Advances in the Production of Minor Ginsenosides Using Microorganisms and Their Enzymes

Total Page:16

File Type:pdf, Size:1020Kb

Advances in the Production of Minor Ginsenosides Using Microorganisms and Their Enzymes Review Advances in the Production of Minor Ginsenosides Using Microorganisms and Their Enzymes Almando Geraldi1,2,* Abstract 1Department of Biology, Faculty of Science and Minor ginsenodes are of great interest due to their diverse pharmacological activities such as their anti-cancer, anti-diabetic, neuroprotective, immunomodulator, and anti-inflammatory effects. The miniscule amount Technology, Universitas of minor ginsenosides in ginseng plants has driven the development of their mass production methods. Airlangga, Surabaya, 60115, Among the various production methods for minor ginsenosides, the utilization of microorganisms and their Indonesia enzymes are considered as highly specific, safe, and environmentally friendly. In this review, various minor ginsenosides production strategies, namely utilizing microorganisms and recombinant microbial enzymes, 2Research Center for for biotransforming major ginsenosides into minor ginsenoside, as well as constructing synthetic minor Bio-Molecule Engineering, ginsenosides production pathways in yeast cell factories, are described and discussed. Furthermore, the Universitas Airlangga, present challenges and future research direction for producing minor ginsenosides using those approaches Surabaya, 60115, Indonesia are discussed. Keywords biotransformation, biosynthesis, β-glucosidase, Ginsenosides, minor ginsenosides. *Correspondence: Almando Geraldi, Tel: +62-31-5936501; E-mail: almando.geraldi@fst. unair.ac.id Introduction and C-20 positions in the case of PPT-type Received: February 29 2020 ginsenosides [9, 10]. Revised: March 19 2020 Ginseng, a plant belonging to the Meanwhile, based on their abundance in Accepted: April 27 2020 Araliaceae family and the genus Panax, ginseng, ginsenosides can be classified as Published Online: May 29 has been used to treat different kinds of major ginsenoside and minor ginsenosides. 2020 ailments and disease in East Asian coun- Major ginsenosides [i.e., Rd, Rc, Rb , and 2 Available at: tries for millennia [1, 2]. Recently, the Rb1 (PPD-type); Rg1, Rf, and Re (PPT-type)] https://bio-integration.org/ popularity of ginseng as a nutraceutical constitute more than 90% of the total ginse- and alternative medicine has been increas- nosides, while minor ginsenosides [i.e. F2, ing worldwide [3, 4]. The global ginseng Rg3, Rh2, and Compound K (PPD-type); Rg2, market has been reported to be valued Rh1, and F1 (PPT-type)] are only present in at over two billion U.S. dollars and is small quantities in ginseng [50, 51]. Despite expected to grow exponentially [5]. showing some therapeutic effects such as, The beneficial health effects of ginseng anti-inflammatory, anti- diabetic, and neuro- are mainly attributed to ginsenosides, the protective effects, major ginsenosides are not major bioactive compound of ginseng easily absorbed by the human body [52]. On [6, 7]. Various in vitro and in vivo studies the other hand, while they are only present in have demonstrated the diverse pharmaco- very low amounts in ginseng, minor ginseno- logical activities of ginsenosides such as sides are considered as being more pharma- anti-microbial, antioxidant, anti-inflamma- cologically active than major ginsenosides tory, skin-protective, neuroprotective, anti- due to their smaller molecule size, better per- cancer, and anti-diabetic effects (Table 1). meability across the cell membrane, and thus Most of ginsenosides are classified as their higher bioavailability [53, 54]. protopanaxadiol (PPD), and protopanaxat- Minor ginsenosides are of commercial riol (PPT) types [8]. Both types consist of interest due to their diverse biological activ- an aglycon (a non-sugar component) of a ities and high pharmacological activities. dammarane skeleton (PPD or PPT) as an However, the miniscule amount of minor aglycon and one to four molecules of sugar ginsenosides extracted from ginseng can- moieties at C-3 and C-20 positions in the not satisfy the needs of scientific and clini- case of PPD-type ginsenosides or at C-6 cal studies, as well as commercial purposes BIOI 2020, Vol 1, No. 1, 15–24 15 https://bio-integration.org doi: 10.15212/bioi-2020-0007 BIOI 2020 Table 1 Example of PPD- and PPT-type Ginsenosides with Their Health Benefits Review 20(S)-Protopanaxadiol-type ginsenoside Name R1 (C3) R3 (C20) Health Benefits References 1 2 1 6 Rb1 Major Glc – Glc Glc – Glc Neuroprotective and anti-diabetic effects [11, 12] ginsenosides 1 2 1 6 Rb2 Glc – Glc Ara(p) – Glc Neuroprotective and anti-inflammatory effects [13, 14] Rc Glc1–2Glc Ara(f)1–6Glc Anti-inflammatory and skin-protective effects [15, 16] Rd Glc1–2Glc Glc– Anti-cancer and neuroprotective effects [17, 18] F2 Minor ginse- Glc– Glc– Anti-oxidant, anti-cancer, and skin-protective effects [19–21] nosides 1 2 Rg3 Glc – Glc H Anti-depressant, anti-virus, and anti-cancer effects [22–24] Gypenoside XVII Glc– Glc1–6Glc Cardioprotective and neuroprotective effects [25, 26] (GypXVII) Gypenoside H– Glc1–6Glc Skin-protective and anti-cancer effects [27, 28] LXXV (GypLXXV) Rh2 Glc– H– Skin protective, immunomodulator, anti-virus, and [29–32] anti-cancer effects Compound K H Glc– Anti-epileptic, anti-cancer, and skin-protective [33–35] (CK) effects 20(S)-Protopanaxatriol-type ginsenoside Name R2 (C6) R3 (C20) Health Benefit References Re Major Rha1–2Glc Glc– Anti-diabetic, kidney-, and heart-protective effects [36–38] Rf ginsenosides Glc1–2Glc H Neuroprotective and anti-inflammatory effects [39, 40] Rg1 Glc– Glc– Neuroprotective and hepatoprotective effects [41, 42] 1 2 Rg2 Minor Rha – Glc H- Skin-protective, antidepressant, and anti- [43–45] ginsenosides inflammatory effects Rh1 Glc- H Anti-oxidant, anti-inflammatory, immunomodulator, [46, 47] and anti-cancer F1 H Glc- Anti-aging, anti-oxidant, skin-protective, [48, 49] immunomodulator Ara(f): α-l-arabinofuranosyl; Ara(p): α-l-arabinopyranosyl; Glc: α-d-glucopyranosyl; Rha: α-l-ahamnopyranosyl. 16 A. Geraldi: Advances in the Production of Minor Ginsenosides Review BIOI 2020 [55, 56]. Therefore, it is very important to develop useful methods for the mass production of minor ginsenosides. Biotransformation of major ginsenosides into minor ginsenosides using Minor ginsenosides production microorganisms methods A wide variety of microorganisms have been used in the biotransformation of major ginsenosides into minor gin- The most common approach to producing minor ginseno- senosides (Table 2). The biotransformation activities are sides is by hydrolyzing the sugar moieties of major gin- mainly attributed to β-glucosidases (β-d-glucopyranoside senosides [57]. The hydrolysis can be conducted through glucohydrolase) [E.C.3.2.1.21] which hydrolyze the gly- physical (heat and microwave transformation), chemical cosidic bonds of the sugar moieties of the major ginseno- (acid and alkali hydrolysis), and biological (biotransforma- sides at the C-3, C-6, and C-20 positions [62]. However, tion) methods. Heat transformation via baking and steam- due to specific structures of the aglycon (dammarane skel- ing transforms PPD-type major ginsenosides Rb1, Rb2, and eton), only specific β-glucosidases, thus specific micro- Rc2 into Rd, and finally into minor ginsenosides Rg3, F2, organisms are able to hydrolyze ginsenoside-β-glucoside compound K, and Rh2, as well as PPT-type major ginseno- linkages [63]. sides Re and Rf into minor ginsenosides Rh1 and F1, with Ginseng plantation fields are one of the main sources of by-products of acetyl-ginsenosides [58, 59]. Meanwhile, microorganisms with major ginsenoside-biotransforming acid hydrolysis using hydrochloric acid transformed Rb1 activities. Endophytic microorganisms, spend all or part into Rg3 [60]. The physical and chemical methods are con- of their life cycle inside ginseng plants without damaging sidered to be fast and simple; however, the use of those the plant tissues or inducing defense responses, for exam- methods often results in the formation of undesirable ple, Burkholderia sp. GE 17-7 and Flavobacterium sp. GE by-products due to the low specificity. Moreover, there are 32, as well as fungi Arthrinium sp. GE 17-18 [64]. Those safety and environmental issues, for example, due to the use microorganisms exhibit hydrolysis activities on PPD-type of high temperature in the heat transformation approach, or ginsenosides. Flavobacterium sp. GE 32 has been reported strong acid/base in the acid/alkali hydrolysis methods. On to hydrolyze the outer glycosidic linkage of Rb1 at C-3 to the other hand, biological methods which involve enzymes produce Gypenoside XVII and the C-20 position to produce offer higher reaction specificity, can be conducted in mild Rd. The bacteria also showed hydrolysis activities on the conditions minimizing safety risks, and are more environ- glycosidic linkage at the C-20 position of Rd to generate mentally friendly [61]. Thus, there is growing interest in Rg3 [65]. Similar hydrolysis activities on the terminal and using biological methods for the mass production of minor inner glucopyranosyl moieties at the C-20 position of Rb1 to ginsenosides. produce Rg3 were also shown by Burkholderia sp. GE 17-7 In general, the biological methods for producing minor [66]. Meanwhile Arthrinium sp. GE 17-18 was shown to ginsenosides can be categorized as; the use of microbial have hydrolysis activity on terminal and inner glucopyrano- cells and enzymes for hydrolyzing sugar moieties of major syl moieties at the C-3 position and terminal glucopyranosyl ginsenosides, and the emerging biosynthesis methods, where moieties at the C-20 position of Rb1 to generate
Recommended publications
  • Advances in Saponin Diversity of Panax Ginseng
    molecules Review Advances in Saponin Diversity of Panax ginseng 1,2, 1,2, 3 3 2 2 Xiangmin Piao y, Hao Zhang y, Jong Pyo Kang , Dong Uk Yang , Yali Li , Shifeng Pang , Yinping Jin 2, Deok Chun Yang 3,* and Yingping Wang 1,* 1 State Local Joint Engineering Research Center of Ginseng Breeding and Application, Jilin Agriculture University, Changchun 130118, China; [email protected] (X.P.); [email protected] (H.Z.) 2 Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China; [email protected] (Y.L.); [email protected] (S.P.); [email protected] (Y.J.) 3 Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi do 17104, Korea; [email protected] (J.P.K.); [email protected] (D.U.Y.) * Correspondence: [email protected](D.C.Y.); [email protected] (Y.W.); Tel.: +82-031-281-6326 (D.C.Y.); +86-431-8453-3431 (Y.W.) These authors equally contributed to the work. y Academic Editor: Luisella Verotta Received: 18 June 2020; Accepted: 27 July 2020; Published: 29 July 2020 Abstract: Ginsenosides are the major bioactive constituents of Panax ginseng, which have pharmacological effects. Although there are several reviews in regards to ginsenosides, new ginsenosides have been detected continually in recent years. This review updates the ginsenoside list from P. ginseng to 170 by the end of 2019, and aims to highlight the diversity of ginsenosides in multiple dimensions, including chemical structure, tissue spatial distribution, time, and isomeride. Protopanaxadiol, protopanaxatriol and C17 side-chain varied (C17SCV) manners are the major types of ginsenosides, and the constitute of ginsenosides varied significantly among different parts.
    [Show full text]
  • SCIENCE CHINA Roles and Mechanisms of Ginsenoside in Cardiovascular Diseases
    SCIENCE CHINA Life Sciences • REVIEW • March 2016 Vol.59 No.3: 292–298 doi: 10.1007/s11427-016-5007-8 Roles and mechanisms of ginsenoside in cardiovascular diseases: progress and perspectives Yingying Sun1, Yue Liu1,2* & Keji Chen1,2 1Cardiovascular Diseases Centre, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China; 2China Heart Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100091, China Received September 8, 2015; accepted November 4, 2015; published online January 20, 2016 Ginseng is among the oldest traditional Chinese medicinal herbs and is widely used in China and Southeast Asia. Over the past 50 years, considerable research has focused on the chemical constituents, pharmacological action, and clinical applications of ginseng. In this review, we examine the current state of research on ginseng, including the main active ingredient ginsenoside, its pharmacological effects on the cardiovascular system, and mechanisms of action. We focus on what is known of the effects of ginseng against atherosclerosis, arrhythmia, myocardial ischemia, and its inhibition of ventricular remodeling, providing a basis for expanding the clinical applications of ginseng. ginseng, ginsenoside, cardiovascular disease, mechanisms Citation: Sun, Y., Liu, Y., and Chen, K. (2016). Roles and mechanisms of ginsenoside on cardiovascular diseases: progress and perspectives. Sci China Life Sci 59, 292–298. doi: 10.1007/s11427-016-5007-8 INTRODUCTION Gang Mu”), and a variety of books on herbal medicine since the Qing Dynasty. It is also known to reinforce vital energy, Ginseng (Panax ginseng C.A. Meyer) is a perennial herb fortify the spleen to benefit the lungs, nourish fluids, calm originating from the Tertiary period with about 60 million the heart, tranquilize the mind, and so on.
    [Show full text]
  • Panax Ginseng) from Different Regions
    molecules Article Analysis of Ginsenoside Content (Panax ginseng) from Different Regions Wei Chen 1,2,3 , Prabhu Balan 2,3 and David G Popovich 1,* 1 School of Food and Advanced Technology, Massey University, Palmerston North 4442, New Zealand; [email protected] 2 Riddet Institute, Massey University, Palmerston North 4442, New Zealand; [email protected] 3 Alpha-Massey Natural Nutraceutical Research Centre, Massey University, Palmerston North 4442, New Zealand * Correspondence: [email protected]; Tel.: +64-63569099 Academic Editor: Vincenzo De Feo Received: 3 September 2019; Accepted: 25 September 2019; Published: 26 September 2019 Abstract: Recently Panax ginseng has been grown as a secondary crop under a pine tree canopy in New Zealand (NZ). The aim of the study is to compare the average content of ginsenosides from NZ-grown ginseng and its original native locations (China and Korea) grown ginseng. Ten batches of NZ-grown ginseng were extracted using 70% methanol and analyzed using LC-MS/MS. The average content of ginsenosides from China and Korea grown ginseng were obtained by collecting data from 30 and 17 publications featuring China and Korea grown ginseng, respectively. The average content of total ginsenosides in NZ-grown ginseng was 40.06 3.21 mg/g (n = 14), which showed significantly ± (p < 0.05) higher concentration than that of China grown ginseng (16.48 1.24 mg/g, n = 113) and ± Korea grown ginseng (21.05 1.57 mg/g, n = 106). For the individual ginsenosides, except for the ± ginsenosides Rb2, Rc, and Rd, ginsenosides Rb1, Re, Rf, and Rg1 from NZ-grown ginseng were 2.22, 2.91, 1.65, and 1.27 times higher than that of ginseng grown in China, respectively.
    [Show full text]
  • Biotechnological Interventions for Ginsenosides Production
    biomolecules Review Biotechnological Interventions for Ginsenosides Production 1, 2, 3, Saikat Gantait y , Monisha Mitra y and Jen-Tsung Chen * 1 Crop Research Unit (Genetics and Plant Breeding), Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal 741252, India; [email protected] 2 Department of Agricultural Biotechnology, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal 741252, India; [email protected] 3 Department of Life Sciences, National University of Kaohsiung, Kaohsiung 811, Taiwan * Correspondence: [email protected] These authors contributed equally to the manuscript. y Received: 3 March 2020; Accepted: 1 April 2020; Published: 2 April 2020 Abstract: Ginsenosides are secondary metabolites that belong to the triterpenoid or saponin group. These occupy a unique place in the pharmaceutical sector, associated with the manufacturing of medicines and dietary supplements. These valuable secondary metabolites are predominantly used for the treatment of nervous and cardiac ailments. The conventional approaches for ginsenoside extraction are time-consuming and not feasible, and thus it has paved the way for the development of various biotechnological approaches, which would ameliorate the production and extraction process. This review delineates the biotechnological tools, such as conventional tissue culture, cell suspension culture, protoplast culture, polyploidy, in vitro mutagenesis, hairy root culture, that have been largely implemented for the enhanced production of ginsenosides. The use of bioreactors to scale up ginsenoside yield is also presented. The main aim of this review is to address the unexplored aspects and limitations of these biotechnological tools, so that a platform for the utilization of novel approaches can be established to further increase the production of ginsenosides in the near future.
    [Show full text]
  • Study on the Correlation Between Gene Expression and Enzyme Activity of Seven Key Enzymes and Ginsenoside Content in Ginseng in Over Time in Ji’An, China
    International Journal of Molecular Sciences Article Study on the Correlation between Gene Expression and Enzyme Activity of Seven Key Enzymes and Ginsenoside Content in Ginseng in Over Time in Ji’an, China Juxin Yin 1,2 ID , Daihui Zhang 3, Jianjian Zhuang 1, Yi Huang 1, Ying Mu 2 and Shaowu Lv 1,* 1 Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun 130000, China; [email protected] (J.Y.); [email protected] (J.Z.); [email protected] (Y.H.) 2 Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310000, China; [email protected] 3 Jilin Entry Exit Inspection and Quarantine Bureau, Changchun 130000, China; [email protected] * Correspondence: [email protected] Received: 26 October 2017; Accepted: 5 December 2017; Published: 11 December 2017 Abstract: Panax ginseng is a traditional medicine. Fresh ginseng is one of the most important industries related to ginseng development, and fresh ginseng of varying ages has different medicinal properties. Previous research has not systematically reported the correlation between changes in key enzyme activity with changes in ginsenoside content in fresh ginseng over time. In this study, for the first time, we use ginseng samples of varying ages in Ji’an and systematically reported the changes in the activity of seven key enzymes (HMGR, FPS, SS, SE, DS, CYP450, and GT). We investigated the content of ginsenoside and gene expression of these key enzymes. Ginsenoside content was measured using HPLC.
    [Show full text]
  • Chapter 1: Introduction
    Chapter 1: Introduction Ginsenosides are triterpene glycoside saponins, produced by different species of genus Panax L. (Araliaceae) which is commonly known as ginseng. Panax species that are commercially cultivated and extensively traded are Panax notoginseng (Burk) F. H. Chen (Chinese ginseng), Panax ginseng Meyer (Korean ginseng) and Panax quinquefolius L. (American ginseng) (Baeg and So, 2013). The global market of ginseng (roots plus processed goods) was estimated at $2085 million with a total root production of 80,080 tons as on 2009 (Baeg and So, 2013). The plant roots are used as health tonic and are incorporated into a variety of commercial health products like ginseng soups, drinks, capsules and cosmetics in the Asian as well as international market (Paek et al., 2005). Ginseng has been used as traditional herbal medicine and food for over 2000 years (Attele et al., 1999; Kim, 2012; Liang and Zhao, 2008; Xiang et al., 2008). Ginsenosides have cardioprotective, immunomodulatory, antifatigue, anticancerous, antidiabetic and antioxidant properties (Christensen, 2009; Lee and Kim, 2014; Sodrul et al., 2018; Xiao et al., 2015). 1.1. Panax sokpayensis Shiva K. Sharma & Pandit A new species of Panax christened as Panax sokpayensis Shiva K. Sharma & Pandit was reported from Sikkim Himalaya, India in 2009 (Sharma and Pandit, 2009). According to the latest classification, only two species namely P. sokpayensis and P. sikkimensis/ P. bipinnatifidus are found in Sikkim Himalaya (Sharma and Pandit, 2009, 2011). P. sokpayensis grows at an altitude of 1700 – 2300 m above sea level in the submontane terrain of Uttarey, Sopakha and Yuksom in West Sikkim (Figure 1.1).
    [Show full text]
  • Effects of Ginseng on Two Main Sex Steroid Hormone Receptors: Estrogen and Androgen Receptors
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector J Ginseng Res xxx (2016) 1e7 Contents lists available at ScienceDirect Journal of Ginseng Research journal homepage: http://www.ginsengres.org Mini-review article Effects of ginseng on two main sex steroid hormone receptors: estrogen and androgen receptors Joonwoo Park 1, Heewon Song 1, Si-Kwan Kim 2, Myeong Soo Lee 3, Dong-Kwon Rhee 4, YoungJoo Lee 1,* 1 Department of Bioscience and Biotechnology, College of Life Science, Sejong University, Kwangjingu, Kunjadong, Seoul, South Korea 2 Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju, South Korea 3 Clinical Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea 4 School of Pharmacy, Sungkyunkwan University, Suwon, South Korea article info abstract Article history: Ginseng has been used in China for at least two millennia and is now popular in over 35 countries. It is Received 16 March 2016 one of the world’s popular herbs for complementary and alternative medicine and has been shown to Received in Revised form have helpful effects on cognition and blood circulation, as well as anti-aging, anti-cancer, and anti- 6 July 2016 diabetic effects, among many others. The pharmacological activities of ginseng are dependent mainly on Accepted 15 August 2016 ginsenosides. Ginsenosides have a cholesterol-like four trans-ring steroid skeleton with a variety of sugar Available online xxx moieties. Nuclear receptors are one of the most important molecular targets of ginseng, and reports have shown that members of the nuclear receptor superfamily are regulated by a variety of ginsenosides.
    [Show full text]
  • Use of Ginseng in Medicine: Perspectives on CNS Disorders
    1735-2657/04/32-30-40 IRANIAN JOURNAL OF PHARMACOLOGY & THERAPEUTICS Copyright © 2004 by Razi Institute for Drug Research (RIDR) IJPT 3:30-40, 2004 Use of Ginseng in Medicine: Perspectives on CNS Disorders KHALED RADAD, GABRIELE GILLE and WOLF-DIETER RAUSCH Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt (K.R.); Department of Neu- rology, Technical University, Dresden, Germany (G.G.); Institute for Medical Chemistry, Veterinary Medical Univer- sity, Vienna, Austria (W.R.) Received August 22, 2004; Revised October 6, 2004; Accepted October 12, 2004 This paper is available online at http://ijpt.iums.ac.ir ABSTRACT Ginseng, the root of Panax species, is a well-known folk medicine. It has been used as traditional herbal medicine in China, Korea and Japan for thousands of years and today is a popular and worldwide used natural medicine. The active ingredients of ginseng are ginsenosides which are also called ginseng saponins. Recently, there is increasing evidence in the literature on the pharmacological and physiologi- cal actions of ginseng. Ginseng had been used primarily as a tonic to invigorate week bodies and help the restoration of homeostasis. However current in vivo and in vitro studies have shown its beneficial effects in a wide range of pathological conditions such as cardiovascular diseases, cancer, immune deficiency and hepatotoxicity. Moreover, recent research has suggested that some of ginseng’s active ingredients also exert beneficial actions on aging, CNS disorders and neurodegenerative diseases. In general, anti- oxidant, anti-inflammatory, anti-apoptotic and immunostimulant activities are mostly underlying the possi- ble ginseng-mediated protective mechanisms.
    [Show full text]
  • Anticarcinogenic Effect of Panax Ginseng C.A. Meyer and Identification of Active Compounds
    J Korean Med Sci 2001; 16(Suppl): S6-18 Copyright � The Korean Academy ISSN 1011-8934 of Medical Sciences Anticarcinogenic Effect of Panax ginseng C.A. Meyer and Identification of Active Compounds The failure to improve the five-year survival rate of cancer patients, from one in Taik-Koo Yun, Yun-Sil Lee, three in the 1960s to one in two in the 1970s, stimulated awareness of the impor- You Hui Lee*, Shin Il Kim* tance of primary prevention of cancer. Korean investigators carried out extensive Hyo Yung Yun� long-term anticarcinogenicity experiments with 2000 newborn mice to investigate Laboratory of Experimental Pathology, Korea whether Panax ginseng C.A. Meyer inhibited carcinogenesis induced by several Cancer Center Hospital, Seoul; Korea Ginseng & chemical carcinogens in 1978. There was a 22% decrease (p<0.05) in the inci- Tobacco Research Institute*, Taejon; Department � dence of urethane induced lung adenoma by the combined use of red ginseng of Surgery, College of Medicine , Chungbuk National University Hospital, Cheongju, Korea extract. In the group sacrificed at 56 weeks after the treatment with aflatoxin B1, the incidence of hepatoma significantly decreased to 75% by the addition of red ginseng extract (p<0.05). The result showed that natural products can provide hope for human cancer prevention. By the newly established‘ 9 week medium- term anticarcinogenicity test model of lung tumors in mice’(Yun’s model), we confirmed significant anticarcinogenic effects of powders and extracts of the 6- yr-old dried fresh ginseng, 5- and 6-yr old white ginsengs, and 4-, 5-, and 6-yr old red ginseng.
    [Show full text]
  • Synthesizing Ginsenoside Rh2 in Saccharomyces Cerevisiae Cell
    Wang et al. Cell Discovery (2019) 5:5 Cell Discovery DOI 10.1038/s41421-018-0075-5 www.nature.com/celldisc ARTICLE Open Access Synthesizing ginsenoside Rh2 in Saccharomyces cerevisiae cell factory at high-efficiency Pingping Wang1,WeiWei1,WeiYe2,3,XiaodongLi1,2, Wenfang Zhao1,ChengshuaiYang1,2, Chaojing Li1,2, Xing Yan1 and Zhihua Zhou1 Abstract Synthetic biology approach has been frequently applied to produce plant rare bioactive compounds in microbial cell factories by fermentation. However, to reach an ideal manufactural efficiency, it is necessary to optimize the microbial cell factories systemically by boosting sufficient carbon flux to the precursor synthesis and tuning the expression level and efficiency of key bioparts related to the synthetic pathway. We previously developed a yeast cell factory to produce ginsenoside Rh2 from glucose. However, the ginsenoside Rh2 yield was too low for commercialization due to the low supply of the ginsenoside aglycone protopanaxadiol (PPD) and poor performance of the key UDP- glycosyltransferase (UGT) (biopart UGTPg45) in the final step of the biosynthetic pathway. In the present study, we constructed a PPD-producing chassis via modular engineering of the mevalonic acid pathway and optimization of P450 expression levels. The new yeast chassis could produce 529.0 mg/L of PPD in shake flasks and 11.02 g/L in 10 L fed-batch fermentation. Based on this high PPD-producing chassis, we established a series of cell factories to produce ginsenoside Rh2, which we optimized by improving the C3–OH glycosylation efficiency. We increased the copy 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; number of UGTPg45, and engineered its promoter to increase expression levels.
    [Show full text]
  • Intravenous Infusion of Ginsenoside Rb1 Ameliorates Compressive
    Zhu et al. Int J Neurol Neurother 2015, 2:1 International Journal of DOI: 10.23937/2378-3001/2/1/1017 Volume 2 | Issue 1 Neurology and Neurotherapy ISSN: 2378-3001 Research Article: Open Access Intravenous Infusion of Ginsenoside Rb1 Ameliorates Compressive Spinal Cord Injury through Upregulation of Bcl-xL and VEGF Pengxiang Zhu1, Ryuji Hata2*, Kimihiko Nakata1, Fang Cao1, Keiichi Samukawa1, Hiroko Fujita1 and Masahiro Sakanaka1 1Department of Functional Histology, Ehime University Graduate School of Medicine, Japan 2Department of Anatomy 1, Fujita Health University School of Medicine, Japan *Corresponding author: Ryuji Hata, Department of Anatomy 1, Fujita Health University School of Medicine, Toyoake, Aichi, 490-1192, Japan, Tel: +81-562-93-2444, Fax: +81-562-93-5903, E-mail: [email protected] Abstract Introduction Background: Red ginseng root (Panax Ginseng C.A. Meyer) has The annual incidence of spinal cord injury (SCI) has been been used clinically by many Asian people for thousands of years estimated to be approximately 20-40 persons per million in the world without any detrimental effects. One of the major components of red [1]. The main causes of trauma to the cord are motor-vehicle accidents, ginseng root is ginsenoside Rb1 (gRb1, C54H92O23, molecular weight sports and recreational activities, work-related accidents and falls at 1109.46). Previously, we showed that intravenous infusion of gRb1 home. More importantly, the majority of SCI victims is young and attenuated ischemic brain damage in rats through up-regulation otherwise healthy, and suffers the burden of life-long disability. There of an anti-apoptotic factor, Bcl-xL.
    [Show full text]
  • Effects of Red Ginseng on Neural Injuries with Reference to the Molecular Mechanisms
    Review Effects of Red Ginseng on Neural Injuries with Reference to the Molecular Mechanisms Pengxiang Zhu * and Masahiro Sakanaka Department of Functional Histology, Ehime University Graduate School of Medicine, Ehime 791-0295, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-89-960-5236 Received: 13 March 2019; Accepted: 26 March 2019; Published: 28 March 2019 Abstract: Red ginseng, as an effective herbal medicine, has been traditionally and empirically used for the treatment of neuronal diseases. Many studies suggest that red ginseng and its ingredients protect the brain and spinal cord from neural injuries such as ischemia, trauma, and neurodegeneration. This review focuses on the molecular mechanisms underlying the neuroprotective effects of red ginseng and its ingredients. Ginsenoside Rb1 and other ginsenosides are regarded as the active ingredients of red ginseng; the anti-apoptotic, anti-inflammatory, and anti-oxidative actions of ginsenosides, together with a series of bioactive molecules relevant to the above actions, appear to account for the neuroprotective effects in vivo and/or in vitro. Moreover, in this review, the possibility is raised that more effective or stable neuroprotective derivatives based on the chemical structures of ginsenosides could be developed. Although further studies, including clinical trials, are necessary to confirm the pharmacological properties of red ginseng and its ingredients, red ginseng and its ingredients could be promising candidate drugs for the treatment of neural injuries. Keywords: red ginseng; ginsenoside Rb1; ischemia; neurotrauma; neurodegeneration; Bcl-2; NF-κB; Nrf2 1. Introduction As a variety of traditional medicine, ginseng root (Panax ginseng CA Meyer) has been utilized for centuries and is one of the most trusted herbs in Asia.
    [Show full text]