A Machine Learning Based Topic Exploration and Categorization on Surveys

Total Page:16

File Type:pdf, Size:1020Kb

A Machine Learning Based Topic Exploration and Categorization on Surveys 2012 11th International Conference on Machine Learning and Applications A Machine Learning based Topic Exploration and Categorization on Surveys Clint P. George, Daisy Zhe Wang, and Joseph N. Wilson Liana M. Epstein, Philip Garland, and Annabell Suh Dept. of Computer & Information Science & Engg. Dept. of Methodology University of Florida SurveyMonkey Gainesville, USA Palo Alto, USA {cgeorge, daisyw, jnw}@cise.ufl.edu {liana, philg, annabell}@surveymonkey.com Abstract—This paper describes an automatic topic extrac- tion, categorization, and relevance ranking model for multi- lingual surveys and questions that exploits machine learn- ing algorithms such as topic modeling and fuzzy clustering. Automatically generated question and survey categories are used to build question banks and category-specific survey templates. First, we describe different pre-processing steps we considered for removing noise in the multilingual survey text. Second, we explain our strategy to automatically extract survey categories from surveys based on topic models. Third, we describe different methods to cluster questions under survey categories and group them based on relevance. Last, we describe our experimental results on a large group of unique, real-world survey datasets from the German, Spanish, French, and Portuguese languages and our refining methods to determine meaningful and sensible categories for building question banks. We conclude this document with possible Figure 1. Survey clustering enhancements to the current system and impacts in the business domain. Keywords-topic modeling; survey clustering; fuzzy cluster- ing; categorization; category template building process does not consider any survey question usage statistics (from the existing surveys I. INTRODUCTION in the system) and is a language-specific task. To address this, we are building tools that help the category-specific As the amount of text data available keeps rising, it template building process use much less manual effort and becomes challenging for people to locate and track the employ language-independent system design. Moreover, our relevant information they require. We are particularly in- proposed system can automatically find commonly occur- terested, within the domain of multilingual survey texts, ring categories from multilingual survey data using survey to build language independent tools for topic discovery, questions’ word statistics. clustering, and ranking of surveys and their questions. Effec- tively addressing the potentially huge amount of information We focus on the task of automatically clustering surveys contained in a large collection of surveys leads us to use and questions and ranking them on relevancy to a specific tools for automatic text summarization and topic extraction. topic or survey. This includes challenges such as (a) rep- Topic modeling methods such as Latent Semantic Indexing resenting user surveys and questions in a machine readable (LSI) and Latent Dirichlet Allocation (LDA) are designed form by removing noise terms and stop-words, (b) employ- to assist with these types of problems. ing machine learning models that can learn topics from Conventional survey designer systems such as Survey- surveys and categorize them with minimal manual inter- Monkey provide manually designed, category-specific1 sur- vention, (c) post-processing strategies on the learned model vey templates (e.g., Education template, Customer Feedback for survey- and question-clustering, and (d) experiments on template, etc.) to ease the survey building process [1]. Dur- our unique set of multilingual (Spanish, German, French, ing survey building, template-questions can be customized and Portuguese) survey datasets from SurveyMonkey. Fig. 1 or new questions can be added based on user needs. One of and Fig. 2 show the visualization of survey-clustering and the disadvantages of this type of system is that the manual question-clustering. The different colors represent different labor required to build such templates is high. Similarly, the topic content in the survey text. The potential impact of this project in the business domain 1We use category and topic inter-changeably throughout in this paper. is unparalleled. There is not, to our knowledge, any other 978-0-7695-4913-2/12 $26.00 © 2012 IEEE 7 DOI 10.1109/ICMLA.2012.132 Topic models are well suited to a language independent approach to clustering and ranking for surveys because the bag-of-words document model, upon which they are based, is largely independent of semantic structures. The inference is based only upon the word co-occurrence frequencies in each document in a given corpus. We use a topic modeling algorithm based on HDP [3] to discover topics from surveys. The estimated topics are further used to rank relevant surveys in the corpus and group them (survey clustering). Topic models also provide relevant words and their probabilities for a given topic. Domain experts can use these words to name the learned categories or topics with minimal manual effort. We also considered the problem of grouping similar questions together (question clustering) to assist survey designers. We used LSI to represent questions due to its computational efficiency compared to the more complex Figure 2. Question clustering: q(s1) represents a question from survey 1. models such as LDA and HDP. We implemented our ques- tion clustering system based on fuzzy clustering [4] of the ”question bank” in any of the languages such as Spanish, questions represented in LSI space. Our results show that German, French and any other automatic survey and ques- our method can automatically find many manually defined tion categorization and ranking system in existence. The survey-categories, and group topically similar questions as categories that emerged from our system were qualitatively well as surveys with questions in a language different from different due to cultural differences in both the way that the survey group’s language. questions are asked in different languages and the informa- One of the challenges we faced in designing the multi- tion that real people who live in different countries want to lingual survey categorization system was the demographic find out the most. Thus, the process we developed supports and cultural variations in the language usage by people automating the construction of culturally-relevant question from different countries. The variation in question structure banks from existing survey corpora. was quite visible even with the formal environment imposed by the survey format. For example, in the case of Spanish Our approach surveys, many specific words and phrases were used to ask Our proposed system uses topic models to model the questions politely. During topic modeling inference, these corpus (document collection) of surveys. Topic models rep- caused trouble in forming relevant topics from the survey resent documents as bags of words without considering word text. Similarly, for German, many surveys include a large order as being of any importance. These models have the set of common words from colloquial phrases. This caused ability to represent large document collections with lower the topic-modeling-based ranking and clustering algorithms dimensional topics, which represent clusters of similarly be- to form overlapping, distinguishable question and survey having words. In addition, the document words are assumed groups. We try to tackle some of these problems by using to be generated from topic-specific multinomials and the language specific lemmatizers and stop-word list (section topic for a particular word is chosen from that document’s III). topic mixture. These topics are assumed to be generated over This paper is organized as follows. Section II describes the corpus vocabulary from a Dirichlet distribution. Blei et the state-of-the-art models in the area of document topic al. [2] give a detailed description of this language model and modeling, language-independent text mining, and survey its assumptions. clustering. Section III describes our overall system archi- The analysis of topic models is dependent upon exploring tecture and algorithms. Section IV describes details about the posterior distribution of model parameters and hidden our unique multilingual datasets, evaluation metrics, results, variables conditioned on observed words. The model pa- and analysis. Section V concludes this paper. rameters are corpus-level topics or concepts—sets of words with corresponding probabilities—and document-level topic II. RELATED WORK mixtures. The original topic model assumes that one should Topic models are often used to characterize plain text know the number of topics in the corpus beforehand. How- documents and to extract topical content from them. One ever, Teh et al. [3] solve this issue with a new framework such model, LSI, can group together words and phrases called the Hierarchical Dirichlet Process (HDP), which can that exhibit synonymy (or similar meanings), e.g., car and learn a variable number of topics automatically from the automobile. The LSI method typically performs matrix fac- data. torization over a term-document matrix (TF-IDF matrix), 8 which represents the occurrence of words in documents the system components. First, we tokenize the raw survey- using the concepts of eigenvalue decomposition and iden- questions with a tool that is dependent on the survey’s source tifies patterns in the relationships between the document language. For Latin-character based languages such as Span- terms and concepts
Recommended publications
  • WELDA: Enhancing Topic Models by Incorporating Local Word Context
    WELDA: Enhancing Topic Models by Incorporating Local Word Context Stefan Bunk Ralf Krestel Hasso Plattner Institute Hasso Plattner Institute Potsdam, Germany Potsdam, Germany [email protected] [email protected] ABSTRACT The distributional hypothesis states that similar words tend to have similar contexts in which they occur. Word embedding models exploit this hypothesis by learning word vectors based on the local context of words. Probabilistic topic models on the other hand utilize word co-occurrences across documents to identify topically related words. Due to their complementary nature, these models define different notions of word similarity, which, when combined, can produce better topical representations. In this paper we propose WELDA, a new type of topic model, which combines word embeddings (WE) with latent Dirichlet allo- cation (LDA) to improve topic quality. We achieve this by estimating topic distributions in the word embedding space and exchanging selected topic words via Gibbs sampling from this space. We present an extensive evaluation showing that WELDA cuts runtime by at least 30% while outperforming other combined approaches with Figure 1: Illustration of an LDA topic in the word embed- respect to topic coherence and for solving word intrusion tasks. ding space. The gray isolines show the learned probability distribution for the topic. Exchanging topic words having CCS CONCEPTS low probability in the embedding space (red minuses) with • Information systems → Document topic models; Document high probability words (green pluses), leads to a superior collection models; • Applied computing → Document analysis; LDA topic. KEYWORDS word by the company it keeps” [11]. In other words, if two words topic models, word embeddings, document representations occur in similar contexts, they are similar.
    [Show full text]
  • Generative Topic Embedding: a Continuous Representation of Documents
    Generative Topic Embedding: a Continuous Representation of Documents Shaohua Li1,2 Tat-Seng Chua1 Jun Zhu3 Chunyan Miao2 [email protected] [email protected] [email protected] [email protected] 1. School of Computing, National University of Singapore 2. Joint NTU-UBC Research Centre of Excellence in Active Living for the Elderly (LILY) 3. Department of Computer Science and Technology, Tsinghua University Abstract as continuous vectors in a low-dimensional em- bedding space (Bengio et al., 2003; Mikolov et al., Word embedding maps words into a low- 2013; Pennington et al., 2014; Levy et al., 2015). dimensional continuous embedding space The learned embedding for a word encodes its by exploiting the local word collocation semantic/syntactic relatedness with other words, patterns in a small context window. On by utilizing local word collocation patterns. In the other hand, topic modeling maps docu- each method, one core component is the embed- ments onto a low-dimensional topic space, ding link function, which predicts a word’s distri- by utilizing the global word collocation bution given its context words, parameterized by patterns in the same document. These their embeddings. two types of patterns are complementary. When it comes to documents, we wish to find a In this paper, we propose a generative method to encode their overall semantics. Given topic embedding model to combine the the embeddings of each word in a document, we two types of patterns. In our model, topics can imagine the document as a “bag-of-vectors”. are represented by embedding vectors, and Related words in the document point in similar di- are shared across documents.
    [Show full text]
  • Linked Data Triples Enhance Document Relevance Classification
    applied sciences Article Linked Data Triples Enhance Document Relevance Classification Dinesh Nagumothu * , Peter W. Eklund , Bahadorreza Ofoghi and Mohamed Reda Bouadjenek School of Information Technology, Deakin University, Geelong, VIC 3220, Australia; [email protected] (P.W.E.); [email protected] (B.O.); [email protected] (M.R.B.) * Correspondence: [email protected] Abstract: Standardized approaches to relevance classification in information retrieval use generative statistical models to identify the presence or absence of certain topics that might make a document relevant to the searcher. These approaches have been used to better predict relevance on the basis of what the document is “about”, rather than a simple-minded analysis of the bag of words contained within the document. In more recent times, this idea has been extended by using pre-trained deep learning models and text representations, such as GloVe or BERT. These use an external corpus as a knowledge-base that conditions the model to help predict what a document is about. This paper adopts a hybrid approach that leverages the structure of knowledge embedded in a corpus. In particular, the paper reports on experiments where linked data triples (subject-predicate-object), constructed from natural language elements are derived from deep learning. These are evaluated as additional latent semantic features for a relevant document classifier in a customized news- feed website. The research is a synthesis of current thinking in deep learning models in NLP and information retrieval and the predicate structure used in semantic web research. Our experiments Citation: Nagumothu, D.; Eklund, indicate that linked data triples increased the F-score of the baseline GloVe representations by 6% P.W.; Ofoghi, B.; Bouadjenek, M.R.
    [Show full text]
  • Document and Topic Models: Plsa
    10/4/2018 Document and Topic Models: pLSA and LDA Andrew Levandoski and Jonathan Lobo CS 3750 Advanced Topics in Machine Learning 2 October 2018 Outline • Topic Models • pLSA • LSA • Model • Fitting via EM • pHITS: link analysis • LDA • Dirichlet distribution • Generative process • Model • Geometric Interpretation • Inference 2 1 10/4/2018 Topic Models: Visual Representation Topic proportions and Topics Documents assignments 3 Topic Models: Importance • For a given corpus, we learn two things: 1. Topic: from full vocabulary set, we learn important subsets 2. Topic proportion: we learn what each document is about • This can be viewed as a form of dimensionality reduction • From large vocabulary set, extract basis vectors (topics) • Represent document in topic space (topic proportions) 푁 퐾 • Dimensionality is reduced from 푤푖 ∈ ℤ푉 to 휃 ∈ ℝ • Topic proportion is useful for several applications including document classification, discovery of semantic structures, sentiment analysis, object localization in images, etc. 4 2 10/4/2018 Topic Models: Terminology • Document Model • Word: element in a vocabulary set • Document: collection of words • Corpus: collection of documents • Topic Model • Topic: collection of words (subset of vocabulary) • Document is represented by (latent) mixture of topics • 푝 푤 푑 = 푝 푤 푧 푝(푧|푑) (푧 : topic) • Note: document is a collection of words (not a sequence) • ‘Bag of words’ assumption • In probability, we call this the exchangeability assumption • 푝 푤1, … , 푤푁 = 푝(푤휎 1 , … , 푤휎 푁 ) (휎: permutation) 5 Topic Models: Terminology (cont’d) • Represent each document as a vector space • A word is an item from a vocabulary indexed by {1, … , 푉}. We represent words using unit‐basis vectors.
    [Show full text]
  • Improving Distributed Word Representation and Topic Model by Word-Topic Mixture Model
    JMLR: Workshop and Conference Proceedings 63:190–205, 2016 ACML 2016 Improving Distributed Word Representation and Topic Model by Word-Topic Mixture Model Xianghua Fu [email protected] Ting Wang [email protected] Jing Li [email protected] Chong Yu [email protected] Wangwang Liu [email protected] College of Computer Science and Software Engineering, Shenzhen University, Guangdong China Editors: Robert J. Durrant and Kee-Eung Kim Abstract We propose a Word-Topic Mixture(WTM) model to improve word representation and topic model simultaneously. Firstly, it introduces the initial external word embeddings into the Topical Word Embeddings(TWE) model based on Latent Dirichlet Allocation(LDA) model to learn word embeddings and topic vectors. Then the results learned from TWE are inte- grated in the LDA by defining the probability distribution of topic vectors-word embeddings according to the idea of latent feature model with LDA (LFLDA), meanwhile minimizing the KL divergence of the new topic-word distribution function and the original one. The experimental results prove that the WTM model performs better on word representation and topic detection compared with some state-of-the-art models. Keywords: topic model, distributed word representation, word embedding, Word-Topic Mixture model 1. Introduction Probabilistic topic model is one of the most common topic detection methods. Topic mod- eling algorithms, such as LDA(Latent Dirichlet Allocation) Blei et al. (2003) and related methods Blei (2011), infer probability distributions from frequency statistic, which can only reflect the co-occurrence relationships of words. The semantic information is less considered. Recently, distributed word representations with NNLM(neural network language model) Bengio et al.
    [Show full text]
  • Topic Modeling: Beyond Bag-Of-Words
    Topic Modeling: Beyond Bag-of-Words Hanna M. Wallach [email protected] Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK Abstract While such models may use conditioning contexts of arbitrary length, this paper deals only with bigram Some models of textual corpora employ text models—i.e., models that predict each word based on generation methods involving n-gram statis- the immediately preceding word. tics, while others use latent topic variables inferred using the “bag-of-words” assump- To develop a bigram language model, marginal and tion, in which word order is ignored. Pre- conditional word counts are determined from a corpus viously, these methods have not been com- w. The marginal count Ni is defined as the number bined. In this work, I explore a hierarchi- of times that word i has occurred in the corpus, while cal generative probabilistic model that in- the conditional count Ni|j is the number of times word corporates both n-gram statistics and latent i immediately follows word j. Given these counts, the topic variables by extending a unigram topic aim of bigram language modeling is to develop pre- model to include properties of a hierarchi- dictions of word wt given word wt−1, in any docu- cal Dirichlet bigram language model. The ment. Typically this is done by computing estimators model hyperparameters are inferred using a of both the marginal probability of word i and the con- Gibbs EM algorithm. On two data sets, each ditional probability of word i following word j, such as of 150 documents, the new model exhibits fi = Ni/N and fi|j = Ni|j/Nj, where N is the num- better predictive accuracy than either a hi- ber of words in the corpus.
    [Show full text]
  • Semantic N-Gram Topic Modeling
    EAI Endorsed Transactions on Scalable Information Systems Research Article Semantic N-Gram Topic Modeling Pooja Kherwa1,*, Poonam Bansal1 1Maharaja Surajmal Institute of Technology, C-4 Janak Puri. GGSIPU. New Delhi-110058, India. Abstract In this paper a novel approach for effective topic modeling is presented. The approach is different from traditional vector space model-based topic modeling, where the Bag of Words (BOW) approach is followed. The novelty of our approach is that in phrase-based vector space, where critical measure like point wise mutual information (PMI) and log frequency based mutual dependency (LGMD)is applied and phrase’s suitability for particular topic are calculated and best considerable semantic N-Gram phrases and terms are considered for further topic modeling. In this experiment the proposed semantic N-Gram topic modeling is compared with collocation Latent Dirichlet allocation(coll-LDA) and most appropriate state of the art topic modeling technique latent Dirichlet allocation (LDA). Results are evaluated and it was found that perplexity is drastically improved and found significant improvement in coherence score specifically for short text data set like movie reviews and political blogs. Keywords. Topic Modeling, Latent Dirichlet Allocation, Point wise Mutual Information, Bag of words, Coherence, Perplexity. Received on 16 November 2019, accepted on 10 0Februar20 y 2 , published on 11 February 2020 Copyright © 2020 Pooja Kherwa et al., licensed to EAI. T his is an open access article distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution and reproduction in any medium so long as the original work is properly cited.
    [Show full text]
  • Modeling Topical Relevance for Multi-Turn Dialogue Generation
    Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20) Modeling Topical Relevance for Multi-Turn Dialogue Generation Hainan Zhang2∗ , Yanyan Lan14y , Liang Pang14 , Hongshen Chen2 , Zhuoye Ding2 and Dawei Yin4 1CAS Key Lab of Network Data Science and Technology, Institute of Computing Technology, CAS 2JD.com, Beijing, China 3Baidu.com, Beijing, China 4University of Chinese Academy of Sciences fzhanghainan6,chenhongshen,[email protected], flanyanyan,[email protected],[email protected] Abstract context1 `},(吗?(Hello) context2 有什么问题我可以.¨b? (What can I do for you?) FÁM价了,我要3请保价 Topic drift is a common phenomenon in multi-turn context3 (The product price has dropped. I want a low-price.) dialogue. Therefore, an ideal dialogue generation }的,这边.¨3请,FÁ已Ï60了'? context4 models should be able to capture the topic informa- (Ok, I will apply for you. Have you received the product?) 东西60了发h不(一w吗? tion of each context, detect the relevant context, and context5 (I have received the product without the invoice together.) produce appropriate responses accordingly. How- 开w5P发h不会随'Äú context6 ever, existing models usually use word or sentence (The electronic invoice will not be shipped with the goods.) level similarities to detect the relevant contexts, current context /发我®±吗?(Is it sent to my email?) /的,请¨Ð供®±0@,5P发h24小时Äú。 which fail to well capture the topical level rele- response (Yes, please provide your email address, vance. In this paper, we propose a new model, we will send the electronic invoices in 24 hours.) named STAR-BTM, to tackle this problem. Firstly, the Biterm Topic Model is pre-trained on the whole Table 1: The example from the customer services dataset.
    [Show full text]
  • Text Analysis of QC/Issue Tracker by Natural Language Processing (NLP)
    PharmaSUG 2019 - Paper AD-052 Text Analysis of QC/Issue Tracker by Natural Language Processing (NLP) Tools Huijuan Zhang, Columbia University, New York, NY Todd Case, Vertex Pharmaceuticals, Boston, MA ABSTRACT Many Statistical Programming groups use QC and issue trackers, which typically include text that describe discrepancies or other notes documented during programming and QC, or 'data about the data'. Each text field is associated with one specific question or problem and/or manually classified into a category and a subcategory by programmers (either by free text or a drop-down box with pre-specified issues that are common, such as 'Specs', 'aCRF', 'SDTM', etc.). Our goal is to look at this text data using some Natural Language Processing (NLP) tools. Using NLP tools allows us an opportunity to be more objective about finding high-level (and even granular) themes about our data by using algorithms that parse out categories, typically either by pre-specified number of categories or by summarizing the most common words. Most importantly, using NLP we do not have to look at text line by line, but it rather provides us an idea about what this entire text is telling us about our processes and issues at a high-level, even checking whether the problems were classified correctly and classifying problems that were not classified previously (e.g., maybe a category was forgotten, it didn't fit into a pre-specified category, etc.). Such techniques provide unique insights into data about our data and the possibility to replace manual work, thus improving work efficiency. INTRODUCTION The purpose of this paper is to demonstrate how NLP tools can be used in a very practical way: to find trends in data that we would not otherwise be able to find using more traditional approaches.
    [Show full text]
  • Topic Modeling Approaches for Understanding COVID-19
    Topic Modeling Approaches for Understanding COVID-19 Misinformation Spread in Sub-Saharan Africa Ezinne Nwankwo1∗ , Chinasa Okolo2 and Cynthia Habonimana3 1Duke University 2Cornell University 3CSU-Long Beach [email protected], [email protected], [email protected] Abstract [1]. Fake news is often spread with the intent to provide financial or political gain and is often exacerbated by digi- Since the start of the pandemic, the proliferation tal illiteracy, lack of knowledge surrounding specific topics, of fake news and misinformation has been a con- and religious or personal beliefs that are biased towards fake stant battle for health officials and policy makers as news [2]. To get a sense of what are common themes in the they work to curb the spread of COVID-19. In ar- “fake news” being spread across the African continent and in eas within the Global South, it can be difficult for other developing nations, we thought it would be best to dis- officials to keep track of the growth of such false in- cover what ideologies they are rooted in. From our research, formation and even harder to address the real con- we saw three main themes in fake news being spread across cerns their communities have. In this paper, we Sub-Saharan Africa: distrust of philanthropic organizations, present some techniques the AI community can of- distrust of developed nations, and even distrust of leaders in fer to help address this issue. While the topics pre- their own respective countries. We posit that the distrust in sented within this paper are not a complete solution, these messages stems from the ”colonial-era-driven distrust” we believe they could complement the work gov- of international development organizations [3][4].
    [Show full text]
  • Distributional Approaches to Semantic Analysis
    Distributional approaches to semantic analysis Diarmuid O´ S´eaghdha Natural Language and Information Processing Group Computer Laboratory University of Cambridge [email protected] HIT-MSRA Summer Workshop on Human Language Technology August 2011 http://www.cl.cam.ac.uk/~do242/Teaching/HIT-MSRA-2011/ Your assignment (Part 2) I We now have two sets of word pairs with similarity judgements: one in English and one in Chinese. They are available on the summer school website, along with a more detailed specification of the assignment. I The task is to take some real corpora and build distributional models, exploring the space of design options that have been sketched in this course: I What is the effect of different context types (e.g., window context versus document context)? I What is the effect of different similarity and distance functions (e.g., cosine and Jensen-Shannon divergence)? I What is the effect of corpus size? I What is the effect of applying association measures such as PMI? I If you do this assignment in full, you will have a good idea how to build a distributional model to help with the NLP tasks you care about! Distributional approaches to semantic analysis Fundamentals of distributional methods 58 Probabilistic semantics and topic modelling What's in today's lecture: A probabilistic interpretation of distributional semantics Topic modelling Selectional preferences Word sense disambiguation Distributional approaches to semantic analysis Probabilistic semantics and topic modelling 59 Probabilistic modelling I Probabilistic modelling (or statistical modelling) explicitly recasts the problem of interest as one of inferring probability distributions over random variables and estimating properties of those distributions.
    [Show full text]
  • Topic Modeling for Natural Language Understanding
    Topic Modeling for Natural Language Understanding A Thesis Submitted to the Faculty of Drexel University by Xiaoli Song in partial fulfillment of the requirements for the degree of Doctor of Philosophy December 2016 c Copyright 2016 Xiaoli Song. ii Acknowledgments Thank God for giving me all the help, strength and determination to complete my thesis. I thank my advisor Dr. Xiaohua Hu. His guidance helped to shape and provided much needed focus to my work. I thank my dissertation committee members: Dr. Weimao Ke, Dr. Yuan An, Dr. Erjia Yan and Dr. Li Sheng for their support and insight throughout my research. I would also like to thank my fellow graduate students Zunyan Xiong, Jia Huang, Wanying Ding, Yue Shang, Mengwen Liu, Yuan Ling, Bo Song, and Yizhou Zang for all the help and support they provided. Special thanks to Chunyu Zhao, Yujia Wang, and Weilun Cheng. iii Table of Contents LIST OF TABLES ............................................. vii LIST OF FIGURES ............................................. ix ABSTRACT ................................................ x 1. INTRODUCTION ............................................ 1 1.1 Overview ............................................. 2 2. CLASSICAL TOPIC MODELING METHODS ............................. 4 2.0.1 Latent Semantic Analysis (LSA)............................... 4 2.0.2 PLSA ............................................. 5 2.1 Latent Dirichlet Allocation.................................... 6 3. PAIRWISE TOPIC MODEL ...................................... 8 3.1 Pairwise Relation
    [Show full text]