Design and Analysis of Wireless Welding Arm

Total Page:16

File Type:pdf, Size:1020Kb

Design and Analysis of Wireless Welding Arm International Journal of Mechanical and Production Engineering Research and Development (IJMPERD) ISSN(P): 2249-6890; ISSN(E): 2249-8001 Vol. 6, Issue 4, Aug 2016, 9-24 © TJPRC Pvt. Ltd DESIGN AND ANALYSIS OF WIRELESS WELDING ARM VIPUL M VASAVA 1 & PARTH B PRAJAPATI 2 1Assistant Professor, Department of Mechanical Engineering, Ipcowala Institute of Engineering & Technology, Dharmaj, Gujarat, India 2Research Scholar, Department of Mechanical Engineering, Ipcowala Institute of Engineering & Technology, Dharmaj, Gujarat, India ABSTRACT Now a day in this fast growing industrial age every company needs speed in manufacturing to cope up with the customer’s requirements. Every industrialist cannot afford to transform his unit from manual to semi automatic or fully automatic as automation is not that cheap in India. The basic objective of this project is to design low cost Wireless welding arm which can be utilized in any industry for welding purpose. This Wireless welding arm is requiring 3 axial programming and controller. Wireless welding arm can be used in welding process by controller and the structure is designed in such a way that it is Wireless for welding process. Flexile welding arm would be used mainly where May human is not able to work. Example,Under water and underground welding. Robots play a vital role in all the activities Original Article Article Original in human life including industrial needs. In modern industrial manufacturing process consists of precise and fastest proceedings. Human operations are needed to perform a variety of tasks in a robotic system such as set-up, programming, trouble shooting, maintenance and error handling activities KEYWORDS: History of Welding, Recent Problems in Welding, Problem Specifiacation, Design Calculations, Robot Dynamics Creo Model, Analysis Received: Jun 19, 2016; Accepted: Jul 01, 2016; Published: Jul 13, 2016; Paper Id.: IJMPERDAUG20162 INTRODUCTION The history of industrial automation is characterized by periods of rapid change inpopular methods. Either as a cause or, perhaps, an effect, such periods of change in automation techniques seem closely tied to world economics. Use of the industrial robot, which became identifiable as a unique device in the 1960s, along with computer-aided design (CAD) systems and computer-aided manufacturing (CAM)systems, characterizes the latest trends in the automation of the manufacturing process. These technologies are leading industrial automation through another transition, the scope of which is still unknown. A major reason for the growth in the use of industrial robots is their declining cost robot prices dropped while human labour costs increased. Also, robots are not just getting cheaper, they are becoming more effective—faster, more accurate, more Wireless. If we factor these quality adjustments into the numbers, the cost of using robots is dropping even faster than their price tag is. As robot become more cost effective at their jobs, and as human labour continues to become more expensive, more and more industrial jobs become candidates for robotic automation.Modern industrial robot controls are build as multi-processor controls due to the multitude of parallel calculations and control functions. Figure shows the internal structure of such a control. Individual assemblies which are designed for special jobs and equipped with an own micro-processor are linked with the host computer via the system bus. The host controls and coordinates the actions of the components based on the operating system and the robot program. Examples of such www.tjprc.org [email protected] 10 Vipul M Vasava & Parth B Prajapati assemblies, which are mostly installed on individual printed boards, are e.g. the axes computers. They are responsible for calculation of movement and for control of power unitsper axisare available which control speed and position of each axis. Figure 1: Industrial Robot Control A Robot welding is a specific new application of robotics, although robots were first introduced into US industry during the 1960s.The use of robots in welding did not take off until the 1980s, when the automobile industry began to use robots for spot welding. Since then, both the number of robots used in industry and the number of their applications has grown greatly. Till 2005, more than 120,000semi or fully automated robots were in use in North American industry, about half of them for welding. Growth is initially limited by high equipment costs, and the resulting restriction to high- production applications. In 2014, FANUC America Corp. introduced a low cost arc welding robot which proved beneficial for small manufacturers with a cost-effective robotic arc welding solution. Robot arc welding has started growing quickly just recently, and already it holds about 20% of industrial robot applications. The major components that constitute the arc welding robots are the manipulator or the mechanical unit and the controller, which acts as the robot's “Brain”. Manipulator used to move the robot, and the design of these robots can be categorized into few common types, as SCARA and Cartesian coordinate robot, which uses different coordinate systems to direct the arms of the machine. The robot is able to weld a pre-programmed position, guided by machine vision, or by a combination of the two methods. Vast benefits of robotic welding makes it importance such that industries accept it to make it a technology that helps many original equipment manufacturers increase accuracy, repeat-ability, and throughput The technology of signature image processing has been developed since the late 1990s for analyzing Electrical data in real time collected from automated, robotic welding, thus enabling the optimization of welds. The robot parts as shown in the figure below. Impact Factor (JCC): 5.7294 NAAS Rating: 2.45 Design and Analysis of Wireless Welding Arm 11 Figure 2: Robot Parts Recent Problems in Welding Modern manufacturing era faces two main challenges: improved quality at lower price and the need to improve productivity. These are the vital requirements to keep manufacturing plants in developed countries. Other very important characteristics of the manufacturing systems to survive the market are flexibility and agility of the manufacturing process, since companies are required to deal with a very fast growing market involving products having very short life-cycles due to worldwide competition. Consequently, manufacturing companies are needed to respond to market requirements efficiently, keeping their products competitive. This requires a very efficient and controlled manufacturing process, where option is automation, computers and software. a huge number of products require welding operations in their assembly processes. The welding process is Complex, difficult to parameterize and to monitor and control effectively. We have visiting a workshop of an industry and observe that it is difficult task for welder to welding a job or two metals. It should more take care during welding. It is also dangerous to welding while it affects eyes and also breathing problems in that environment. Sometimes due to shake hands of worker during welding it can't weld perfectly and it may occur imperfections in welding and it results into failure. In those cases it is very useful to done welding by a robot. This is the reasons why we are using a welding robot which is as follows: • Manganese in Welding Fumes Biggest on–the–job risk is open contact to the manganese contained in fumes that are produced during welding. Manganese is able to cause very serious damage to the brain and nervous system. Many workers who are in direct contact with welding fumes suffer from Parkinson’s disease, a major problem affecting movement and balance. They tend to develop “Manganese,” a disease closely related to Parkinson’s that also makes it difficult to walk and move properly. Both manganese and Parkinson’s disease cause tremors, shaking, and loss of muscle control. These conditions can become more severe as time passes. • Other Harmful Metals in Welding Fumes When the welding rod used is either base metal iron or mild steel, iron oxide may be produced in the welding fumes in addition to manganese. Breathing in iron oxide can damage nasal passages, throat, and lungs. Working with stainless steel produces fumes having nickel and chromium and caused to face problems like asthma. Nickel can make illness worse. www.tjprc.org [email protected] 12 Vipul M Vasava & Parth B Prajapati • Hazardous Coatings Welding on some plated or painted metals may be especially hazardous. If cutting a metal that has been coated with paint which contains lead, it may produce welding fumes having lead oxide. Inhaling these welding fumes can cause lead poisoning, a condition in which worker becomes weak and develop anemia (a low red blood cell count). Lead also harms your nervous system, kidneys, and reproductive system • Heat, Light, and Mechanical Injuries Arc welding uses ultraviolet light. If welding is carried out near solvents containing chlorinated hydrocarbons, the ultraviolet light can react with the solvents to form phosgene gas, which is deadly in even small amounts. Spécifications Weld penetration is the distance that the fusion line fills the weld metal below the surface of the material being welded. Incomplete root fusion is defined as the weld material fails to fuse one side of the joint in the gap. Incomplete root penetration arises when both sides root region of the joints are prepared with typical imperfection. An Excessively Thick Root Face in a Butt Weld Too Small A Root Gap Misplaced Weld Power Supply Too Low Arc Input too Low Figure 3: Specification Material/Tool Required There is number of choices are available for to selecting the building materials for Wireless ram. But not every material is a good choice. There are some materials or tools which are as follows: • CAD Software Impact Factor (JCC): 5.7294 NAAS Rating: 2.45 Design and Analysis of Wireless Welding Arm 13 • Thin sheet metal • Cardboard • Sheet metal • Steel Robot Dynamics This will gives a brief idea about Design of Wireless arm including parameters used in design.
Recommended publications
  • A Method of Welding Path Planning of Steel Mesh Based on Point Cloud for Welding Robot
    A Method of Welding Path Planning of Steel Mesh Based on Point Cloud for Welding Robot Yusen Geng Center for Robotics, School of Control Science and Engi- neering, Shandong University Jinan 250061, China Yuankai Zhang Center for Robotics, School of Control Science and Engi- neering, Shandong University Jinan 250061, China Xincheng Tian ( [email protected] ) Center for Robotics, School of Control Science and Engi- neering, Shandong University Jinan 250061, China Xiaorui Shi Sinotruk Industry Park Zhangqiu, Sinotruk Jinan Power Co.,Ltd. Jinan 250220, China Xiujing Wang Sinotruk Industry Park Zhangqiu, Sinotruk Jinan Power Co.,Ltd. Jinan 250220, China Yigang Cui Sinotruk Industry Park Zhangqiu, Sinotruk Jinan Power Co.,Ltd. Jinan 250220, China Research Article Keywords: Without teaching and programming, 3D structured light camera, Steel mesh point cloud, Welding path planning Posted Date: April 7th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-379414/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at The International Journal of Advanced Manufacturing Technology on July 15th, 2021. See the published version at https://doi.org/10.1007/s00170-021-07601-6. Noname manuscript No. (will be inserted by the editor) 1 2 3 4 5 6 A method of welding path planning of steel mesh based on 7 8 point cloud for welding robot 9 10 Yusen Geng1,2 · Yuankai Zhang1,2 · Xincheng Tian1,2 B · Xiaorui Shi3 · 11 Xiujing Wang3 · Yigang Cui3 12 13 14 15 16 17 18 Received: date / Accepted: date 19 20 21 Abstract At present, the operators needs to carry out 1 Introduction 22 complicated teaching and programming work on the 23 welding path planning for the welding robot before weld- With the rapid development of automation and robot 24 ing the steel mesh.
    [Show full text]
  • Experiment on Optimization of Robot Welding Process Parameters
    International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-8, Issue-1S4, June 2019 Experiment on Optimization of Robot Welding Process Parameters G DilliBabu, D Siva Sankar, K. Sivaji Babu ABSTRACT---Resistance spot welding plays an important role short time and Use pressure on sheets to join. Fluxes are not in the manufacturing industry especially in the automobile used in the RSW process, and use of filler metal is very rare sector. There is a lot of research work in the area of manually [2]. spot welding process and optimization of spot welding parameters. Currently there is more demand on robot spot welding process in the manufacturing unit. But only few research works is going on in the area of robot spot welding process and optimization of robot welding parameters. The present study gives an experimental investigation on robot resistance spot welding. Optimum robot spot welding parameters were identified by using Taguchi design of experiments approach. Also the results are analyzed by using Analysis of Variance ANOVA. Keywords: Robot, Spot Welding, optimization. I. INTRODUCTION Resistance spot welding (RSW) is the oldest process widely being used for joining sheet metals in various industries because of its simplicity, easy for automation and reliability for bulk production. RSW is an autogenously Fig. 1. Resistance spot welding principal welding method, meaning that dissimilar other methods. It does not necessity filler metal. RSW uses the metal’s usual Kim[3] et al.based on this study, recently electrical resistance and contraction in the path of current severalautomobile industries are trying to decrease the mass flow, to produce heat at the interface.
    [Show full text]
  • Robots Application for Welding
    Műszaki Tudományos Közlemények vol. 12. (2020) 50–54. DOI: English: https://doi.org/10.33894/mtk-2020.12.07 Hungarian: https://doi.org/10.33895/mtk-2020.12.07 ROBOTS APPLICATION FOR WELDING Abdallah KAfI,1 Tünde Anna KOvács,2 László Tóth,3 Zoltán NyIKEs4 1 Óbuda University, Doctoral Scool on Safety and Security Sciences, Budapest, Hungary, [email protected] 2, 3, 4 Óbuda University, Donát Bánki Faculty of Mechanical and Safety Engineering, Budapest, Hungary, 2 kovacs.tunde@ bgk.uni-obuda.hu 3 [email protected] 4 [email protected] Abstract In this work, the authors give an overview of the advancement of industrial robots and show the mechani- zation of welding processes, step by step. As manual welding is a physically exhausting professional work, engineers have sought to improve work conditions since the industrial revolution. Unfortunately, even today, many procedures can only be performed manually. In the welding process, the highest level of mechaniza- tion is represented by the use of robotics. The entrance of Robots in the history of welding is recent, though their spread and development are rapid. Keywords: welding, robot, sensor, security, danger. 1. Introduction The idea of robots or automated machines has a long history. Ancient Greek texts talk about Talos, the gigantic brass automaton (Figure 1.), protecting crete and Europe from pirates and invaders by walking three times around the island daily and throwing boulders at the approaching ships [1]. The ancient pieces (77–100 bc.) of a mechanical calculator, found under the sea, also prove hu- mans have long been able to construct automat- ic machines.
    [Show full text]
  • Application of Industrial Robots in the Automationof the Welding Process
    Review article Robot Autom Eng J Volume 4 Issue 1 - December 2018 Copyright © All rights are reserved by IsakKarabegović DOI: 10.19080/RAEJ.2018.04.555628 Application of Industrial Robots in the Automation of the Welding Process IsakKarabegović* Faculty of Technical Engineering, University of Bihać, Bosnia and Herzegovina Submission: November 25, 2018; Published: December 11, 2018 *Corresponding author: IsakKarabegović, Faculty of Technical Engineering, University of Bihać, Bosnia and Herzegovina Abstract The application of industrial robots in the automation of production processes has been in the use since the 1960s. The automotive industry was the first to apply industrial robots and presents the forefront of using robots compared to other industries in the world. Industrial robots are used to perform tasks which are dangerous to human health. In the automotive industry, they are working in the process of welding vehicle bodywork and painting the car body, which provided the reason for the analysis of the application of robots in welding processes. Today we are in the fourth industrial revolution that the Germans named “Industry 4.0”. The implementation of the fourth technological revolution depends on several new and innovative technological achievements, most of which are applied in robotic technology. Any automation of production processes, and thus the automation of the welding process, must include industrial robots. The paper presents the representation of industrial robots in the world, and top four countries: China, Japan, North America and Germany, where the automotive industry is most developed. Two welding processes that most commonly use industrial robots are Arc welding and Spot welding. An analysis of the application of industrial robots in these two the welding process was conducted for the period 2010-2016 for the continents of Asia, America and Europe, as well as in countries with highly developed automotive industry China, Japan, USA and Germany.
    [Show full text]
  • Sensor-Enabled Multi-Robot System for Automated Welding and In-Process Ultrasonic NDE
    sensors Article Sensor-Enabled Multi-Robot System for Automated Welding and In-Process Ultrasonic NDE Momchil Vasilev, Charles N. MacLeod, Charalampos Loukas , Yashar Javadi * , Randika K. W. Vithanage, David Lines , Ehsan Mohseni, Stephen Gareth Pierce and Anthony Gachagan Centre for Ultrasonic Engineering (CUE), Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow G1 1XQ, UK; [email protected] (M.V.); [email protected] (C.N.M.); [email protected] (C.L.); [email protected] (R.K.W.V.); [email protected] (D.L.); [email protected] (E.M.); [email protected] (S.G.P.); [email protected] (A.G.) * Correspondence: [email protected] Abstract: The growth of the automated welding sector and emerging technological requirements of Industry 4.0 have driven demand and research into intelligent sensor-enabled robotic systems. The higher production rates of automated welding have increased the need for fast, robotically deployed Non-Destructive Evaluation (NDE), replacing current time-consuming manually deployed inspection. This paper presents the development and deployment of a novel multi-robot system for automated welding and in-process NDE. Full external positional control is achieved in real time allowing for on-the-fly motion correction, based on multi-sensory input. The inspection capabilities of the system are demonstrated at three different stages of the manufacturing process: after all welding passes are complete; between individual welding passes; and during live-arc welding deposition. The specific advantages and challenges of each approach are outlined, and the defect detection capability Citation: Vasilev, M.; MacLeod, C.N.; is demonstrated through inspection of artificially induced defects.
    [Show full text]
  • Motion Signal Processing for a Remote Gas Metal Arc Welding Application
    robotics Article Motion Signal Processing for a Remote Gas Metal Arc Welding Application Lucas Christoph Ebel 1,*,†,‡, Patrick Zuther 1,‡, Jochen Maass 2,‡ and Shahram Sheikhi 2 1 Institute for Material Science and Welding Techniques, University of Applied Science Hamburg, 20099 Hamburg, Germany; [email protected] 2 Research and Transfer Center FTZ-3i, University of Applied Science Hamburg, 20099 Hamburg, Germany; [email protected] (J.M.); [email protected] (S.S.) * Correspondence: [email protected]; Tel.: +49-40-428-75-8988 † Current address: University of Applied Science Hamburg Berliner Tor 5, 20099 Hamburg, Germany. ‡ These authors contributed equally to this work. Received: 9 April 2020; Accepted: 27 April 2020; Published: 1 May 2020 Abstract: This article covers the signal processing for a human–robot remote controlled welding application. For this purpose, a test and evaluation system is under development. It allows a skilled worker to weld in real time without being exposed to the associated physical stress and hazards. The torch movement of the welder in typical welding tasks is recorded by a stereoscopic sensor system. Due to a mismatch between the speed of the acquisition and the query rate for data by the robot control system, a prediction has to be developed. It should generate a suitable tool trajectory from the acquired data, which has to be a C2-continuous function. For this purpose, based on a frequency analysis, a Kalman-Filter in combination with a disturbance observer is applied. It reproduces the hand movement with sufficient accuracy and lag-free.
    [Show full text]
  • Arc Welding Robots
    Arc welding robots Kawasaki Robot Arc welding robots ROBOT DIVISION Tokyo Head Office/Robot Division 1-14-5, Kaigan, Minato-ku, Tokyo 105-8315, Japan Phone: +81-3-3435-2501 Fax: +81-3-3437-9880 Akashi Works/Robot Division 1-1, Kawasaki-cho, Akashi, Hyogo 673-8666, Japan Kawasaki Robot Phone: +81-78-921-2946 Fax: +81-78-923-6548 Global Network CAUTIONS TO BE TAKEN Kawasaki Robotics (USA), Inc. TO ENSURE SAFETY 28140 Lakeview Drive, Wixom, MI 48393, U.S.A. Phone: +1-248-446-4100 Fax: +1-248-446-4200 l For those persons involved with the operation / service of your system, including Kawasaki Robot, they must strictly Kawasaki Robotics (UK) Ltd. observe all safety regulations at all times. They should Unit 4 Easter Court, Europa Boulevard, Westbrook Warrington carefully read the Manuals and other related safety Cheshire, WA5 7ZB, United Kingdom Phone: +44-1925-71-3000 Fax: +44-1925-71-3001 documents. l Products described in this catalogue are general industrial Kawasaki Robotics GmbH robots. Therefore, if a customer wishes to use the Robot Im Taubental 32, 41468 Neuss, Germany for special purposes, which might endanger operators or Phone: +49-2131-34260 Fax: +49-2131-3426-22 if the Robot has any problems, please contact us. We will Kawasaki Robotics Korea, Ltd. be pleased to help you. 43, Namdong-daero 215beon-gil, Namdong-gu, Incheon, 21633, l Be careful as Photographs illustrated in this catalogue are Korea frequently taken after removing safety fences and other Phone: +82-32-821-6941 Fax: +82-32-821-6947 safety devices stipulated in the safety regulations from Kawasaki Robotics (Tianjin) Co., Ltd.
    [Show full text]
  • Bionic Buildings Iagre JOURNAL BRANCH MEETINGS
    Agriculture • Horticulture • Forestry • Environment • Amenity LANDWARDSEarly Spring 2005 Robotics Crop Storage www.iagre.org Volume 60 No.1 Volume Bionic Buildings IAgrE JOURNAL BRANCH MEETINGS DIARY of EVENTS MARCH 2005 Speakers to include: Jeff Kew, RSPB; Tuesday 12 April 19.30 h Professor Jim Harris and Dr Mike East Midlands Branch Monday 7 March Hann, Cranfield University Silsoe; and ‘State of the Art Milking’ – A tour East Anglia Branch a representative from Ready Mix and presentation of one of the Branch AGM and Technical Talk Concrete country’s most modern milking par- Speaker: Professor Dick Godwin Talk:‘The Society for the lours Further details to be advised Environment’ Venue: Nottingham University’s School Speaker: Christopher Whetnall of Agriculture, Sutton Bonnington, Monday 7 March 19.15 h Tour: Marston Vale Millenium Nottinghamshire West Midlands Branch Country Park This is a joint meeting with the IAgrE Branch AGM and Technical Talk Venue: Marston Vale Millennium Livestock Group ‘An Update of Spraying Country Park, Marston Moretaine, Development’ Bedford Wednesday 13 April 18.15 h Speaker: President-Elect, Professor Paul For further details contact the IAgrE Western Branch Miller, SRI Secretariat or visit the IAgrE website Branch AGM and Technical Talk Venue: Friends Meeting House, www.iagre.org ‘New Holland Agricultural Diesel Stratford upon Avon Engine Development’ For more information contact: Monday 14 March 19.30 h Speaker: Mike Hawkins, New Holland [email protected] Wrekin Branch Venue: Lackham House,Wiltshire Branch AGM and Technical Talk College, Lackham Monday 7 March 19.30 h Speaker: Presidential Representative Contact Nick Paul [email protected] if Wrekin Branch Venue: Harper Adams University interested in attending this meeting.
    [Show full text]
  • Robotic Welding for Construction Sites” on 23/10/2019
    INSTITUTION OF MECHANICAL ENGINEERS HONG KONG BRANCH EVENING LECTURE “ROBOTIC WELDING FOR CONSTRUCTION SITES” ON 23/10/2019 The evening lecture “Robotic Welding for Construction Industry” was convened in 23/10/2019 Automation: way out for labour shortage The first industrial robot was a welder robot invented in 1950. Over half a century later, although automation has been widely adopted in a broad range of industries, the construction industry still lags the industry average in implementing automation. While the construction industry has not been supported by any maturely developed robot and has remained manual labour dominant and intensive, ageing of the construction workforce starts eroding the long term viability of the industry, and construction welder is hit particularly hard. A typical construction site in Hong Kong prepares 5,000 to 6,000 pieces of H-pile for piling, while each H-pile has five (5) to six (6) joints to be welded. This amounts to hundreds of construction welders are required for each construction site. However, the supply of construction welders is less likely to meet the demand in the long term. Among the registered construction welders in Hong Kong, 63 % of them are over 50 years of age and only 5 % of them are 29 years old or below. Besides, it is forecasted that by 2022, the construction industry will short 1,500 construction welders. On the other hand, provided that the construction welders have to bear the harsh working environment, as they need to wear the heavy and thick protective clothing to protect themselves from the welding temperature can be as high as 2,000 C when the ambient temperature and relative humidity are both high, the construction industry is not surprising IMechE-HKB lecture “Robotic Welding for Construction Sites” on 23/10/2019 Page 1 of 3 to find itself hard to attract young people to join it and become construction welder.
    [Show full text]
  • Rise in Robotics
    APRIL 2016 RISE IN ROBOTICS ROBOTIC WELDING GAINS EVEN MORE TRACTION IN 2016 Laser Welding | GTAW | Plasma Cutting “Hands down, Select 78 Arcos Delivers Solutions is the best wire I’ve to High Nickel Alloy used in 25 years.” Welding Challenges. Marc Young Advantage Steel and Construction Ironworkers Local 3 Select-Arc, Inc. has introduced produces an excellent bead shape Now discover for yourself why Select 78, a new T-8 product that with easily removed slag. Select 78 sets the new standard in has shook up the self-shielded T-8 welding electrode technology. Select 78 is expertly designed for use electrode market. Select 78 (E71T- in critical applications such as ship Call us today at 1-800-341-5215 8-H8) provides superior arc Arcos Industries, LLC offers over 30 high nickel alloy electrode products to handle the wide and barge construction, structural or visit our website at stability and low spatter emission variety of critical welding applications that you face each day. Our reputation for excellent steel erection and bridge fabrication. www.select-arc.com. enabling high deposition rates quality and superb service ensures that you can rely on Arcos to provide you with the best in whether in-position or out-of- Better yet, as Marc Young attested, bare wire, covered and tubular high nickel alloy welding electrodes. position. In contrast to other “Being an ironworker means putting T-8 wires, Select 78 has a broad in long hours and laborious days operating window that allows under any known conditions to build both experienced and apprentice North America.
    [Show full text]
  • A Sustainable Decision-Making Framework for Transitioning to Robotic Welding for Small and Medium Manufacturers
    sustainability Article A Sustainable Decision-Making Framework for Transitioning to Robotic Welding for Small and Medium Manufacturers Kyle Epping and Hao Zhang * School of Integrated Sciences, College of Integrated Science and Engineering, James Madison University, Harrisonburg, VA 22801, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-540-568-2711 Received: 17 September 2018; Accepted: 10 October 2018; Published: 12 October 2018 Abstract: Small and medium-sized enterprises (SMEs) face challenges in implementing industrial robotics in their manufacturing due to limited resources and expertise. There is still good economic potential in using industrial robotics, however, due to manufacturers leaning toward newer technology and automated processes. The research on sustainability decision-making for transitioning a traditional process to a robotic process is limited for SMEs. This study presents a systemic framework for assessing the sustainability of implementing robotic techniques in key processes that would benefit SMEs. The framework identifies several key economic, technical, and managerial decision-making factors during the transition phase. Sustainability assessments, including cost, environmental impact, and social impact, are used in the framework for engineers and managers to evaluate the technical and sustainability trade-offs of the transition. A case study was conducted on a typical US metal fabrication SME focusing on transitioning a shielded metal arc welding (SMAW) process to a robotic gas metal arc welding (GMAW) process. A sustainability assessment was conducted following the framework. The results suggest that the transition phase involves numerous factors for engineers and managers to consider and the proposed framework will benefit SMEs by providing an analytical method for industrial robotics implementation decision-making.
    [Show full text]
  • Quality Assurance and Control for Robotic GMA Welding
    StPrSIGOObl)ft LUTMDN/(TMMV-1013)/l-171/(1992 Quality Assurance and Control for Robotic GMA Welding Max Xie Department of Production and Materials Engineering Lund University, Sweden January 1992 Organization Document name LUND UNIVERSITY Doctoral Dissertation Dept. of Production and Materials Date of issue Engineering 2 January 1992 Box 118 CODEN:LUTMDN/(TMMV-1013)/1-171/(1992) S-221 00 Lund, Sweden Authors) Sponsoring organization Max X. Xie Title and subtitle Quality Assurance and Control for Robotic GMA Welding Abstract A quality assurance (QA) model has been developed. This model systematically considers the relevant activities before, during and after the welding operations with respect to quality. Efficient quality assurance requires that the functionality of the present robotic welding systems needs to be increased ak. j that the knowledge of the personnel involved in the design and production needs to be improved. The collaboration between different departments and personnel needs also to be improved. The procedure specification aspects have been studied and a method for the determination of optimal welding parameters is presented with regards to process stability, quality requirements and productivity. A main productivity problem of robotic welding systems for small series production is due to the time spent on the specification of welding procedures. In order to improve the efficiency, expert systems technology has been studied and applied to automatically generate optimal welding procedures. Many industries have shortages of skilled and experienced welding engineers or welders. This implies problems in the selection of optimal welding parameters. An objective method for the assessment of process stability has been developed, based upon the analysis of the electrical signals of welding arcs.
    [Show full text]