0014 0.0013 0.0012 INFOMOV – Lecture 10 – “Practical” 5 Practical Matters Solving the Sort Problem Current Sort: bubblesort ( 푂(푁2) ). Alternatives*: Quicksort Shell sort Pigeonhole sort Heapsort Binary tree sort Bucket sort Mergesort Library sort Spread sort Radixsort Smoothsort Burstsort Insertionsort Strand sort Flashsort Selectionsort Cocktail sort Postman sort Monkeysort Comb sort Bread sort Countingsort Block sort Bitonic sort Introsort Odd-even sort Stooge sort * See e.g.: http://www.sorting-algorithms.com INFOMOV – Lecture 10 – “Practical” 6 Practical Matters Solving the Sort Problem Current Sort: bubblesort ( 푂(푁2) ). Best case: O(N). Which case do we have here? Factors: How much effort should we spend on this? . Size of set . For small sets, sorting takes far less time . Already sorted / almost sorted? than rendering . Distributed (even / uneven) . Anything that is not 푂(푁2) will probably . Type of data (just key / full records) be fine. Key type (float / int / string) . Would be nice if we can find something . … that fits well in the current code (safe time for other optimizations). INFOMOV – Lecture 10 – “Practical” 7 Practical Matters Solving the Sort Problem Current Sort: bubblesort ( 푂(푁2) ). Alternative: QuickSort ( 푂( 푁 log 푁 ) ). void Swap( vec3& a, vec3& b ) { vec3 t = a; a = b; b = t; } int Pivot( vec3 a[], int first, int last ) { int p = first; vec3 e = a[first]; for( int i = first + 1; i <= last; i++ ) if (a[i].z <= e.z) Swap( a[i], a[++p] ); Swap( a[p], a[first] ); return p; } void QuickSort( vec3 a[], int first, int last) { int pivotElement; if (first >= last) return; pivotElement = Pivot( a, first, last ); QuickSort( a, first, pivotElement - 1 ); QuickSort( a, pivotElement + 1, last ); } INFOMOV – Lecture 10 – “Practical” 8 Practical Matters Repeated Profiling bubblesort 256 1024 4096 16384 Transform 0.002 0.005 0.016 0.061 Sort (bubble) 0.090 1.190 21.600 480.100 Sort (quick) 0.014 0.063 0.305 1.569 Render 0.650 1.420 5.130 19.681 INFOMOV – Lecture 10 – “Practical” 9 Practical Matters Low Level Optimization of DrawScaled void Sprite::DrawScaled( int a_X, int a_Y, int a_Width, int a_Height, Surface* a_Target ) { if ((a_Width == 0) || (a_Height == 0)) return; for ( int x = 0; x < a_Width; x++ ) for ( int y = 0; y < a_Height; y++ ) { int u = (int)((float)x * ((float)m_Width / (float)a_Width)); int v = (int)((float)y * ((float)m_Height / (float)a_Height)); Pixel color = GetBuffer()[u + v * m_Pitch]; if (color & 0xffffff) a_Target->GetBuffer()[a_X + x + ((a_Y + y) * a_Target->GetPitch())] = color; } } Functionality: . for every pixel of the rectangular target image, . find the corresponding source pixel, . using interpolation. INFOMOV – Lecture 10 – “Practical” 10 Practical Matters Low Level Optimization of DrawScaled A few basic optimizations: void Sprite::DrawScaled( int a_X, int a_Y, int a_Width, int a_Height, Surface* a_Target ) { for ( int y = 0; y < a_Height; y++ ) { int v = (int)((float)y * ((float)m_Height / (float)a_Height)); for ( int x = 0; x < a_Width; x++ ) { int u = (int)((float)x * ((float)m_Width / (float)a_Width)); Pixel color = GetBuffer()[u + v * m_Pitch]; if (color & 0xffffff) a_Target->GetBuffer()[a_X + x + ((a_Y + y) * a_Target->GetPitch())] = color; } } } . Loop swap (to improve cache usage) . Loop hoisting (variable v is constant inside x loop) . Removed check for zero-width sprite (doesn’t happen in our case) INFOMOV – Lecture 10 – “Practical” 11 Practical Matters Low Level Optimization of DrawScaled More basic optimizations: void Sprite::DrawScaled( int a_X, int a_Y, int a_Width, int a_Height, Surface* a_Target ) { float rh = (float)m_Height / (float)a_Height, rw = (float)m_Width / (float)a_Width; for ( int y = 0; y < a_Height; y++ ) { int v = (int)((float)y * rh); Pixel* line = a_Target->GetBuffer() + a_X + (a_Y + y) * a_Target->GetPitch(); for ( int x = 0; x < a_Width; x++ ) { int u = (int)((float)x * rw); Pixel color = GetBuffer()[u + v * m_Pitch]; if (color & 0xffffff) line[x] = color; } } } . Precalculate m_Height / a_Height, m_Width / a_Width . Calculate y component of target address once per line INFOMOV – Lecture 10 – “Practical” 12 Practical Matters Low Level Optimization of DrawScaled Fixed point optimization: void Sprite::DrawScaled( int a_X, int a_Y, int a_Width, int a_Height, Surface* a_Target ) { const int rh = (m_Height << 10) / a_Height, rw = (m_Width << 10) / a_Width; Pixel* line = a_Target->GetBuffer() + a_X + a_Y * a_Target->GetPitch(); for ( int y = 0; y < a_Height; y++, line += a_Target->GetPitch() ) { const int v = (y * rh) >> 10; for ( int x = 0; x < a_Width; x++ ) { const int u = (x * rw) >> 10; const Pixel color = GetBuffer()[u + v * m_Pitch]; if (color & 0xffffff) line[x] = color; } } } . Fixed point works really well here… but doesn’t improve performance. Incremental calculation of line address helps a bit . Seems we reached the end here… INFOMOV – Lecture 10 – “Practical” 13 Practical Matters Low Level Optimization of DrawScaled Now what? . Plot multiple pixels at a time? . … How many different ball sizes do we encounter? …Why don’t we simply precalculate those frames? INFOMOV – Lecture 10 – “Practical” 14 “More computing sins are committed in the name of efficiency (without necessarily achieving it) than for any other single reason – including blind stupidity.” (W.A. Wulff) INFOMOV – Lecture 10 – “Practical” 15 Practical Matters High Level Optimization of DrawScaled Sprite* scaled[64]; void Game::Init() { ... for( int i = 0; i < 64; i++ ) { int size = i + 1; scaled[i] = new Sprite( new Surface( size, size ), 1 ); scaled[i]->GetSurface()->Clear( 0 ); m_Dot->DrawScaled( 0, 0, size, size, scaled[i]->GetSurface() ); } } scaled[size]->Draw( (sx - size / 2), (sy - size / 2), screen ); INFOMOV – Lecture 10 – “Practical” 16 Practical Matters Repeated Profiling bubblesort 256 1024 4096 16384 Transform 0.002 0.005 0.016 0.061 Sort 0.014 0.063 0.305 1.569 Render (old) 0.650 1.420 5.130 19.681 Render (new) 0.350 0.720 1.977 6.383 INFOMOV – Lecture 10 – “Practical” 17 Practical Matters Optimization of Dense Clouds Observation: beyond a certain dot count, a large number of particles is occluded. Specifically, we won’t be able to see the back half. if (m_Rotated[i].z > -0.2f) scaled[size]->Draw( (sx - size / 2), (sy - size / 2), screen ); (perhaps we could also limit rendering to the outer shell of the cloud?) Rendering is now down to 4.8ms, and sorting is slowly becoming significant again: At 65536 dots, we get 4.7ms for sorting, 17.3ms for rendering. INFOMOV – Lecture 10 – “Practical” 18 Practical Matters Low Level Optimization of DrawScaled Extreme Optimization: . We simply generate a function that plots every pixel, without the need for a loop. FILE* f = fopen( "drawfunc.h", "w" ); fprintf( f, "void Sprite::DrawBall( int x, int y, int size, Surface* target )\n" ); fprintf( f, "{\nuint* a = target->GetBuffer() + x + y * SCRWIDTH;\nswitch( size )\n{\n" ); for( int i = 0; i < 64; i++ ) { ... fprintf( f, "case %i:\n", size ); for( int y = 0; y < size; y++) for( int x = 0; x < size; x++ ) { int a = y * SCRWIDTH + x; if (scaled[i]->GetBuffer()[x + y * size] & 0xffffff) fprintf( f, "a[%i]=%i;\n", a, scaled[i]->GetBuffer()[x + y * size] & 0xffffff ); } fprintf( f, "break;\n" ); } fprintf( f, "}\n}\n" ); INFOMOV – Lecture 10 – “Practical” 19 Practical Matters Low Level Optimization of DrawScaled The last optimization worked surprisingly well, yielding a final performance of: 65536 dots @ ~7ms (render time only). Sorting is now definitely significant. INFOMOV – Lecture 10 – “Practical” 20 Practical Matters Sorting in O(1) For this specific situation, we can sort in O(1), e.g., independent of particle count. Observation: dots do not move independently. Intuition: why rotate 64k dots if you can rotate a single camera? INFOMOV – Lecture 10 – “Practical” 21 Practical Matters Sorting in O(1) INFOMOV – Lecture 10 – “Practical” 22 Practical Matters Sorting in O(1) INFOMOV – Lecture 10 – “Practical” 23 Practical Matters Sorting in O(1) INFOMOV – Lecture 10 – “Practical” 24 Practical Matters Sorting in O(1) INFOMOV – Lecture 10 – “Practical” 25 Practical Matters Sorting in O(1) INFOMOV – Lecture 10 – “Practical” 26 Practical Matters Sorting in O(1) For each split: . Process nearest half first . Then farthest half . Recurse Where ‘nearest’ is the side that the ‘camera’ is on. Today’s Agenda: . DotCloud: profiling & high-level (1) . DotCloud: low-level and blind stupidity . DotCloud: high-level (2) . Billiards: high level . Digest INFOMOV – Lecture 10 – “Practical” 28 Practical Matters Introducting Billiards Application breakdown: Game::Tick For each ball: . Draw ball . Update position . Bounce off of boundaries . For each other ball: . Bounce off of peer Clearly, we have 푂(푁2) behavior here. How do we fix this efficiently? INFOMOV – Lecture 10 – “Practical” 29 Practical Matters Profiling Adding a timer: timer t; t.reset(); Visualizing timing result: screen->Bar( 10, 10, 170, 20, 0 ); char r[128]; sprintf( r, "simulation time: %5.2f ms", t.elapsed() ); screen->Print( r, 12, 11, 0xffffff ); Apparently, we can check 2k balls against 2k balls in 4.5ms. INFOMOV – Lecture 10 – “Practical” 30 Practical Matters Low level optimization Lots of square roots in the main loop: . Length . Normalize (that’s actually the same square root!) . Another length (not being used, cost?) . Normalize (this one is for accuracy reasons) . Normalize (also for accuracy reasons) Improvements: . Use 푑2, only calculate square root if we already know balls are too close.