Individualized Cancer Therapy From Dream to Reality Lance A. Liotta MD PhD

Translational Research and Technology Development From Laboratory Science to Clinical Trial Implementation

Personalized Molecular Targeted Therapy

Cancer is a disease of the cellular signalling network INDIVIDUALIZED THERAPY OF CANCER Map Serum Proteomics Circuitry Early Diagnosis Biopsy

Diagnostic Imaging

•Higher efficacyAdminister •Lower toxicityIndividualized Therapy •Reduced Recurrence

Copyright © Lance Liotta Personalized therapy: mapping the activity of the actual drug targets (the ) in a patient’s individual cancer. Patient A Patient B

Patterns of phosphorylation indicate pathway activity docking events and infer - protein interactions.

Concurrent phosphorylation of kinases and kinase substrates indicates functional pathway linkage

Copyright © Lance Liotta Mapping Phosphoprotein Networks in Cells

Between run precision for VEGFR Y951 Human Endothelial Cells Pervanadate Treated 7,500,000

7,000,000 Multiple samples/array, highly precise 6,500,000 6,000,000 CV=5.6%

5,500,000 CV=5.0% CV=5.7% One antibody probe/array 5,000,000 Within-in run precision for VEGFR Y951 4,500,000 Human Endothelial Cells Pervanadate Treated 8,000,000 CV=2.0% 4,000,000 CV=6.0% 7,500,000 7,000,000 CV=2.8% 6,500,000 CV=2.8% 3,500,000 Built in controls, standards, calibrators, and 6,000,000 5,500,000 CV=5.0% 3,000,000 CV=4.9% 5,000,000 4,500,000 2,500,000 4,000,000 Range of values samples on same array 3,500,000 for human

Relative mean intensity (n=8) intensity mean Relative CV=8.1% 2,000,000 3,000,000 vitreous samples CV=4.0% 2,500,000 2,000,000

1,500,000 Relativemean intensity (n=12) CV=16.4% 1,500,000 CV=18.1% CV=7.4% 1,000,000 CV=23.0% 1,000,000 500,000 2000 to 4000 cells required to measure more CV=28.8% CV=17.8% 0 500,000 0 100,000 200,000 300,000 400,000 500,000 600,000 700,000 800,000 900,000 1,000,000 CV=19.6% Molecules of receptor than 100 endpoints 0 0 100,000 200,000 300,000 400,000 500,000 600,000 700,000 800,000 900,000 1,000,000 Copyright © Lance Liotta Molecules of receptor Etk (Y40) Mnk1 (T197/202) (beta) (T41/S45) Ezrin (Y353) MSK1 (S360) B-Raf (S445) 4E-BP1 (S65) Ezrin (T567)/Radixin (T564)/Moesin (T558) Caveolin-1 (Y14) Mst1 (T183)/Mst2 (T180) c-Raf (S338) (56A6) FADD (S194) 4E-BP1 (T37/46) c-Cbl (Y731) mTOR (S2448) Ras-GRF1 (S916) c-Cbl (Y774) FAK (Y397) (18) 4E-BP1 (T70) FAK (Y576/577) mTOR (S2481) Ret (Y905) CD19 (Y513) 4G10 (anti Phosphotyrosine) FAK (Y925) c-Myc (T58/S62) Chk1 (S345) RSK3 (T356/S360) FCgamma Rec IIb (Y292) Light Chain 2 (T18/S19) c-Abl (T735) Chk2 (S33/35) S6 Ribosomal Protein (S235/236) (2F9) FGF Receptor (Y653/654) NF-kappaB p65 (S536) c-Abl (Y245) Chk2 (T68) (80F5) FHIT (Y114) S6 Ribosomal Protein (S240/244) Acetyl-CoA Carboxylase (S79) Cofilin (S3) FKHR (S256) NPM (T199) SAPK/JNK (T183/Y185) Adducin (S662) Cofilin (S3) (77G2) FKHRL1 (S253) p27 (T187) SEK1/MKK4 (S80) Connexin 43 (S368) FKHR (T24)/FKHRL1 (T32) p27 (T187) (2B10B7) AFX (S193) FLT3 (Y591) (54H1) SGK (S78) CREB (S133) p38 MAP Kinase (T180/Y182) Akt (S473) alpha-Fodrin, cleaved (D1185) Shc (Y317) CREB (S133) (1B6) p40 phox (T154) FRS2-alpha (Y436) Shc (Y317) Akt (S473) CrkII (Y221) p56Dok-2 (Y351) Gab1 (Y627) SHIP1 (Y1020) Akt (S473) (587F11) Cyclin B1 (S147) Gab2 (S159) p70 S6 Kinase (S371) Akt1/PKB alpha (S473) (SK703) DFF45, cleaved (D224) Gab2 (Y452) p70 S6 Kinase (T389) SHP2 (Y542) Akt (S473) (736E11) eEF2 (T56) GCN2 (T898) p70 S6 Kinase (T412) SHP2 (Y580) EGFR (S1046/1047) Glucocorticoid Receptor (S211) p70 S6 Kinase (T421/S424) Smad1 (S/S)/Smad5 (S/S)/Smad8 (S/S) Akt (T308) GSK-3alpha (S21) (46H12) EGFR (S1047) (1H9) p90RSK (S380) Smad2 (S465/467) Akt (Y326) GSK-3alpha/beta (S21/9) EGFR (T654) (3F2) p130 Cas (Y165) Smad2 (S245/250/255) ALK (Y1604) GSK-3alpha (Y279)/beta (Y216) EGFR (Y845) GSK-3beta (S9) PAK1 (S144)/PAK2 (S141) Smad3 (S433/435) AMPKalpha (T172) EGFR (Y992) Histone H3 (S10) Mitosis Marker PAK1 (S199/204)/PAK2 (S192/197) Src Family (Y416) AMPKalpha1 (S485) EGFR (Y1045) Histone H3 (S28) PAK1 (T423)/PAK2 (T402) Src (Y527) EGFR (Y1068) Histone H3 (T11) AMPKbeta1 (S108) PAK2 (S20) EGFR (Y1068) (1H12) HSP27 (S15) SRF (S103) AMPKbeta1 (S182) PAK4 (S474)/PAK5 (S602)/PAK6 (S560) EGFR (Y1148) IGF-1 Rec (Y1131)/Insulin Rec (Y1146) Stat1 (S727) (beta) 1 (S412) (6-24) IGF-1R (Y1135/36)/IR (Y1150/51) (19H7) PARP, cleaved (D214) EGFR (Y1148) Stat1 (S727) IkappaB-alpha (S32) PARP, cleaved (D214) (19F4) ASK1 (S83) EGFR (Y1173) Stat1 (Y701) IkappaB-alpha (S32) (14D4) Paxillin (Y118) ASK1 (T845) pEGFR (Y1173) (9H2) IkappaB-alpha (S32/36) (5A5) Stat1 (Y701) PDGF Receptor alpha (Y754) (23B2) ATF-2 (T71) EGFR (Y1173) (53A3) IkappaB-alpha (S32/36) (39A1431) PDGF Receptor beta (Y716) Stat2 (Y689) ATF-2 (T69/71) eIF2alpha (S51) IKKalpha (S176)/IKKbeta (S180) Stat3 (S727) eIF2alpha (S51) (119A11) IKKalpha (S180)/IKKbeta (S181) PDGF Receptor beta (Y751) Aurora A (T288)/B (T232)/C (T198) Stat3 (S727) eIF4E (S209) IL-1beta, cleaved (D116) PDK1 (S241) Bad (S112) eIF4G (S1108) IRAK1 (S376) PI3-Kinase p85(Y458)/p55(Y199) Stat3 (Y705) (9E12) IRS-1 (S302) Bad (S112) (7E11) Elk-1 (S383) PKA C (T197) Stat3 (Y705) (58E12) IRS-1 (S307) Bad (S136) eNOS (S113) IRS-1 (S612) PKC alpha (S657) Stat5 (Y694) Bad (S155) eNOS (S1177) IRS-1 (S636/639) PKC alpha/beta II (T638/641) Stat6 (Y641) Bcl-2 (S70) (5H2) eNOS (S1177) IRS-1 (S789) PKC (pan) (betaII S660) Syk (Y323) eNOS (T495) IRS-1 (S1101) PKC delta (T505) Syk (Y525/526) Bcl-2 (T56) IRS-1 (Y612) eNOS/NOS III (S116) PKC theta (T538) TAK1 (T184) Bcr (Y177) Ephrin B (Y324/329) Jak1 (Y1022/1023) Jak2 (Y221) PKC zeta/lambda (T410/403) TAK1 (T184/187) BLNK (Y96) ErbB2/HER2 (Y877) Jak2 (Y1007/1008) PKR (T446) Tie2 (S1119) Btk (S180) (7A12) ErbB2/HER2 (Y1221/1222) c-Jun (S63) II cPLA2 (S505) Tie2 (Y992) Caspase-3, cleaved (D175) ErbB2/HER2 (Y1248) c-Kit (Y703) PLCgamma1 (Y783) ErbB2/HER2 (Y1248) Tpl2 (S400) Caspase-3, cleaved (D175) (5A1) c-Kit (Y719) PLCgamma2 (Y759) ErbB2/HER2 (Y1248)/EGFR (Y1173) c-Kit (Y721) I (Cardiac) (S23/24) Caspase-6, cleaved (D162) PLD1 (S561) ErbB3/HER3 (Y1222) (50C2) A, cleaved (D230) PLK1 (T210) Tuberin/TSC2 (Y1571) Caspase-7, cleaved (D198) ErbB3/HER3 (Y1289) (21D3) LAT (Y171) PRAS40 (T246) Tyk2 Caspase-8, cleaved (D374) ERK 1/2 (T202/Y204) LAT (Y191) Lck (Y192) (Y1054/1055) Caspase-9, cleaved (D315) ERK 1/2 (T202/Y204) (E10) PRK1 (T774)/PRK2 (T816) Lck (Y505) Progesterone Receptor (S190) Caspase-9, cleaved (D330) Estrogen Receptor alpha (S118) Lck (Y505) PTEN (S380) VASP (S157) Catenin (beta) (S45) Estrogen Receptor alpha (S118) (16JR) LIMK1 (T508)/LIMK2 (T505) Pyk2 (Y402) VASP (S239) Catenin (beta) (S33/37/T41) LKB1 (S334) LKB1 (S428) Rac1/cdc42 (S71) VEGFR 2 (Y951) LKB1 (T189) Raf (S259) VEGFR 2 (Y996) Lyn (Y507) A-Raf (S299) VEGFR 2 (Y1175) (19A10) MAPK (pTEpY) WNK1 (T60) MEASURE ALL OF THESE IN MAPKAPK-2 (T334) Zap-70 (Y315/319) MARCKS (S152/156) Zap-70 (Y493) M-CSF Receptor (Y723) MDM2 (S166) Zap-70 (Y319)/Syk (Y352) MEK1 (S298) MEK1/2 (S217/221) Met (Y1234/1235) MKK3/MKK6 (S189/207) Copyright © Lance Liotta Solving the problem of tissue heterogeneity Comparison of LCM procured LASER CAPTURE MICRODISSECTION carcinoma cells to whole tissue: The profiles are completely different

Copyright © Lance Liotta Silvestri 2010 Pre-analytical Variables: The tissue is alive!

•The tissue is alive and reactive post excision • During the post excision delay time, tissue signal pathway biomarkers fluctuate upward and downward as the tissue undergoes hypoxia, metabolic acidosis, wounding, hypotension, hypoglycemia, and dehydration. • Fixation chemistries of the future that stabilize ex vivo reactive biomarkers • Universal preservation of tissue biomarkers without freezing

Copyright © Lance Liotta Solving the problem of tissue preservation Core needle biopsy Multipurpose Molecular Preservation, Histologic Fidelity, and RT Storage

Highest quality cytology and histomorphology for pathologic diagnosis and immunohistology

One Step Molecular Preservation Paraffin and Fixation Block a) Preserves morphology for histopathologic diagnosis Laser Capture b) Stabilizes proteins, Microdissection phosphoproteins and PTMs c) Stabilizes RNA, miRNA, and DNA d) Can be frozen for frozen section diagnosis or used for Protein Microarray Flow Cytometry Archive e) Paraffin embedding for indefinite storage at room temperature

Copyright © Lance Liotta Genomics Microarray Copyright © Lance Liotta Direct Measurement of Activated Signal Pathways In Microdissected Lung Cancer

VanMeter AJ, Rodriguez AS, et al. Laser capture microdissection and protein microarray analysis of human non-small cell lung cancer: differential epidermal growth factor receptor (EGFR) phosphorylation events associated with mutated EGFR compared with wild type. Mol Cell Proteomics 2008 Oct;7(10):1902-24.

Copyright © Lance Liotta a) EGF receptor mutation status can be identified with very high statistical significance by comparing two phosphorylated epitopes on the EGF receptor, or by comparison of phosphorylated epitopes with total EGFR. b) Specific ratios of protein endpoints can distinguish cells with EGFR mutation from wild type. c) Patients exhibiting greater phosphorylation of total EGFR Y1068, Y1173, and/or Y1148 compared to Y1045 may benefit from tyrosine kinase inhibitor therapy regardless of EGFR mutation status. Copyright © Lance Liotta Clinical research trials underway using phosphoprotein signal . pathway profiling for stratification of tyrosine kinase inhibitors A. Breast Cancer: (USO, Inova TKI: EGF/HER2 combination therapy Status: Started Sept 2007 ACCRUAL COMPLETE Target Completion Dec 2010

B. Multiple Myeloma: (Hem Oncol Assoc, Inova) targeted inhibitor screening Status: Started May 2007 Target Completion May 2011

C. Breast Cancer Carcinoma in Situ: DCIS cancer stem/progenitor cells Status: Started Sept 2007 Completed August 2010

D. Breast Cancer Carcinoma in Situ: Treatment Status: Opened Target Completion Dec 2011

E. Colon Cancer Liver Metastasis: Individualized Stratified combination therapy Status: Started Aug 2009 , Target Completion March 2011

F. Breast Cancer Stage IV : Side Out sponsored trial individualized therapy based on genomic and proteomic analysis Status: Opened Dec 2009 Target Completion 2011

Copyright © Lance Liotta Combination GSK US Oncology 05-074 Molecular Targeted Therapy for Breast Cancer

BX before TX

BX after TX

Copyright © Lance Liotta Example proteins analyzed in the EGFR/Her2 pathway by Reverse Phase Protein Microarray Technology

Copyright © Lance Liotta PRE VERSUS POST RX EXAMPLE DATA Classes of signal pathway protein alterations: 1. Suppression of downstream pathways proteins related to ErbB1/ErbB2 compared to pre-treatment biopsy. 2. Elevation of pathways proteins related to ErbB2 compared to pre- treatment biopsy. 3. Alterations in pathways related to adhesion, stem cell function, proteolysis and cell cycle that are not directly related to ErbB1/ErbB2.

1. Accrual is complete: 100 pts. Outcome data will be unblinded by 2011.

2. Unique molecular data from proteomic & genomic analysis pre and post treatment will be correlated with clinical outcome.

3. The trial validates the use of novel molecular fixative chemistries generally applicable to molecular profiling without the requirement for sample freezing.

3. This is the first breast cancer trial in which measurement of protein post- translational modifications are being measured before and after administration of molecular targeted inhibitors in breast cancer. Copyright © Lance Liotta METASTASIS Testing the Seed vs. Soil hypothesis

US-ITALY PHOSPHOPROTEOMIC STUDY

Question: Is the state of activated signaling pathways in a primary tumor cell different from the metastasis?

If so: Is the state of activated signal pathways in metastasis dictated by the target organ (soil) or by the primary tumor site (seed)from which the metastasis is derived?

Mariaelena Pierobon Claudio Belluco Enzo Mammano Copyright © Lance Liotta Study set: 34 matched-pair primary CRCs and synchronous liver metastases -collected at the same time of surgery-.

Comparison of primary colorectal cancer and synchronous liver metastasis.

35 of the 82 endpoints analyzed were statistically different between primary tumor and hepatic metastasis.

Copyright © Lance Liotta Nitmec trial: Study design

Nitmec is a prospective non- randomized clinical trial

Clinical PIs: Alex Spira and Kirsten Edmiston

Gleevec® Dose Gleevec® + Vectibix™ Escalation (4 weeks) (27 weeks)

2 Arms Vectibix™ (31 weeks)

Copyright © Lance Liotta Side Out Clinical Trial: Personalized therapy for advanced breast cancer

Nicholas Robert and Dan Van Hoff Clinical PIs Copyright © Lance Liotta Compare new patient value to existing PHYSICIAN REPORT population data for phospho EGFR values PATIENT A

3+ PATIENT A DRUG TARGET ACTIVITY LEVEL DRUG

Phospho-EGFR 3+ TARCEVA

Phospho-c-KIT 1+ GLEEVEC

2+ Phospho-VEGF 3+ AVASTIN

Phospho-mTOR 0 TORISEL

1+ PHYSICIAN REPORT

PATIENT B

0 PATIENT B DRUG TARGET ACTIVITY LEVEL DRUG Phosphorylated/activated EGFR level Phospho-EGFR 0 TARCEVA

Phospho-c-KIT 3+ GLEEVEC PATIENT POPULATION DISTRIBUTION Phospho-VEGF 0 AVASTIN

Phospho-mTOR 2+ TORISEL Copyright © Lance Liotta Ductal Carcinoma In Situ Within the patient, cancer evolves When does invasion first from a premalignant growth. Every emerge? patient’s tumor is different. Do invasive carcinoma progenitor cells 20 yrs originate within the premalignant lesion?

Copyright © Lance Liotta INVASION Invasive and tumorigenic DCIS cells pre-exist in human DCIS lesions Virginia Espina 2010

A B In vitro spheroid formation from human breast DCIS organoid culture.

Histomorphology of DCIS, grade III (H&E stain)

C 100X

D

3-D structure of cultured DCIS NOD SCID murine xenograft cells with formation of a tumor generated from human DCIS Invasion of autologous lumen. DCIS tissue. Copyright © Lance Liotta stroma in vitro Chloroquine disrupts autophagy and suppresses the DCIS spheroid forming invasive precursor cells

0/7 CQ treated DCIS cells strains formed xenograft tumors 21/27 untreated DCIS cell transplants yielded xenograft tumors (p<0.0003, Espina V et al (2010) PLoS One 5(4); e10240 Fisher’s Exact Test) Copyright © Lance Liotta PINC Trial: Preventing Invasive breast Neoplasia with Chloroquine

Copyright © Lance Liotta Treatment of Premalignant Breast Lesions

Kill the intraductal neoplastic cells before they can invade.

The future of chemoprevention

Copyright © Lance Liotta Roadblocks to Cancer Biomarker Discovery Biomarkers exist in very low concentration: Significantly below the detection limits of mass spectrometry

Obscured by abundant resident blood proteins such as albumin

Rapidly degraded by post collection

-22 proteins constitute 99% blood protein mass. 1%

-A stage I cancer with a diameter of less than 0.5 cm. : biomarker conc: picogram/ml

- Current mass spec methods can not detect less than 50 nanograms/ml MS does not have sufficient PSA sensitivity, Copyright © Lance Liotta “Smart” Core Shell Affinity Bait Nanoporous Particles: Harvest Biomarkers Designed to overcome all roadblocks to biomarker discovery in one step • Three independent functions within minutes, in one step, in solution: – a) Molecular size sieving – b) Affinity capture of all solution phase target molecules – c) Complete protection of harvested proteins from enzymatic degradation – d) Amplify the effective concentration of very low abundance molecules up to 100 fold

The Center for Applied Proteomics and Molecular Medicine Copyright © Lance Liotta

Proteomics Tools for Clinical Medicine • Particles can be produced in large quantities • Stable at room temperature indefinitely • Low cost • Uniform in size (0.7 micron) • Reproducibility among batches • Novel very high affinity chemical baits

ALESSANDRA LUCHINI

Copyright © Lance Liotta Nanoparticles with specialized baits discover hundreds of novel low abundance blood proteins previously unknown in human blood: an ocean of completely new biomarker candidates

GI protein accession number Protein name Biological Process/Molecular Function/Cellular Component

21493033 A kinase (PRKA) anchor protein 10 mitochondrion, 189095269 propionyl Coenzyme A carboxylase, alpha polypeptide mitochondrion, 29171702 pyrophosphatase (inorganic) 2 mitochondrion, 67782305 superoxide dismutase 2, mitochondrial mitochondrion, CLAUDIA FREDOLINI

56549668 AT rich interactive domain 2 (ARID, RFX-like) regulation of , 13994151 PDZ and LIM domain 1 regulation of transcription, 24308334 family with sequence similarity 120B regulation of transcription, 14790190 spen homolog, transcriptional regulator (Drosophila) regulation of transcription,

163659899 insulin-like growth factor 1 (somatomedin C) insulin-like growth factor receptor signaling pathway 189083846 insulin-like growth factor 2 (somatomedin A); insulin; INS-IGF2 readthrough transcript insulin-like growth factor receptor signaling pathway 62243290 insulin-like growth factor binding protein 4 insulin-like growth factor receptor signaling pathway 10834982 insulin-like growth factor binding protein 5 insulin-like growth factor receptor signaling pathway

187828564 BEN domain containing 5 Golgi apparatus, 4506953 ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 1 Golgi apparatus, 20336246 proprotein convertase subtilisin/kexin type 5 Golgi apparatus, 45935371 serglycin Golgi apparatus,

4503031 CASP2 and RIPK1 domain containing adaptor with death domain apoptosis 25306235 brain-derived neurotrophic factor apoptosis

5729997 RAB27B, member RAS oncogene family intracellular signaling cascade 34577083 Ras suppressor protein 1 intracellular signaling cascade 4757952 cell division cycle 42 (GTP binding protein, 25kDa); cell division cycle 42 pseudogene 2 intracellular signaling cascade 116063573 A, alpha ( binding protein 280) intracellular signaling cascade 148227764 hCG1757335 intracellular signaling cascade 15187164 lacritin intracellular signaling cascade 22749359 phosphoinositide kinase, FYVE finger containing intracellular signaling cascade 156616273 pleckstrin intracellular signaling cascade

4502693 CD9 molecule cell adhesion 148886692 FAT tumor suppressor homolog 3 (Drosophila) cell adhesion 13518026 LIM and senescent cell antigen-like domains 1 cell adhesion DAVIDE TAMBURRO 41281905 fermitin family homolog 3 cell adhesion 49574514 matrix Gla protein cell adhesion 20127528 parvin, beta cell adhesion 156938343 2 cell adhesion 4508047 zyxin cell adhesion 47078292 integrin, beta 3 (platelet glycoprotein IIIa, antigen CD61) cell adhesion

91208420 bassoon (presynaptic cytomatrix protein) synaptic transmission 38202224 discs, large (Drosophila) homolog-associated protein 2 synaptic transmission

9257257 WD repeat domain 1 sensory perception of sound 34740331 otoferlin sensory perception of sound

Weidong Zhou Paul Russo Copyright © Lance Liotta Melanoma serum amyloid A1 isoform 1 immunoglobulin J chain Prostate Cancer vitamin D-binding protein precursor isoform N2-B

complement factor H-related 5 apolipoprotein A-IV precursor orosomucoid 2 complement factor B preproprotein secretory leukocyte peptidase inhibitor precursor hypothetical protein LOC649897 Apolipoprotein C-II precursor Complement component 3 precursor complement component 4 binding protein, alpha chain precursor vitronectin precursor prolactin-induced protein complement C1, q complement component 1, q subcomponent, A chain precursor subcomp. γsubunit Orosomucoid 1 precursor Alpha-2-HS-glycoprotein ribonuclease, RNase A complement component 1, q subcomponent, B chain precursor family, 4 precursor Complement component 1, s subcomponent ribonuclease, RNase A CD5 antigen-like (scavenger receptor cysteine rich family) family, 3 Complement component 5 complement factor H isoform b precursor haptoglobin angiotensinogen preproprotein actin, gamma 1 propeptide apolipoprotein B precursor apolipoprotein H precursor protein S (alpha) fibronectin 1 isoform 2 preproprotein heparanase alpha 1B-glycoprotein Ceruloplasmin (ferroxidase) serum amyloid A4, constitutive talin 1 apolipoprotein L1 isoform a precursor apolipoprotein C-IV complement component 4B preproprotein 9 α 1 filamin 1 (actin-binding protein-280) complement component 1 inhibitor precursor serpin peptidase inhibitor, clade A, member 3 precursor , alpha 1 cofilin 1 (non-muscle) histidine-rich glycoprotein precursor apolipoprotein H precursor Coagulation factor V precursor inter-alpha (globulin) inhibitor H4 heparin cofactor II precursor Inter- α (globulin) inhibitor H1 I factor angiotensinogen preproprotein Lipopolysaccharide-binding protein precursor keratin 31 PREDICTED: similar to 2 Propionyl-Coenzyme A carboxylase, α polypept. precursor PREDICTED: similar to Protein FAM82B complement component 8, beta polypeptide preproprotein β tubulin 1, class VI keratin 25C Complement C4 binding prot.-β-chain isof.2 prec. disintegrin and metalloproteinase domain 7 glycoprotein Ib, beta polypeptide precursor haptoglobin-related protein UNC-112 related protein 2 long form retinol-binding protein 4, plasma precursor coagulation factor XIII A1 subunit precursor inter-alpha globulin inhibitor H2 polypeptide Leucine-rich α -2-glycoprotein 1 hypothetical protein LOC56912 cholesteryl ester transfer protein, plasma precursor PCI domain containing 2 pleckstrin ras suppressor protein 1 isoform 2 serine (or cysteine) proteinase inhibitor, clade C solute carrier family 4, anion exchanger, member 1 paraoxonase 1 Leucine-rich α -2-glycoprotein 1 Integrin α 2b preproprotein serine (or cysteine) proteinase inhibitor, clade A transgelin 2 platelet glycoprotein Ib alpha polypeptide precursor haptoglobin-related protein nischarin keratin 34 fibrinogen, beta chain preproprotein PREDICTED: similar to ADAM 15 precursor (A disintegrin and metalloproteinase domain 15) keratin 35 C-reactive protein, pentraxin-related zinc finger protein 333 α-1-microglobulin/bikunin precursor solute carrier family 5 (sodium/glucose cotransporter), member 10 elastin microfibril interfacer 1 PREDICTED: similar to actin-related protein 3-beta isoform 1 isoform 3 tyrosine 3/tryptophan 5 -monooxygenase activation protein, zeta polypeptide dedicator of cytokinesis 7 isoform b Copyright © Lance Liotta Ovarian Cancer Calcyclin IHC in human OVCA tissues Validation of carcinoma cell origin

Copyright © Lance Liotta ISS GMU Oncoproteomics Research Program

Istituto Superiore di Sanità – Rome George Mason University Virginia USA

Professor Enrico Garaci Ruggero DeMaria Claudio Belluco

Participating Centers: - IEO - Milan Fellows - INT – Milan - IST Genova - CRO - Aviano - IRE - Rome - IRCCS Oncol. - Bari - Univers. - Brescia - Ospedale Maggiore - Milan - Surgery and Pediatric Depts. - Padova - S. Camillo Hosp - Rome Copyright © Lance Liotta ISS USA GMU Oncoproteomics Research Program Scientific Leaders of the Future: 26 young Italian scientist Fellows received two year fellowships: Return home fully trained in proteomics technology and capable of independently establishing their own lab. 9 are currently in the USA Outstanding Scientific Productivity 48 Publications: 33 published, 11 under review 59 Presentations at International Meetings 39 invention reports and patent applications : 18 licensed to Spin out Biotechnology Companies 2 Funded US Government grants 1 Novartis funded individualized therapy trial for Colon Ca 2 Foundation funded clinical research trials Breast Ca, MM 2 International Awards (Luchini) 1) Premio and 2) European Association of Women Inventors Copyright © Lance Liotta

THERANOSTICS HEALTH, INC: GMU SPIN-OUT 2006 EXCLUSIVE LICENSEE OF TECHNOLOGY DEVELOPED UNDER THE ISS ITALY / USA ONCOPROTEOMICS PROGRAM - RPMA TECHNOLOGY - RPMA ANALYTICAL METHODS - PREDICTIVE AND PROGNOSTIC PATHWAY MARKERS - UNIVERSAL FIXATIVE

Copyright © Lance Liotta CERES NANOSCIENCES, LLLP

Copyright © Lance Liotta Center for Applied Proteomics and Molecular Medicine Co-Directors: Lance Liotta and Emanuel Petricoin

Mariaelena Pierobon, Mattia Cremona, Guido Gambara, Rita Circo, Michelle Raiszadeh, Angela Zupa, Claudius Mueller, Alex Reeder, Francesco Meani, Giuseppina Improta, Ginny Espina, Paul Russo, Valerie Calvert, Alessandra Luchini, Isela Gallagher, Davide Tamburro, Julie Wulfkuhle, Troy Anderson, Antonella Chiechi, Maryam Goudarzi, Claudia Fredolini, Caterina Longo, Noemi Moroni, Alessandra Silvestri, Linda Zuurbier, Samantha Nedermeijer, Amy VanMeter, Temple Douglas, Lindsay Wescott,

Copyright © Lance Liotta RESEARCH FUNDING

Copyright © Lance Liotta Copyright © Lance Liotta Copyright © Lance Liotta Adaptive Design: Over time more patients are assigned to successful Biomarkers for qualifying agents agent andB for predicting outcome

Copyright © Lance Liotta