Herbivores Control Effects of Algal Species Richness on Community Biomass and Stability in a Laboratory Microcosm Experiment

Total Page:16

File Type:pdf, Size:1020Kb

Herbivores Control Effects of Algal Species Richness on Community Biomass and Stability in a Laboratory Microcosm Experiment Oikos 000: 001–009, 2016 doi: 10.1111/oik.03105 © 2016 Th e Authors. Oikos © 2016 Nordic Society Oikos Subject Editor: Christopher Swan. Editor-in-Chief: Dries Bonte. Accepted 11 February 2016 Herbivores control effects of algal species richness on community biomass and stability in a laboratory microcosm experiment Chase Rakowski and Bradley J. Cardinale C. Rakowski ([email protected]) and B. J. Cardinale, School of Natural Resources and Environment, Univ. of Michigan, 440 Church St, Ann Arbor, MI 48109, USA. Hundreds of studies that have explored how biodiversity aff ects the productivity and stability of ecosystems have produced a consensus that communities composed of more species tend to have higher biomass that is more stable through time. However, the majority of this work stems from studies performed using highly simplifi ed food webs, often composed of just primary producers competing for inorganic resources in the absence of trophic interactions. When studies have incorporated trophic interactions, diversity-function relationships have been more variable, leaving open the question of how biodiversity aff ects the functioning of ecosystems with more trophic levels. Here we report the results of a laboratory experiment that used freshwater microcosms to test for eff ects of algal diversity (one or four species) on community biomass and temporal variability in the presence and absence of two diff erent herbivore species (cladocerans Ceriodaphnia dubia and Daphnia pulex ). When no herbivores were present, we found the classic pattern observed in hundreds of other studies – as species richness of algae increased, algal biomass increased, and the temporal variation in biomass decreased. Th is pat- tern was retained when one of the herbivores (C. dubia ) was present. Ceriodaphnia dubia exhibited weak and non-selective grazing on the focal algae, leaving the eff ect of diversity on biomass and variability essentially intact. In contrast, D. pulex exhibited strong and selective grazing in algal polycultures that qualitatively altered both diversity – function relationships. As algal richness increased, total algal biomass decreased and variation through time increased. Th ese changes were coupled with larger and less variable populations of D. pulex . Our results show that herbivory leads to a richer array of diversity – function relationships than often observed in studies focused on just one trophic level, and suggests trophic interactions should be given more attention in work that seeks to determine how biodiversity impacts the functioning of ecosystems. In the face of accelerating loss of biodiversity (Murphy calls for researchers to begin considering ‘ vertical ’ diversity and Romanuk 2014, Newbold et al. 2015), an increasing (i.e. diversity of trophic levels) alongside the consideration amount of research has been dedicated to understanding of ‘ horizontal ’ diversity (i.e. diversity within a trophic level) how changes in biodiversity alter the functioning of eco- (Duff y 2002, Duff y et al. 2007). systems. Ecologists have paid particular attention to how While a growing number of researchers are now add- species richness infl uences community biomass and the ing trophic interactions to the design of their studies, there temporal variability of biomass, as productivity and sta- are still relatively few published results that we can draw bility are two metrics that are widely used to describe the inferences from, and the results of these few studies are functioning of ecosystems (Hooper et al. 2005). Although decidedly mixed (Duff y et al. 2005, Th ebault and Loreau a general consensus has emerged that species richness tends 2006, Jiang and Pu 2009). Consider, as one line of evidence, to increase the production and stability of biomass through the synthesis by Cardinale et al. (2011) who summarized time (Hooper et al. 2005, Cardinale et al. 2012), there is results of 13 studies that have manipulated the diversity of increasing recognition that most of our inferences about primary producers and then measured herbivory. Nine of biodiversity stem from studies performed using communi- these showed that herbivory increased, whereas four showed ties that have been greatly over-simplifi ed. Cardinale et al. that herbivory decreased, in more diverse assemblages of pro- (2009) summarized the characteristics of biodiversity experi- ducers. Similarly, other authors have found that increasing ments performed through 2005 and showed that Ͼ 90% of producer diversity is associated with reduced herbivory (see these had manipulated the diversity of seven or fewer species synthesis by Hillebrand and Cardinale 2004), with increased in just one trophic level, mostly primary producers. Th e nar- herbivory (Stein et al. 2010, Loranger et al. 2013), or with row focus on primary producers, coupled with the fact that no change in herbivory (DeMott 1998). trophic interactions are well known to regulate the biomass It is presently unknown why trophic interactions have and variability of producers (Borer et al. 2005, O ’ Gorman had such varying eff ects on diversity – function relationships. and Emmerson 2009, Estes et al. 2011), have prompted Some mathematical models and select empirical evidence EV-1 suggest that variation in herbivore traits such as body size inhabits lakes and ponds worldwide (USEPA 2002). Adult and feeding selectivity may help explain diff erences among C. dubia are Ͻ 1 mm and their small ( Ͻ 35 μ m) gape pre- studies (Duff y 2002, Th ebault and Loreau 2005, Narwani vents them from easily consuming larger algal cells (Burns and Mazumder 2010). For example, herbivores that exhibit 1968). A previous study performed with Ceriodaphnia selectivity in their feeding may encounter their preferred reticulata (Narwani and Mazumder 2010) suggests that food less often or spend more time handling food in a diverse C. dubia might feed at a similar or slower rate in polycul- community, leading to decreased herbivory rates (DeMott tures versus monocultures of algae. Th e Daphnia pulex com- and Kerfoot 1982, Vos et al. 2001, Kratina et al. 2007). plex is also common and globally distributed (Crease et al. On the other hand, generalist herbivores may benefi t from 2012). Daphnia pulex adults are larger and have a larger gape diverse diets if the species eaten are complementary in the (45 μ m) than C. dubia , allowing them to more easily consume nutrients they provide and/or if diversity tends to dilute larger particles (Burns 1968). In the same study by Narwani toxins (Pfi sterer et al. 2003). Unfortunately, few studies have and Mazumder (2010), D. pulex demonstrated accelerated quantifi ed the eff ects of herbivores on diff erent resource feeding in polycultures versus monocultures of algae. species in a way that allows us to estimate selectivity, or We acquired both cladocerans from Sachs Systems that can separate eff ects of diversity on the performance of Aquaculture, FL. Upon arrival, we inspected the zoo- diff erent trophic groups. Both of these measurements are plankton cultures and removed all contaminating species. required to understand how trophic interactions alter the We then housed the cladocerans in 1-l borosilicate glass diversity – function relationship for primary producers. bottles containing COMBO growth medium with animal Here we report the results of a laboratory experiment trace elements, a standard medium for culturing freshwa- performed with freshwater microcosms in which we tested ter plankton (Andersen 2005), which was refreshed every for eff ects of algal diversity (one or four species) on commu- fi ve days. We incubated the bottles under a 16:8 hour nity biomass and temporal variability in the presence versus light:dark cycle and fed the cladocerans a mixture of green absence of two diff erent herbivore species (the cladocerans algae ( Selenastrum capricornutum and Chlorella sorokiniana ). Ceriodaphnia dubia and Daphnia pulex ). Both C. dubia and In order to ensure that none of these algae would contami- D. pulex are abundant and widespread in lakes. We chose to nate the experiment, we rinsed and starved the cladocerans contrast these two herbivores because they are diff erent in prior to inoculation by placing individuals into fresh sterile their feeding habits, with D. pulex being larger and having COMBO medium three times over a period of eight hours. a bigger gape size than C. dubia that allows it to feed on a We examined cultures using microscopy to check for con- wider range of algae. With so little prior work on diversity – tamination and verify no unwanted species were present. function relationships in multi-trophic systems, it is diffi cult to make a priori hypotheses that are founded on solid logic Focal algae or prior ecological knowledge. Nevertheless, mathemati- cal models of multi-trophic systems (Th ebault and Loreau We used fi ve species of green algae (division Chlorophyta) 2005) tend to make three qualitative predictions that we for the experiment: Chlorella sorokiniana , Scenedesmus acum- considered when designing our study: 1) in the absence of inatus , Pediastrum duplex , Monoraphidium minutum and herbivory, increasing species richness of primary producers Monoraphidium arcuatum . Th ese genera are found in 9 to tends to increase and stabilize producer biomass; 2) when 53% of North American freshwater lakes and range from producer richness has non-signifi cant or negative eff ects on the 67th to the 5th most commonly sampled taxa out of 262 herbivory, then relationships between producer richness, genera identifi
Recommended publications
  • Cladocera: Anomopoda: Daphniidae) from the Lower Cretaceous of Australia
    Palaeontologia Electronica palaeo-electronica.org Ephippia belonging to Ceriodaphnia Dana, 1853 (Cladocera: Anomopoda: Daphniidae) from the Lower Cretaceous of Australia Thomas A. Hegna and Alexey A. Kotov ABSTRACT The first fossil ephippia (cladoceran exuvia containing resting eggs) belonging to the extant genus Ceriodaphnia (Anomopoda: Daphniidae) are reported from the Lower Cretaceous (Aptian) freshwater Koonwarra Fossil Bed (Strzelecki Group), South Gippsland, Victoria, Australia. They represent only the second record of (pre-Quater- nary) fossil cladoceran ephippia from Australia (Ceriodaphnia and Simocephalus, both being from Koonwarra). The occurrence of both of these genera is roughly coincident with the first occurrence of these genera elsewhere (i.e., Mongolia). This suggests that the early radiation of daphniid anomopods predates the breakup of Pangaea. In addi- tion, some putative cladoceran body fossils from the same locality are reviewed; though they are consistent with the size and shape of cladocerans, they possess no cladoceran-specific synapomorphies. They are thus regarded as indeterminate diplostracans. Thomas A. Hegna. Department of Geology, Western Illinois University, Macomb, IL 61455, USA. ta- [email protected] Alexey A. Kotov. A.N. Severtsov Institute of Ecology and Evolution, Leninsky Prospect 33, Moscow 119071, Russia and Kazan Federal University, Kremlevskaya Str.18, Kazan 420000, Russia. alexey-a- [email protected] Keywords: Crustacea; Branchiopoda; Cladocera; Anomopoda; Daphniidae; Cretaceous. Submission: 28 March 2016 Acceptance: 22 September 2016 INTRODUCTION tions that the sparse known fossil record does not correlate with a meager past diversity. The rarity of Water fleas (Crustacea: Cladocera) are small, the cladoceran fossils is probably an artifact, a soft-bodied branchiopod crustaceans and are a result of insufficient efforts to find them in known diverse and ubiquitous component of inland and new palaeontological collections (Kotov, aquatic communities (Dumont and Negrea, 2002).
    [Show full text]
  • Molecular Insights of Mitochondrial 16S Rdna Genes of the Native Honey Bees Subspecies Apis Mellifera Carnica and Apis Mellifera Jementica (Hymenoptera: Apidae) In
    Molecular insights of mitochondrial 16S rDNA genes of the native honey bees subspecies Apis mellifera carnica and Apis mellifera jementica (Hymenoptera: Apidae) in Saudi Arabia Reem Alajmi1, Rewaida Abdel-Gaber1,2*, Loloa Alfozana1 1Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia 2Faculty of Science, Department of Zoology, Cairo University, Cairo, Egypt Corresponding author: Rewaida Abdel-Gaber E-mail: [email protected] Genet. Mol. Res. 18 (1): gmr16039948 Received Nov 30, 2018 Accepted Dec 21, 2018 Published Jan 05, 2019 DOI: http://dx.doi.org/10.4238/gmr16039948 Copyright © 2018 The Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution ShareAlike (CC BY-SA) 4.0 License. ABSTRACT. The honey bee Apis mellifera is of major importance for the world’s agriculture and is also suitable for environmental monitoring. It includes several recognized subspecies distinguished by using morphological and morphometric variants. Here, 200 adult worker Apis mellifera honey bees were collected from Hail region, Saudi Arabia. Mitochondrial 16S rDNA was conducted to detect molecular polymorphism among honey bee A. mellifera subspecies. The amplified and sequenced gene regions of mtDNA revealed the presence of two different subspecies of Apis mellifera carnica (gb| MH939276.1) and Apis mellifera jementica (gb| MH939277.1). The sequences were compared with each other and with others retrieved from the GenBank demonstrating a high degree of similarity (up to 72%). The NJ tree indicated that all Apis species are clustered together in one clade in addition to the genetically origin of Apis species within family Apidae as a paraphyletic group within the African lineage.
    [Show full text]
  • Plant Species Richness and Species Area Relationships in a Florida Sandhill Monica Ruth Downer University of South Florida, [email protected]
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School January 2012 Plant Species Richness and Species Area Relationships in a Florida Sandhill Monica Ruth Downer University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the American Studies Commons, Biology Commons, and the Ecology and Evolutionary Biology Commons Scholar Commons Citation Downer, Monica Ruth, "Plant Species Richness and Species Area Relationships in a Florida Sandhill" (2012). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/4030 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Plant Species Richness and Species Area Relationships in a Florida Sandhill Community by Monica Ruth Downer A thesis submitted in partial fulfillment Of the requirements for the degree of Master of Science Department of Biology College of Arts and Sciences University of South Florida Major Professor: Gordon A. Fox, Ph.D. Co-Major Professor: Earl D. McCoy, Ph.D. Co-Major Professor: Frederick B. Essig, Ph.D. Date of Approval: March 27, 2012 Keywords: Species area curve, burn regime, rank occurrence, heterogeneity, autocorrelation Copyright © 2012, Monica Ruth Downer ACKNOWLEDGEMENTS I would like to offer special thanks to my major professor, Dr. Gordon A. Fox, for his patience, guidance and many hours devoted to helping me in this endeavor. I would like to thank my committee, Dr.
    [Show full text]
  • Daphnia Magna and Daphnia Longispina)
    Ann. Limnol. - Int. J. Lim. 2007, 43 (1), 13-20 Salinity effects on survival and life history of two freshwater cladocerans (Daphnia magna and Daphnia longispina) A.M.M. Gonçalves1,2*, B.B. Castro1, M. A. Pardal2, F. Gonçalves1 1 Departamento de Biologia da Universidade de Aveiro & Centro de Estudos do Ambiente e do Mar (CESAM), Campus Universitário de Santiago, 3810-193 Aveiro, Portugal 2 IMAR, Departamento de Zoologia, Universidade de Coimbra, 3004-517 Coimbra, Portugal Salinity is a serious threat to freshwater ecosystems, particularly those near coastal areas. An increase in salinity produces drastic changes in community structure of freshwaters, sometimes in an irreversible fashion. Thus, freshwater species must cope with salinity stress in a manner proportional to their degree of tolerance. Bearing this in mind, we studied the acute and chronic effects of different salinity concentrations in two species of cladocerans: Daphnia magna Straus, a standard test organism, and Daphnia longispina O. F. Müller, an autochthonous species. Salinity experiments were based on successive dilutions of a stock solution of NaCl in a synthetic medium. The results showed that D. magna is more tolerant than D. longispina, both in acute (EC50 5.9 and 2.9 g/L, respectively) and chronic (EC50 5.0 and 2.2 g/L, correspondingly) exposures. In the chronic exposure, salinity caused a significant reduction in fecundity and a developmental delay (increase in age at first reproduction), as well as a decrease in the growth rate of daphnids. However, these effects were mainly observed at salinity concentrations where morta- lity occurred. Keywords: saline stress, sodium chloride, toxicity tests, freshwater zooplankton, life history.
    [Show full text]
  • Species Richness, Species–Area Curves and Simpson's Paradox
    Evolutionary Ecology Research, 2000, 2: 791–802 Species richness, species–area curves and Simpson’s paradox Samuel M. Scheiner,1* Stephen B. Cox,2 Michael Willig,2 Gary G. Mittelbach,3 Craig Osenberg4 and Michael Kaspari5 1Department of Life Sciences (2352), Arizona State University West, P.O. Box 37100, Phoenix, AZ 85069, 2Program in Ecology and Conservation Biology, Department of Biological Sciences and The Museum, Texas Tech University, Lubbock, TX 79409, 3W.K. Kellogg Biological Station, 3700 E. Gull Lake Drive, Michigan State University, Hickory Corners, MI 49060, 4Department of Zoology, University of Florida, Gainesville, FL 32611 and 5Department of Zoology, University of Oklahoma, Norman, OK 73019, USA ABSTRACT A key issue in ecology is how patterns of species diversity differ as a function of scale. The scaling function is the species–area curve. The form of the species–area curve results from patterns of environmental heterogeneity and species dispersal, and may be system-specific. A central concern is how, for a given set of species, the species–area curve varies with respect to a third variable, such as latitude or productivity. Critical is whether the relationship is scale-invariant (i.e. the species–area curves for different levels of the third variable are parallel), rank-invariant (i.e. the curves are non-parallel, but non-crossing within the scales of interest) or neither, in which case the qualitative relationship is scale-dependent. This recognition is critical for the development and testing of theories explaining patterns of species richness because different theories have mechanistic bases at different scales of action.
    [Show full text]
  • European Gradients of Resilience in the Face of Climate Extremes
    EUROPEAN GRADIENTS OF RESILIENCE IN THE FACE OF CLIMATE EXTREMES POLICY BRIEF Field site in Belgium with rainout shelters deployed in 2013 ©Sigi Berwaers This policy brief is based on the results Extreme weather events and the presence of invasive species can act as of the BiodivERsA-funded project pressures threatening biodiversity, resilience and ecosystem services of semi- ‘SIGNAL’ addressing the interaction of three major research areas, combined natural grasslands and drive them beyond thresholds of system integrity in ecology for the first time: biodiversity (tipping points and regime shifts). On the other hand, biodiversity itself may experiments, climate change research, and invasion research. The project made use buffer ecosystem functioning and services against change. Potential stabilising of coordinated experiments in different mechanisms include species richness, presence of key species such as legumes climates across Europe, thereby increasing and within-species diversity. These potential buffers can be promoted by the scope and relevance of the results. conservation management and policy adjustments. K EY POLICY RECOMMENDATIONS • Local biodiversity should be actively stimulated or preserved across European grasslands in order to increase the stability of ecosystem service provisioning, which is especially relevant as climate extremes are expected to become more frequent and intense. • Adjustment of mowing frequency and cutting height can help maintain or increase biodiversity. • More explicit consideration of within-species diversity is warranted, as this component of biodiversity can contribute to stabilising ecosystem functioning in the face of climate extremes. • Ecosystem responses to climate extremes of similar magnitude can vary significantly between climates and regions, suggesting that targeted policy requires tailor-made impact predictions.
    [Show full text]
  • "Species Richness: Small Scale". In: Encyclopedia of Life Sciences (ELS)
    Species Richness: Small Advanced article Scale Article Contents . Introduction Rebecca L Brown, Eastern Washington University, Cheney, Washington, USA . Factors that Affect Species Richness . Factors Affected by Species Richness Lee Anne Jacobs, University of North Carolina, Chapel Hill, North Carolina, USA . Conclusion Robert K Peet, University of North Carolina, Chapel Hill, North Carolina, USA doi: 10.1002/9780470015902.a0020488 Species richness, defined as the number of species per unit area, is perhaps the simplest measure of biodiversity. Understanding the factors that affect and are affected by small- scale species richness is fundamental to community ecology. Introduction diversity indices of Simpson and Shannon incorporate species abundances in addition to species richness and are The ability to measure biodiversity is critically important, intended to reflect the likelihood that two individuals taken given the soaring rates of species extinction and human at random are of the same species. However, they tend to alteration of natural habitats. Perhaps the simplest and de-emphasize uncommon species. most frequently used measure of biological diversity is Species richness measures are typically separated into species richness, the number of species per unit area. A vast measures of a, b and g diversity (Whittaker, 1972). a Di- amount of ecological research has been undertaken using versity (also referred to as local or site diversity) is nearly species richness as a measure to understand what affects, synonymous with small-scale species richness; it is meas- and what is affected by, biodiversity. At the small scale, ured at the local scale and consists of a count of species species richness is generally used as a measure of diversity within a relatively homogeneous area.
    [Show full text]
  • Annual Report 2012 Report Annual Science and Technology Aquatic of Institute Federal Swiss – Eawag
    Eawag – Swiss Federal Institute of Aquatic Science and Technology Eawag Überlandstrasse 133 2011 P.O. Box 611 8600 Dübendorf Switzerland Phone +41 (0)58 765 55 11 Fax +41 (0)58 765 50 28 AnnualReport 2012 www.eawag.ch [email protected] Jahresbericht Eawag Annual Report 2012 Eawag, the Swiss Federal Institute of Aquatic Science and Technology, is part of the ETH Domain. This The Annual Report 2012 presents only a small selection comprises the Swiss Federal Institutes of Technology in Zurich (ETHZ) and Lausanne (EPFL), Eawag of Eawag’s research, teaching and consulting activities. A database of all publications by Eawag researchers and three other independent, application-oriented research institutes – the Paul Scherrer Institute (including article summaries) is available online at: (PSI), the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL) and the Materials www.lib4ri.ch/institutional-bibliography/eawag.html. Open Science and Technology Research Insti tution (Empa). Nationally rooted and internationally networked, access publications can be downloaded free of charge. Eawag is concerned with concepts and technologies for the sustainable management of water The Annual Report is also available in German. resources and aquatic ecosystems. In cooperation with universities, other research centres, public authorities, the private sector and NGOs, Eawag strives to harmonize ecological, economic and social interests in water, providing a link between science and practical applications. In total 455 staff are employed in research, teaching and consulting at the Dübendorf (Zurich) and Kastanienbaum (Lucerne) sites. Publication details Editing: Andres Jordi / Contributors: Fabio Bergamin, Andri Bryner, Michael Keller, Thomas Lichtensteiger, Beatrix Mühlethaler, Anke Poiger, Annette Ryser, Anke Schäfer, Evelin Vogler, Felix Würsten / Translation: Jeff Acheson / Layout: Peter Penicka, Peter Nadler © Eawag, May 2013 Reproduction is permissible with citation of the source: “Eawag – aquatic research: Annual Report 2012”.
    [Show full text]
  • Reanalysis and Revision of the Complete Mitochondrial Genome of Artemia Urmiana Günther, 1899 (Crustacea: Anostraca)
    diversity Article Reanalysis and Revision of the Complete Mitochondrial Genome of Artemia urmiana Günther, 1899 (Crustacea: Anostraca) Alireza Asem 1,2,† , Amin Eimanifar 3,†, Weidong Li 4,*, Chun-Yang Shen 5, Farnaz Mahmoudi Shikhsarmast 1,6, Ya-Ting Dan 7, Hao Lu 1,2, Yang Zhou 8, You Chen 1,9, Pei-Zheng Wang 1,9,* and Michael Wink 10 1 Key Laboratory of Utilization and Protection of Tropical Marine Living Resources, Hainan Tropical Ocean University, Sanya 572000, China; [email protected] (A.A.); [email protected] (F.M.S.); [email protected] (H.L.); [email protected] (Y.C.) 2 College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya 572000, China 3 Independent Senior Scientist, Industrial District, Easton, MD 21601, USA; [email protected] 4 College of Ecology and Environment, Hainan Tropical Ocean University, Haikou 570000, China 5 Department of Biology, Chengde Medical University, Chengde 067000, China; [email protected] 6 College of Marine Science and Technology, Hainan Tropical Ocean University, Sanya 572000, China 7 College of Marine Science, Shanghai Ocean University, Shanghai 200000, China; [email protected] 8 Institute of Deep Sea Science and Engineering, Chinese Academy of Science, Sanya 572000, China; [email protected] 9 College of Ecology and Environment, Hainan Tropical Ocean University, Sanya 572000, China 10 Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany; [email protected] * Correspondence: [email protected] (W.L.); [email protected] (P.-Z.W.) † Equal contribution as first author. Abstract: In the previously published mitochondrial genome sequence of Artemia urmiana (NC_021382 [JQ975176]), the taxonomic status of the examined Artemia had not been determined, due to partheno- Citation: Asem, A.; Eimanifar, A.; Li, W.; Shen, C.-Y.; Shikhsarmast, F.M.; genetic populations coexisting with A.
    [Show full text]
  • Littoral Cladocera (Crustacea: Branchiopoda) from the Altai Mountain Lakes, with Remarks on the Taxonomy of Chydorus Sphaericus (O.F
    Arthropoda Selecta 12 (34): 171182 © ARTHROPODA SELECTA, 2003 Littoral Cladocera (Crustacea: Branchiopoda) from the Altai mountain lakes, with remarks on the taxonomy of Chydorus sphaericus (O.F. Müller, 1776) Ëèòîðàëüíûå Cladocera (Crustacea: Branchiopoda) ãîðíûõ îçåð Àëòàÿ ñ òàêñîíîìè÷åñêèìè çàìåòêàìè î Chydorus sphaericus (O.F. Müller, 1776) Mariya A. Belyaeva Ì.À. Áåëÿåâà A. N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Leninsky prospekt 33, Moscow 119071 Russia. Èíñòèòóò ïðîáëåì ýêîëîãèè è ýâîëþöèè èì. À. Í. Ñåâåðöîâà ÐÀÍ, Ëåíèíñêèé ïð-ò, 33, Ìîñêâà 119071 Ðîññèÿ. e-mail: [email protected]. KEY WORDS: faunistics, Cladocera, Chydorus sphaericus, Altai, mountain lakes, littoral zone. ÊËÞ×ÅÂÛÅ ÑËÎÂÀ: ôàóíèñòèêà, Cladocera , Chydorus sphaericus, Àëòàé, ãîðíûå îçåðà, ëèòîðàëüíàÿ çîíà. ABSTRACT: The faunistic data on Cladocera (Crus- faunistic survey on Cladocera was made by Sars and tacea) of the Altai Mountains are summarized from published in two papers [Sars, 1903a, b]. There were published and the authors records. The latter include also a few studies on zooplankton, some of which data on 18 lakes situated between 450 and 2700 m a.s.l. contained occasional records of littoral species [Rylov, Of 22 species of littoral cladocerans, which are mostly 1949; Shipunova, 1991; Zuykova, 1998; Vesnina et al., eurytopic and widely distributed, five are recorded for 1999; Popov et al., 2003]. All the species so far recorded the region for the first time. Cluster analysis revealed from the Altai Mountains are widely distributed, occur- three groups of habitats that differ in their cladoceran ring in lowlands as well, and a sole species the species composition.
    [Show full text]
  • Taxonomic Atlas of the Water Fleas, “Cladocera” (Class Crustacea) Recorded at the Old Woman Creek National Estuarine Research Reserve and State Nature Preserve, Ohio
    Taxonomic Atlas of the Water Fleas, “Cladocera” (Class Crustacea) Recorded at the Old Woman Creek National Estuarine Research Reserve and State Nature Preserve, Ohio by Jakob A. Boehler, Tamara S. Keller and Kenneth A. Krieger National Center for Water Quality Research Heidelberg University Tiffin, Ohio, USA 44883 January 2012 Taxonomic Atlas of the Water Fleas, “Cladocera” (Class Crustacea) Recorded at the Old Woman Creek National Estuarine Research Reserve and State Nature Preserve, Ohio by Jakob A. Boehler, Tamara S. Keller* and Kenneth A. Krieger Acknowledgements The authors are grateful for the assistance of Dr. David Klarer, Old Woman Creek National Estuarine Research Reserve, for providing funding for this project, directing us to updated taxonomic resources and critically reviewing drafts of this atlas. We also thank Dr. Brenda Hann, Department of Biological Sciences at the University of Manitoba, for her thorough review of the final draft. This work was funded under contract to Heidelberg University by the Ohio Department of Natural Resources. This publication was supported in part by Grant Number H50/CCH524266 from the Centers for Disease Control and Prevention. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of Centers for Disease Control and Prevention. The Old Woman Creek National Estuarine Research Reserve in Ohio is part of the National Estuarine Research Reserve System (NERRS), established by Section 315 of the Coastal Zone Management Act, as amended. Additional information about the system can be obtained from the Estuarine Reserves Division, Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration, U.S.
    [Show full text]
  • Life History and Ecology of Daphnia Pulex Ssp. Pulicoides Woltereck
    Life history and ecology of Daphnia pulex ssp. pulicoides Woltereck 1932 by Blaine W LeSuer A THESIS Submitted to the Graduate Faculty in partial fulfillment of the requirements for the degree of Master of Science in Botany Montana State University © Copyright by Blaine W LeSuer (1959) Abstract: A detailed study was made on the life history, natality, growth,, and mortality of Daphnia pulex ssp. pulicoides Woltereck 1932. In addition, a grazing study was carried out at temperatures of 5°, 10°, 15°, 20°, and 25° C. and at instar levels one through ten. Grazing data is presented in tabular form and summarized with a graph. Temperature effect on grazing rates was noted. Respiration studies were carried out at temperatures of 10°, 15°, and 20° C. at instar levels one through ten. A Q10 was calculated for oxygen consumption and also for carbon dioxide production. The Q10 was between the temperature levels of 10° and 20° C. A disucssion and a review of literature is presented. Part V includes a short summary. I -TT- LIFE HISTORY AND ECOLOGY OF DAPHNIA PUL-EX SSP. PULICOIDES WOLTERECK. 1932 by BLAINE W. LE SUER A THESIS Submitted to the' GrSdadte Fadalty-' in partial fulfillment of the requirements for the degree of ■ Master of Science in Botany at Montana State College Approved: August, 1959 L S l M 'P I6 TABLE OF CONTENTS LIST OF I L L U S T R A T I O N S ................................................. ii LIST OF T A B L E S ........................................................ iii ACKNOWLEDGMENTS ..................................................... iv A B S T R A C T ............................................................
    [Show full text]