Predicting Technical Value of Technologies Through Their Knowledge Structure

Total Page:16

File Type:pdf, Size:1020Kb

Predicting Technical Value of Technologies Through Their Knowledge Structure PREDICTING TECHNICAL VALUE OF TECHNOLOGIES THROUGH THEIR KNOWLEDGE STRUCTURE Praveena Chandra A thesis submitted to fulfil requirements for the degree of Doctor of Philosophy School of Civil Engineering Faculty of Engineering and Information Technologies The University of Sydney Australia February 2019 i Abstract This thesis tests the hypothesis that the characteristics displayed by the knowledge structure of a high technical value invention is different from that of a low technical value invention. The knowledge structure represents the relationship of the invention with all the prior knowledge upon which it is based. This structure crystalizes at the inception of the invention making it ideal for evaluating new inventions. More specifically, this research investigates two characteristics of the knowledge structure: knowledge accumulation and knowledge appropriation. Knowledge accumulation is defined as the collective body of knowledge, know-how and experiences gathered in a sector over time that have contributed to the creation of the invention. A higher degree of accumulated knowledge is more likely to be associated with high technical value inventions. Knowledge appropriation describes absorption of knowledge in the creation of the invention. From a knowledge structure perspective, knowledge absorption is observed by the emergence of edges that connect knowledge elements together. The robustness of this emergent knowledge structure is thus an indicator of the amount of knowledge appropriated by the invention. This research introduces a new metric for the measurement of knowledge accumulation and presents structural robustness as an indicator of knowledge appropriation. Knowledge accumulation and knowledge appropriation are tested as characteristics associated with knowledge structures and are hypothesized to be positively correlated with the technical value of the invention. This research tests the hypotheses by examining the citation networks of patents in four sectors: thin film photovoltaics, inductive vibration energy harvesting, piezoelectric energy harvesting, and carbon nanotubes. In total 152 base inventions and over 4000 patents are investigated. This research shows that knowledge accumulation is a significant predictor of the technical value of an invention. This research also shows that high value inventions show a higher level of knowledge appropriation. The results demonstrate that the characteristics displayed by the knowledge structure are better able to explain the technical value of inventions compared to techniques demonstrated by other studies. i Statement of originality This is to certify that, to the best of my knowledge, the content of this thesis is my own work. This thesis has not been submitted for any degree or other purposes. I certify that the intellectual content of this thesis is the product of my own work and that all the assistance received in preparing this thesis and sources have been acknowledged. Praveena Chandra September 2018 ii Thesis authorship attribution This thesis contains material published or submitted for publication, based on the work presented in the thesis, for which I am the main author. This material is distributed throughout all chapters. Conference Papers v Chandra, P., & Dong, A. (2015). Knowledge accumulation and value of inventions. 2015 Portland International Conference on Management of Engineering and Technology (PICMET), Portland, OR. doi: 10.1109/PICMET.2015.7273056 v Chandra, P., & Dong, A. (2015). Predicting technical viability of inventions. 2015 IEEE International Conference on Engineering, Technology and Innovation/ International Technology Management Conference (ICE/ITMC), Belfast. doi: 10.1109/ICE.2015.7438654 Journal Articles v Chandra, P., & Dong, A. (2018). The relation between knowledge accumulation and technical value in interdisciplinary technologies. Technological Forecasting and Social Change, 128, 235-244. doi: 10.1016/j.techfore.2017.12.006 As supervisor for the candidature upon which this thesis is based, I can confirm that the authorship attribution statements above are correct. Andy Dong September 2018 iii Acknowledgements This thesis is a result of all the incidents in my life, good and bad, that led me to that momentous day when my Google search brought up the name Prof. Andy Dong and his research interests. My belief in “everything happens for a reason” was further strengthened that day! Thank you Andy, for being such a wonderful guide. You have always encouraged me to move outside my comfort zone and think. This has brought results, which I never knew I was capable of. I have always admired your clear analytical thinking and passion for excellence and I hope to attain that myself someday. Your exceptional patience, constant encouragement and words of advice have helped me achieve this important milestone in my life. For this I shall forever be grateful and indebted to you. They say “Guru devo bhava”; a teacher is God for he shapes, guides and inspires his students. You indeed are my Guru! I also owe it to my friends and my family for their part in making this thesis a reality. It’s their confidence in me (and I still fail to understand the reason for their confidence) that gave me the courage to push myself harder. It is my good fortune that I am surrounded by people who emanate positivity. Moreover, if it weren’t for their relentless questions, “when do you finish? Are you not done yet?”, I would still be collecting data. A minor part was also played by a few gallons of coffee, countless packets of paracetamol and one dress size, all of which were sacrificed in the making of this thesis! iv Contents Abstract ..................................................................................................................................................... i Statement of originality .......................................................................................................................... ii Thesis authorship attribution ................................................................................................................ iii Acknowledgements ................................................................................................................................. iv Contents .................................................................................................................................................... v List of tables .......................................................................................................................................... viii List of figures ........................................................................................................................................... x List of abbreviations and acronyms .................................................................................................... xii 1 INTRODUCTION ............................................................................................................................ 1 1.1 Background .................................................................................................................. 1 1.2 Current Challenges ..................................................................................................... 2 1.3 Potential Solution ........................................................................................................ 3 1.4 Contributions ............................................................................................................... 4 1.5 Dissertation Structure ................................................................................................. 5 2 LITERATURE REVIEW ................................................................................................................ 6 2.1 Introduction ................................................................................................................. 6 2.2 Technology Evaluation Techniques ........................................................................... 7 2.2.1 Expert Opinions ...................................................................................................... 8 2.2.2 Delphi Technique ................................................................................................... 8 2.2.3 Technology Readiness Level (TRL) ....................................................................... 9 2.2.4 Technology life cycle (TLC) ................................................................................ 10 2.2.5 Bibliometrics ........................................................................................................ 11 2.2.6 TRIZ ..................................................................................................................... 11 2.3 Patent Based Technology Evaluation ...................................................................... 12 2.3.1 Studies based on single-level relationships .......................................................... 12 2.3.2 Studies based on indirect relationships ................................................................. 18 2.3.3 Complex Networks theory perspective of patent value ........................................ 21 2.4 Summary .................................................................................................................... 25 3 KNOWLEDGE STRUCTURE ..................................................................................................... 27 3.1 Introduction ..............................................................................................................
Recommended publications
  • Arxiv:1810.10187V3 [Physics.Ins-Det] 10 Jan 2019 to Minimize Longitudinal Heat flow While Satisfying One’S Electrical Impedance and Shape (E.G
    Properties of selected structural and flat flexible cabling materials for low temperature applications M. Daala,∗, N. Zobrista, N. Kellarisd,e, B. Sadouletb, M. Robertsonc aDepartment of Physics, University of California, Santa Barbara CA 93106-9530 bDepartment of Physics, University of California, Berkeley CA 94720-7300 cDepartment of Physics, University of California, Davis CA 95616-8677 dDepartment of Mechanical Engineering, University of Colorado Boulder, 80309-0427 eMaterials Science and Engineering Program, University of Colorado, Boulder, 80309-0596 Abstract We present measurements of the low temperature thermal conductivity for materials useful in the construction of cryogenic supports for scientific instrumentation and in the fabrication of flat flexible cryogenic cabling. The materials we measure have relatively low thermal conductivity. We present a method for measuring the heat transfer coefficient of flat cabling and show, using an example, that the thermal conductivity of a flex cable is reasonably well predicted by composing the thermal conductivities of its constituent material layers. Room temperature physical and mechanical data is given for the materials studied, as well as an overview of relevant materials science and manufacturing details. Materials include Timet Ti 15-3 and Ti 21S, Materion alloy vit105 (LM105) in amorphous state, ATI Metals Nb-47Ti, Johnson Matthey nitinol (NiTi), Mersen graphite grade 2020, DuPont Pyralux coverlay and Vespel SCP-5050, and Fralock Cirlex polyimide sheets. All data is in the temperature range 0:05 to 2 K, and up to 5 K for SCP-5050. Keywords: Thermal conductivity, Heat transfer coefficient, Cryogenic, Structural materials, Support structures, Flat flexible cables, Superconducting cables, Low temperature, Titanium alloys, Bulk metallic glass, vit105, LM105, Cirlex, Vespel, Pyralux, NbTi, Ti 15-3-3-3, Ti 21S, Nitinol, NiTi, Transition Temperature 1.
    [Show full text]
  • DUPONT DATA BOOK SCIENCE-BASED SOLUTIONS Dupont Investor Relations Contents 1 Dupont Overview
    DUPONT DATA BOOK SCIENCE-BASED SOLUTIONS DuPont Investor Relations Contents 1 DuPont Overview 2 Corporate Financial Data Consolidated Income Statements Greg Friedman Tim Johnson Jennifer Driscoll Consolidated Balance Sheets Vice President Director Director Consolidated Statements of Cash Flows (302) 999-5504 (515) 535-2177 (302) 999-5510 6 DuPont Science & Technology 8 Business Segments Agriculture Electronics & Communications Industrial Biosciences Nutrition & Health Performance Materials Ann Giancristoforo Pat Esham Manager Specialist Safety & Protection (302) 999-5511 (302) 999-5513 20 Corporate Financial Data Segment Information The DuPont Data Book has been prepared to assist financial analysts, portfolio managers and others in Selected Additional Data understanding and evaluating the company. This book presents graphics, tabular and other statistical data about the consolidated company and its business segments. Inside Back Cover Forward-Looking Statements Board of Directors and This Data Book contains forward-looking statements which may be identified by their use of words like “plans,” “expects,” “will,” “believes,” “intends,” “estimates,” “anticipates” or other words of similar meaning. All DuPont Senior Leadership statements that address expectations or projections about the future, including statements about the company’s strategy for growth, product development, regulatory approval, market position, anticipated benefits of recent acquisitions, timing of anticipated benefits from restructuring actions, outcome of contingencies, such as litigation and environmental matters, expenditures and financial results, are forward looking statements. Forward-looking statements are not guarantees of future performance and are based on certain assumptions and expectations of future events which may not be realized. Forward-looking statements also involve risks and uncertainties, many of which are beyond the company’s control.
    [Show full text]
  • Outgassing of Technical Polymers PEEK, Kapton, Vespel & Mylar
    Ivo Wevers Outgassing of Technical Polymers PEEK, Kapton, Vespel & Mylar Vacuum, Surfaces & Coatings Group Technology Department Outline • Part 1: Introduction • Polymers in vacuum technology • Outgassing of water : metallic surface vs polymer • Part 2: Outgassing at Room Temperature • Outgassing measurements of PEEK, Kapton, Mylar and Vespel samples • Fitting with 2-step and 3-step models • Diffusion coefficient, moisture content and decay time constant • Part 3: Attenuation of Polymers Outgassing • Effects of bakeout and venting on pump-down curves • Effects of desication with silica gel • Conclusions & Future Vacuum, Surfaces & Coatings Group Ivo Wevers ARIES 2021 Technology Department 2 Part 1: Introduction • Polymers in vacuum technology • Outgassing of water : metallic surface vs polymer Vacuum, Surfaces & Coatings Group Ivo Wevers ARIES 2021 Technology Department 3 Polymers in vacuum technology Polymers are sometimes the only option as seal/insulator PEEK, Kapton and Vespel -> bakeout temperatures of 150-200C° Vacuum, Surfaces & Coatings Group Ivo Wevers ARIES 2021 Technology Department 4 Polymers in vacuum technology Polymers are sometimes the only option as seal/insulator PEEK, Kapton and Vespel -> bakeout temperatures of 150-200C° Guarantee a certain beam lifetime or certain operation conditions Outgassing limit (maximum pressure to be reached in 24 hours) is defined for each machine AND the residual gas analysis free of contaminants Acceptance test prior to installation: - Pumpdown will define the outgassing rate and variation
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,932,565 B2 Ilekti Et Al
    US008932565B2 (12) United States Patent (10) Patent No.: US 8,932,565 B2 Ilekti et al. (45) Date of Patent: Jan. 13, 2015 (54) THERMAL COSMETIC TREATMENT 3.65 A 1 & E. E. 1 PROCESS USING ASEM-CRYSTALLINE 5,082,706- - - A 1/1992 Tangneyolfgruber et al. POLYMER 5,110,890 A 5/1992 Butler 5,156,911 A 10, 1992 Stewart (75) Inventors: Philippe Ilekti, Maison-Alfort (FR): 5,171,096 A 12/1992 Perrotti Sylvie Boulogne, L'hays les Roses (FR) 5,248,7395,221,534 A 9/19936/1993 SchmidtDesLauriers et al. et al. 5,302,685 A 4, 1994 Tsumura et al. (73) Assignee: L'Oreal, Paris (FR) 5.319,040 A 6/1994 Wengrovius et al. 5,500,209 A 3, 1996 Mendolia et al. (*) Notice: Subject to any disclaimer, the term of this 5,519,063 A 5/1996 Mondet et al. patent is extended or adjusted under 35 5,736,125 A 4, 1998 Morawsky et al. U.S.C. 154(b) by 312 days 5,750,723 A 5, 1998 Eldin et al. M YW- y yS. 5,783,657. A 7/1998 Pavlin et al. 5,817,302 A 10, 1998 Berthiaume et al. (21) Appl. No.: 12/988,465 5,847,156 A 12/1998 Eldin et al. 5,874,069 A 2f1999 Mendolia et al. (22) PCT Filed: Jul. 22, 2009 5,919,441 A 7/1999 Mendolia et al. 5,981,680 A 11, 1999 Petroffetal. 5.998,547 A 12/1999 Hohner (86). PCT No.: PCT/FR2009/051474 5.998.570 A 12/1999 Pavlin et al.
    [Show full text]
  • Dupont™ Kalrez® KVSP™ Valve Stem Packing Technical Guidelines and Design to Improve Process Control and Minimize Fugitive Emissions
    DuPont™ Kalrez® KVSP™ Valve Stem Packing Technical Guidelines and Design to Improve Process Control and Minimize Fugitive Emissions Technical Information—Rev. 4, March 2019 Introduction DuPont™ Kalrez® Valve Stem Packing (KVSP™) systems can help to significantly reduce fugitive emissions and improve process control through the innovative use of Kalrez® perfluoroelastomer parts combined with other proven packing materials. Graphite packing systems can meet fugitive emissions requirements but restrict valve movement, leading to inconsistent process control. Polytetrafluoroethylene (PTFE) has excellent process control response characteristics but cannot contain fugitive emissions when temperature cycling is involved in conjunction with operational cycling. Kalrez® packing systems overcome these deficiencies, as well as reducing leak rates to near-bellows performance. Kalrez® is chemically an elastomeric PTFE derived from tetrafluoroethylene (TFE), the same base monomer. It provides a unique combination of chemical resistance and inertness like PTFE, but with a higher temperature service limit and no tendency to cold flow. The chemical structure remains cross-linked and stable at high temperatures and does not move under load or deformation. Its resiliency and memory provide improved sealing for control valve stems. Using Kalrez® V-rings backed up with more rigid components of carbon fiber-reinforced PTFE (DuPont™ Vespel® CR-6100) has proven to be a major advancement in improving process control and reducing leakage to less than 1 ppm, or below the plant’s background level. Kalrez® perfluoroelastomer packing systems increase a valve’s ability to react quickly and smoothly to process changes (Figure 1). Kalrez® KVSP™ reduces process control variability to the control system’s capability, resulting in improvements to both yield and product quality on specification.
    [Show full text]
  • Dupont Company Engineering Department Photographs 1982.300
    DuPont Company Engineering Department photographs 1982.300 This finding aid was produced using ArchivesSpace on September 14, 2021. Description is written in: English. Describing Archives: A Content Standard Audiovisual Collections PO Box 3630 Wilmington, Delaware 19807 [email protected] URL: http://www.hagley.org/library DuPont Company Engineering Department photographs 1982.300 Table of Contents Summary Information .................................................................................................................................... 8 Historical Note ............................................................................................................................................... 8 Scope and Content ......................................................................................................................................... 9 Administrative Information .......................................................................................................................... 11 Controlled Access Headings ........................................................................................................................ 11 Collection Inventory ..................................................................................................................................... 11 Alabama Ordnance Works ........................................................................................................................ 11 Argentine Rayon Construction .................................................................................................................
    [Show full text]
  • Space Environment Exposure Results from the Misse 5 Polymer Film Thermal Control Experiment on the International Space Station
    SPACE ENVIRONMENT EXPOSURE RESULTS FROM THE MISSE 5 POLYMER FILM THERMAL CONTROL EXPERIMENT ON THE INTERNATIONAL SPACE STATION Sharon K.R. Miller(1), Joyce A. Dever(2) (1)NASA Glenn Research Center, 21000 Brookpark Rd. MS 309-2, Cleveland, OH, 44135, U.S.A., Phone: 1-216-433- 2219, E-mail: [email protected] (2)NASA Glenn Research Center, 21000 Brookpark Rd. MS 106-1, Cleveland, OH, 44135, U.S.A., Phone: 1-216-433- 6294, E-mail: [email protected] ABSTRACT Station Experiment (MISSE) 1, was designed to expose tensile specimens of a small selection of polymer films It is known that polymer films can degrade in space on ram facing and non-ram facing surfaces of MISSE 1 due to exposure to the environment, but the magnitude [2]. A more complete description of the NASA Glenn of the mechanical property degradation and the degree Resarch Center MISSE 1-7 experiments is contained in to which the different environmental factors play a role a publication by Kim de Groh et al [3]. The PFTC was in it is not well understood. This paper describes the expanded and flown as one of the experiments on the results of an experiment flown on the Materials nadir facing side of MISSE 5 in order to examine the International Space Station Experiment (MISSE) 5 to long term effects of the space environment on the determine the change in tensile strength and % mechanical properties of a wider variety of typical elongation of some typical polymer films exposed in a spacecraft polymers exposed to the anti-solar or nadir nadir facing environment on the International Space facing space environment.
    [Show full text]
  • DE-FOA-0001954 Modification 20
    FINANCIAL ASSISTANCE FUNDING OPPORTUNITY ANNOUNCEMENT ADVANCED RESEARCH PROJECTS AGENCY – ENERGY (ARPA-E) U.S. DEPARTMENT OF ENERGY SOLICITATION ON TOPICS INFORMING NEW PROGRAM AREAS SBIR/STTR Announcement Type: Modification 19 20 Funding Opportunity No. DE-FOA-0001954 CFDA Number 81.135 FOA Issue Date: December 20, 2018 FOA Close Date: Open continuously until otherwise amended. Application Due Date: See Targeted Topics Table for topic-specific application due dates. Total Amount to Be Awarded Approximately $114.75 million, subject to the availability of appropriated funds to be shared between FOAs DE-FOA-0001953 and DE-FOA-0001954. See Targeted Topics Table for topic-specific information. Anticipated Awards ARPA-E may issue one, multiple, or no awards under this FOA. Awards may vary between $100,000 and $3,721,115 . See Targeted Topics Table for topic-specific award amount requirements. • For eligibility criteria, see Section III.A – III.D of the FOA. • For cost share requirements under this FOA, see Section III.E of the FOA. • To apply to this FOA, Applicants must register with and submit application materials through ARPA-E eXCHANGE (https://arpa-e-foa.energy.gov/Registration.aspx). For detailed guidance on using ARPA-E eXCHANGE, see Section IV.F.1 of the FOA. • Applicants are responsible for meeting the submission deadline associated with each Targeted Topic. Applicants are strongly encouraged to submit their applications at least 48 hours in advance of the Targeted Topic submission deadline. • For detailed guidance on compliance and responsiveness criteria, see Sections III.F.1 through III.F.3 of the FOA. Questions about this FOA? Check the Frequently Asked Questions available at http://arpa-e.energy.gov/faq .
    [Show full text]
  • Dupont™ Chemical Guidebook
    Chemical manufacturing Personal protective solutions for chemical manufacturing industry applications Because everyone Our brands Nomex® has someone ™ ® DuPont Nomex offers a tested and proven portfolio of protective solutions that continues to meet or exceed global standards for heat, flame and depending on them * electric arc flash protection. to get home safely Kevlar® Gloves made with DuPont™ Kevlar® offer industry-leading cut protection, built-in DuPont is more focused than ever on providing heat and flame resistance and electric arc flash protection, while providing the innovative protection solutions and expert technical dexterity and comfort workers want. support tailored to meet the specific needs of workers in chemical manufacturing industries Tyvek® around the world. DuPont™ Tyvek® garments provide workers with superior protection from small-sized hazardous particles, including lead, asbestos and mold. And because Because their safety is our business, workers in the protection is built into the fabric itself, there are no films or laminates to chemical manufacturing industries can rely on the abrade or wear away. world-class people, products and innovation that have made DuPont a trusted partner in personal protection. Tychem® DuPont™ Tychem® garments deliver durable protection and offer strong With a wide range of industry-leading personal permeation barrier against a wide range of chemicals. Together with Tychem® protective equipment (PPE) solutions and a global gloves and tape, they create the Tychem® Trusted Chemical System™ network of PPE specialists, technical experts and for complete protection. manufacturing, DuPont is uniquely suited to provide the protection and comfort every worker deserves to face a range of workplace hazards with confidence.
    [Show full text]
  • Iso 14001:2015
    Certificate of Approval This is to certify that the Management System of: E. I. du Pont de Nemours and Company 974 Centre Road, Wilmington, DE, 19805, United States has been approved by LRQA to the following standards: ISO 14001:2015 Chris Koci Issued By: Lloyd's Register Quality Assurance, Inc. This certificate is valid only in association with the certificate schedule bearing the same number on which the locations applicable to this approval are listed. Current Issue Date: 21 January 2018 Original Approvals: Expiry Date: 20 January 2021 ISO 14001 – 21 January 2009 Certificate Identity Number: 10052905 Approval Number(s): ISO 14001 – 0011717 The scope of this approval is applicable to: Manufacture of Science-Based Products for Agriculture, Nutrition, Electronics, Communications, Safety and Protection, Home and Construction, Transportation and Apparel Markets. Lloyd's Register Group Limited, its affiliates and subsidiaries, including Lloyd's Register Quality Assurance Limited (LRQA), and their respective officers, employees or agents are, individually and collectively, referred to in this clause as 'Lloyd's Register'. Lloyd's Register assumes no responsibility and shall not be liable to any person for any loss, damage or expense caused by reliance on the information or advice in this document or howsoever provided, unless that person has signed a contract with the relevant Lloyd's Register entity for the provision of this information or advice and in that case any responsibility or liability is exclusively on the terms and conditions set out in that contract. Issued By: Lloyd's Register Quality Assurance, Inc., 1330 Enclave Parkway, Suite 200, Houston, Texas 77077, United States Page 1 of 15 Certificate Schedule Certificate Identity Number: 10052905 Location Activities Global Headquarters ISO 14001:2015 974 Centre Road, Wilmington, DE, 19805, Headquarters Activities in Support of the Global United States Manufacturing Sites and EMS Oversight.
    [Show full text]
  • Report of Contributions
    MT25 Conference 2017 - Timetable, Abstracts, Orals and Posters Report of Contributions https://indico.cern.ch/e/MT25-2017 MT25 Conferenc … / Report of Contributions 3D Electromagnetic Analysis of Tu … Contribution ID: 5 Type: Poster Presentation of 1h45m 3D Electromagnetic Analysis of Tubular Permanent Magnet Linear Launcher Tuesday, 29 August 2017 13:15 (1h 45m) A short stroke and large thrust axial magnetized tubular permanent magnet linear launcher (TPMLL) with non-ferromagnetic rings is presented in this paper. Its 3D finite element (FE) models are estab- lished for sensitivity analyses on some parameters, such as air gap thickness, permanent magnet thickness, permanent magnet width, stator yoke thickness and four types of permanent magnet material, ferrite, NdFeB, AlNiCO5 and Sm2CO17 are conducted to achieve greatest thrust. Then its 2D finite element (FE) models are also established. The electromagnetic thrusts calculated by 2D and 3D finite element method (FEM) and got from prototype test are compared. Moreover, the prototype static and dynamic tests are conducted to verify the 2D and 3D electromagnetic analysis. The FE software FLUX provides the interface with the MATLAB/Simulink to establish combined simulation. To improve the accuracy of the simulation, the combined simulation between the model of the control system in Matlab/Simulink and the 3D FE model of the TPMLL in FLUX is built in this paper. The combined simulation between the control system and the 3D FE modelof the TPMLL is built. A prototype is manufactured according to the final designed dimensions. The photograph of the developed TPMLL prototype with thrust sensor and the magnetic powder brake as the load are shown.
    [Show full text]
  • 2 0 0 1 a N N U a L R E P O
    2001 ANNUAL REPORT DuPont at 200 In 2002, DuPont celebrates its 200th anniversary. The company that began as a small, family firm on the banks of Delaware’s Brandywine River is today a global enterprise operating in 70 countries around the world. From a manufacturer of one main product – black powder for guns and blasting – DuPont grew through a remarkable series of scientific leaps into a supplier of some of the world’s most advanced materials, services and technologies. Much of what we take for granted in the look, feel, and utility of modern life was brought to the marketplace as a result of DuPont discoveries, the genius of DuPont scientists and engineers, and the hard work of DuPont employees in plants and offices, year in and year out. Along the way, there have been some exceptional constants. The company’s core values of safety, health and the environment, ethics, and respect for people have evolved to meet the challenges and opportunities of each era, but as they are lived today they would be easily recognizable to our founder. The central role of science as the means for gaining competitive advantage and creating value for customers and shareholders has been consistent. It would be familiar to any employee plucked at random from any decade of the company’s existence. Yet nothing has contributed more to the success of DuPont than its ability to transform itself in order to grow. Whether moving into high explosives in the latter 19th century, into chemicals and polymers in the 20th century, or into biotechnology and other integrated sciences today, DuPont has always embraced change as a means to grow.
    [Show full text]