Quickcheck: a Lightweight Tool for Random Testing of Haskell Programs

Total Page:16

File Type:pdf, Size:1020Kb

Quickcheck: a Lightweight Tool for Random Testing of Haskell Programs QuickCheck: A Lightweight Tool for Random Testing of Haskell Programs Koen Claessen John Hughes Chalmers University of Technology Chalmers University of Technology [email protected] [email protected] are hard to test and so testing can b e done at a ABSTRACT monad ne grain QuickCheck is a to ol which aids the Haskell programmer in A testing to ol must b e able to determine whether a test formulating and testing prop erties of programs Prop erties is passed or failed the human tester must supply an auto are describ ed as Haskell functions and can b e automati matically checkable criterion of doing so We have chosen cally tested on random input but it is also p ossible to de to use formal sp ecications for this purp ose We have de ne custom test data generators We present a number of signed a simple domainsp ecic language of testable speci case studies in which the to ol was successfully used and cations which the tester uses to dene exp ected prop erties also p oint out some pitfalls to avoid Random testing is es of the functions under test QuickCheck then checks that the p ecially suitable for functional programs b ecause prop erties prop erties hold in a large number of cases The sp ecica can b e stated at a ne grain When a function is built from tion language is embedded in Haskell using the class system separately tested comp onents then random testing suces Prop erties are normally written in the same mo dule as the to obtain go o d coverage of the denition under test functions they test where they serve also as checkable do c umentation of the b ehaviour of the co de testing to ol must also b e able to generate test cases au 1. INTRODUCTION A tomatically We have chosen the simplest metho d random Testing is by far the most commonly used approach to testing which comp etes surprisingly favourably with ensuring software quality It is also very lab our intensive systematic metho ds in practice However it is meaningless accounting for up to of the cost of software develop to talk ab out random testing without discussing the distri ment Despite anecdotal evidence that functional programs bution of test data Random testing is most eective when require somewhat less testing Once it typechecks it usu the distribution of test data follows that of actual data but ally works in practice it is still a ma jor part of functional when testing reuseable co de units as opp osed to whole sys program development tems this is not p ossible since the distribution of actual The cost of testing motivates eorts to automate it wholly data in all subsequent reuses is not known A uniform dis or partly Automatic testing to ols enable the programmer tribution is often used instead but for data drawn from to complete testing in a shorter time or to test more thor innite sets this is not even meaningful how would one oughly in the available time and they make it easy to rep eat choose a random closed term with a uniform distribution tests after each mo dication to a program In this pap er we for example We have chosen to put distribution under the describ e a to ol QuickCheck which we have developed for human testers control by dening a test data generation testing Haskell programs language also embedded in Haskell and a way to observe Functional programs are well suited to automatic testing the distribution of test cases By programming a suitable It is generally accepted that pure functions are much easier generator the tester can not only control the distribution to test than sideeecting ones b ecause one need not b e of test cases but also ensure that they satisfy arbitrarily concerned with a state b efore and after execution In an complex invariants imp erative language even if whole programs are often pure An imp ortant design goal was that QuickCheck should b e functions from input to output the pro cedures from which lightweight Our implementation consists of a single pure they are built are usually not Thus relatively large units Haskell mo dule of ab out lines which is in practice must b e tested at a time In a functional language pure mainly used from the Hugs interpreter We have also writ functions ab ound in Haskell only computations in the IO ten a small script to invoke it which needs to know very little ab out Haskell syntax and consequently supp orts the full language and its extensions It is not dep endent on any Haskell system A cost that comes with this deci Permission to make digital or hard copies of all or part of this work for particular is that we can only test prop erties that are expressible personal or classroom use is granted without fee provided that copies are sion observable within Haskell not made or distributed for profit or commercial advantage and that copies and is notoriously dicult to say how eective a testing bear this notice and the full citation on the first page. To copy otherwise, to It republish, to post on servers or to redistribute to lists, requires prior specific metho d is in detecting faults However we have used Quick permission and/or a fee. in a variety of applications ranging from small exp er ICFP ’00, Montreal, Canada. Check Copyright 2000 ACM 1-58113-202-6/00/0009 ..5.00 In fact the programmer must provide a little more infor iments to real systems and we have found it to work well mation the function quickCheck is actually overloaded in in practice We rep ort on some of this exp erience in this order to b e able handle laws with a varying number of vari pap er and p oint out pitfalls to avoid ables and the overloading cannot b e resolved if the law itself The rest of this pap er is structured as follows Section has a p olymorphic type as in these examples Thus the pro introduces the concept of writing prop erties and checking grammer must sp ecify a xed type at which the law is to b e them using QuickCheck Section shows how to dene test tested So we simply give a type signature for each law for data generators for userdened types Section briey dis example cusses the implementation Section presents a number of case studies that show the usefulness of the to ol Section propRevApp Int Int Bool concludes Of course the prop erty propRevApp holds p olymorphically we must sp ecify which monomorphic instance to test 2. DEFINING PROPERTIES but it at so that we can generate test cases This turns out b e quite imp ortant in the case of overloaded functions 2.1 A Simple Example to For example is asso ciative for the type Int but not for As a rst example we take the standard function reverse Double In some cases we can use parametricity to which reverses a list This satises a number of useful laws argue that a prop erty holds p olymorphically such as 2.2 Functions reverse x x We are also able to formulate prop erties that quantify over reverse xsys reverse ysreverse xs functions To check for example that function comp osition reverse reverse xs xs is asso ciative we rst dene extensional equality by f g x f x g x and then write In fact the rst two of these characterise reverse uniquely Note that these laws hold only for nite total values In propCompAssoc Int Int Int Int this pap er unless sp ecically stated otherwise we always Int Int Int Bool quantify over completely dened nite values This is to propCompAssoc f g h make it more likely that the prop erties are computable f g h f g h In order to check these laws using QuickCheck we repre The only diculty that function types cause is that if a sent them as Haskell functions Thus we dene counterexample is found for example if we try to check propRevUnit x that function comp osition is commutative then the func reverse x x tion values are printed just as function In this case we discover that the law we are checking is false but not propRevApp xs ys why reverse xsys reverse ysreverse xs 2.3 Conditional Laws propRevRev xs Laws which are simple equations are conveniently repre reverse reverse xs xs sented by b o olean function as we have seen but in general many laws hold only under certain conditions QuickCheck Now if these functions return True for every p ossible argu provides an implication combinator to represent such condi ment then the prop erties hold We load them into the Hugs tional laws For example the law interactive Haskell interpreter and call for example Main quickCheck propRevApp x y ) max x y y OK passed tests can b e represented by the denition The function quickCheck takes a law as a parameter and ap propMaxLe Int Int Property plies it to a large number of randomly generated arguments 1 propMaxLe x y x y max x y y in fact rep orting OK if the result is True in every case Likewise the insertion function into ordered lists satises If the law fails then quickCheck rep orts the counter the law example For example if we mistakenly dene propInsert Int Int Property propRevApp xs ys propInsert x xs reverse xsys reverse xsreverse ys ordered xs ordered insert x xs then checking the law might pro duce Note that the result type of the prop erty is changed from Bool to Property This is b ecause the testing semantics Main quickCheck propRevApp is dierent for conditional laws Instead of checking the Falsifiable after tests prop erty for random test cases we try checking it for test cases satisfying the condition If a candidate test case do es not satify the condition it is discarded and a new where the counter mo del can b e extracted by taking for test case is tried xs and for ys Checking the laws propMaxLe and propInsert succeed 1 as usual but sometimes checking a conditional law pro
Recommended publications
  • Processing an Intermediate Representation Written in Lisp
    Processing an Intermediate Representation Written in Lisp Ricardo Pena,˜ Santiago Saavedra, Jaime Sanchez-Hern´ andez´ Complutense University of Madrid, Spain∗ [email protected],[email protected],[email protected] In the context of designing the verification platform CAVI-ART, we arrived to the need of deciding a textual format for our intermediate representation of programs. After considering several options, we finally decided to use S-expressions for that textual representation, and Common Lisp for processing it in order to obtain the verification conditions. In this paper, we discuss the benefits of this decision. S-expressions are homoiconic, i.e. they can be both considered as data and as code. We exploit this duality, and extensively use the facilities of the Common Lisp environment to make different processing with these textual representations. In particular, using a common compilation scheme we show that program execution, and verification condition generation, can be seen as two instantiations of the same generic process. 1 Introduction Building a verification platform such as CAVI-ART [7] is a challenging endeavour from many points of view. Some of the tasks require intensive research which can make advance the state of the art, as it is for instance the case of automatic invariant synthesis. Some others are not so challenging, but require a lot of pondering and discussion before arriving at a decision, in order to ensure that all the requirements have been taken into account. A bad or a too quick decision may have a profound influence in the rest of the activities, by doing them either more difficult, or longer, or more inefficient.
    [Show full text]
  • Rubicon: Bounded Verification of Web Applications
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DSpace@MIT Rubicon: Bounded Verification of Web Applications Joseph P. Near, Daniel Jackson Computer Science and Artificial Intelligence Lab Massachusetts Institute of Technology Cambridge, MA, USA {jnear,dnj}@csail.mit.edu ABSTRACT ification language is an extension of the Ruby-based RSpec We present Rubicon, an application of lightweight formal domain-specific language for testing [7]; Rubicon adds the methods to web programming. Rubicon provides an embed- quantifiers of first-order logic, allowing programmers to re- ded domain-specific language for writing formal specifica- place RSpec tests over a set of mock objects with general tions of web applications and performs automatic bounded specifications over all objects. This compatibility with the checking that those specifications hold. Rubicon's language existing RSpec language makes it easy for programmers al- is based on the RSpec testing framework, and is designed to ready familiar with testing to write specifications, and to be both powerful and familiar to programmers experienced convert existing RSpec tests into specifications. in testing. Rubicon's analysis leverages the standard Ruby interpreter to perform symbolic execution, generating veri- Rubicon's automated analysis comprises two parts: first, fication conditions that Rubicon discharges using the Alloy Rubicon generates verification conditions based on specifica- Analyzer. We have tested Rubicon's scalability on five real- tions; second, Rubicon invokes a constraint solver to check world applications, and found a previously unknown secu- those conditions. The Rubicon library modifies the envi- rity bug in Fat Free CRM, a popular customer relationship ronment so that executing a specification performs symbolic management system.
    [Show full text]
  • HOL-Testgen Version 1.8 USER GUIDE
    HOL-TestGen Version 1.8 USER GUIDE Achim Brucker, Lukas Brügger, Abderrahmane Feliachi, Chantal Keller, Matthias Krieger, Delphine Longuet, Yakoub Nemouchi, Frédéric Tuong, Burkhart Wolff To cite this version: Achim Brucker, Lukas Brügger, Abderrahmane Feliachi, Chantal Keller, Matthias Krieger, et al.. HOL-TestGen Version 1.8 USER GUIDE. [Technical Report] Univeristé Paris-Saclay; LRI - CNRS, University Paris-Sud. 2016. hal-01765526 HAL Id: hal-01765526 https://hal.inria.fr/hal-01765526 Submitted on 12 Apr 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. R L R I A P P O R HOL-TestGen Version 1.8 USER GUIDE T BRUCKER A D / BRUGGER L / FELIACHI A / KELLER C / KRIEGER M P / LONGUET D / NEMOUCHI Y / TUONG F / WOLFF B D Unité Mixte de Recherche 8623 E CNRS-Université Paris Sud-LRI 04/2016 R Rapport de Recherche N° 1586 E C H E R C CNRS – Université de Paris Sud H Centre d’Orsay LABORATOIRE DE RECHERCHE EN INFORMATIQUE E Bâtiment 650 91405 ORSAY Cedex (France) HOL-TestGen 1.8.0 User Guide http://www.brucker.ch/projects/hol-testgen/ Achim D. Brucker Lukas Brügger Abderrahmane Feliachi Chantal Keller Matthias P.
    [Show full text]
  • Exploring Languages with Interpreters and Functional Programming Chapter 11
    Exploring Languages with Interpreters and Functional Programming Chapter 11 H. Conrad Cunningham 24 January 2019 Contents 11 Software Testing Concepts 2 11.1 Chapter Introduction . .2 11.2 Software Requirements Specification . .2 11.3 What is Software Testing? . .3 11.4 Goals of Testing . .3 11.5 Dimensions of Testing . .3 11.5.1 Testing levels . .4 11.5.2 Testing methods . .6 11.5.2.1 Black-box testing . .6 11.5.2.2 White-box testing . .8 11.5.2.3 Gray-box testing . .9 11.5.2.4 Ad hoc testing . .9 11.5.3 Testing types . .9 11.5.4 Combining levels, methods, and types . 10 11.6 Aside: Test-Driven Development . 10 11.7 Principles for Test Automation . 12 11.8 What Next? . 15 11.9 Exercises . 15 11.10Acknowledgements . 15 11.11References . 16 11.12Terms and Concepts . 17 Copyright (C) 2018, H. Conrad Cunningham Professor of Computer and Information Science University of Mississippi 211 Weir Hall P.O. Box 1848 University, MS 38677 1 (662) 915-5358 Browser Advisory: The HTML version of this textbook requires a browser that supports the display of MathML. A good choice as of October 2018 is a recent version of Firefox from Mozilla. 2 11 Software Testing Concepts 11.1 Chapter Introduction The goal of this chapter is to survey the important concepts, terminology, and techniques of software testing in general. The next chapter illustrates these techniques by manually constructing test scripts for Haskell functions and modules. 11.2 Software Requirements Specification The purpose of a software development project is to meet particular needs and expectations of the project’s stakeholders.
    [Show full text]
  • Beginner's Luck
    Beginner’s Luck A Language for Property-Based Generators Leonidas Lampropoulos1 Diane Gallois-Wong2,3 Cat˘ alin˘ Hrit¸cu2 John Hughes4 Benjamin C. Pierce1 Li-yao Xia2,3 1University of Pennsylvania, USA 2INRIA Paris, France 3ENS Paris, France 4Chalmers University, Sweden Abstract An appealing feature of QuickCheck is that it offers a library Property-based random testing a` la QuickCheck requires build- of property combinators resembling standard logical operators. For ing efficient generators for well-distributed random data satisfying example, a property of the form p ==> q, built using the impli- complex logical predicates, but writing these generators can be dif- cation combinator ==>, will be tested automatically by generating ficult and error prone. We propose a domain-specific language in valuations (assignments of random values, of appropriate type, to which generators are conveniently expressed by decorating pred- the free variables of p and q), discarding those valuations that fail icates with lightweight annotations to control both the distribu- to satisfy p, and checking whether any of the ones that remain are tion of generated values and the amount of constraint solving that counterexamples to q. happens before each variable is instantiated. This language, called QuickCheck users soon learn that this default generate-and-test Luck, makes generators easier to write, read, and maintain. approach sometimes does not give satisfactory results. In particular, We give Luck a formal semantics and prove several fundamen- if the precondition p is satisfied by relatively few values of the ap- tal properties, including the soundness and completeness of random propriate type, then most of the random inputs that QuickCheck generation with respect to a standard predicate semantics.
    [Show full text]
  • Quickcheck Tutorial
    QuickCheck Tutorial Thomas Arts John Hughes Quviq AB Queues Erlang contains a queue data structure (see stdlib documentation) We want to test that these queues behave as expected What is “expected” behaviour? We have a mental model of queues that the software should conform to. Erlang Exchange 2008 © Quviq AB 2 Queue Mental model of a fifo queue …… first last …… Remove from head Insert at tail / rear Erlang Exchange 2008 © Quviq AB 3 Queue Traditional test cases could look like: We want to check for arbitrary elements that Q0 = queue:new(), if we add an element, Q1 = queue:cons(1,Q0), it's there. 1 = queue:last(Q1). Q0 = queue:new(), We want to check for Q1 = queue:cons(8,Q0), arbitrary queues that last added element is Q2 = queue:cons(0,Q1), "last" 0 = queue:last(Q2), Property is like an abstraction of a test case Erlang Exchange 2008 © Quviq AB 4 QuickCheck property We want to know that for any element, when we add it, it's there prop_itsthere() -> ?FORALL(I,int(), I == queue:last( queue:cons(I, queue:new()))). Erlang Exchange 2008 © Quviq AB 5 QuickCheck property We want to know that for any element, when we add it, it's there prop_itsthere() -> ?FORALL(I,int(), I == queue:last( queue:cons(I, queue:new()))). This is a property Test cases are generasted from such properties Erlang Exchange 2008 © Quviq AB 6 QuickCheck property We want to know that for any element, when we add it, it's there int() is a generator for random integers prop_itsthere() -> ?FORALL(I,int(), I == queue:last( queue:cons(I, I represents one queue:new()))).
    [Show full text]
  • Branching Processes for Quickcheck Generators (Extended Version)
    Branching Processes for QuickCheck Generators (extended version) Agustín Mista Alejandro Russo John Hughes Universidad Nacional de Rosario Chalmers University of Technology Chalmers University of Technology Rosario, Argentina Gothenburg, Sweden Gothenburg, Sweden [email protected] [email protected] [email protected] Abstract random test data generators or QuickCheck generators for short. In QuickCheck (or, more generally, random testing), it is chal- The generation of test cases is guided by the types involved in lenging to control random data generators’ distributions— the testing properties. It defines default generators for many specially when it comes to user-defined algebraic data types built-in types like booleans, integers, and lists. However, when (ADT). In this paper, we adapt results from an area of mathe- it comes to user-defined ADTs, developers are usually required matics known as branching processes, and show how they help to specify the generation process. The difficulty is, however, to analytically predict (at compile-time) the expected number that it might become intricate to define generators so that they of generated constructors, even in the presence of mutually result in a suitable distribution or enforce data invariants. recursive or composite ADTs. Using our probabilistic formu- The state-of-the-art tools to derive generators for user- las, we design heuristics capable of automatically adjusting defined ADTs can be classified based on the automation level probabilities in order to synthesize generators which distribu- as well as the sort of invariants enforced at the data genera- tions are aligned with users’ demands. We provide a Haskell tion phase. QuickCheck and SmallCheck [27] (a tool for writing implementation of our mechanism in a tool called generators that synthesize small test cases) use type-driven and perform case studies with real-world applications.
    [Show full text]
  • Foundational Property-Based Testing
    Foundational Property-Based Testing Zoe Paraskevopoulou1,2 Cat˘ alin˘ Hrit¸cu1 Maxime Den´ es` 1 Leonidas Lampropoulos3 Benjamin C. Pierce3 1Inria Paris-Rocquencourt 2ENS Cachan 3University of Pennsylvania Abstract Integrating property-based testing with a proof assistant creates an interesting opportunity: reusable or tricky testing code can be formally verified using the proof assistant itself. In this work we introduce a novel methodology for formally verified property-based testing and implement it as a foundational verification framework for QuickChick, a port of QuickCheck to Coq. Our frame- work enables one to verify that the executable testing code is testing the right Coq property. To make verification tractable, we provide a systematic way for reasoning about the set of outcomes a random data generator can produce with non-zero probability, while abstracting away from the actual probabilities. Our framework is firmly grounded in a fully verified implementation of QuickChick itself, using the same underlying verification methodology. We also apply this methodology to a complex case study on testing an information-flow control abstract machine, demonstrating that our verification methodology is modular and scalable and that it requires minimal changes to existing code. 1 Introduction Property-based testing (PBT) allows programmers to capture informal conjectures about their code as executable specifications and to thoroughly test these conjectures on a large number of inputs, usually randomly generated. When a counterexample is found it is shrunk to a minimal one, which is displayed to the programmer. The original Haskell QuickCheck [19], the first popular PBT tool, has inspired ports to every mainstream programming language and led to a growing body of continuing research [6,18,26,35,39] and industrial interest [2,33].
    [Show full text]
  • Specification Based Testing with Quickcheck
    Specification Based Testing with QuickCheck (Tutorial Talk) John Hughes Chalmers University of Technology and QuviQ AB ABSTRACT QuickCheck is a tool which tests software against a formal specification, reporting discrepancies as minimal failing examples. QuickCheck uses properties specified by the developer both to generate test cases, and to identify failing tests. A property such as 8xs : list(int()): reverse(reverse(xs)) = xs is tested by generating random lists of integers, binding them to the variable xs, then evaluating the boolean expression under the quantifier and reporting a failure if the value is false. If a failing test case is found, QuickCheck “shrinks” it by searching for smaller, but similar test cases that also fail, terminating with a minimal example that cannot be shrunk further. In this example, if the developer accidentally wrote 8xs : list(int()): reverse(xs) = xs instead, then QuickCheck would report the list [0; 1] as the minimal failing case, containing as few list elements as possible, with the smallest absolute values possible. The approach is very practical: QuickCheck is implemented just a library in a host programming language; it needs only to execute the code under test, so requires no tools other than a compiler (in particular, no static analysis); the shrinking process “extracts the signal from the noise” of random testing, and usually results in very easy-to-debug failures. First developed in Haskell by Koen Claessen and myself, QuickCheck has been emulated in many programming languages, and in 2006 I founded QuviQ to develop and market an Erlang version. Of course, customers’ code is much more complex than the simple reverse function above, and requires much more complex properties to test it.
    [Show full text]
  • Webdriver: Controlling Your Web Browser
    WebDriver: Controlling your Web Browser Erlang User Conference 2013 Hans Svensson, Quviq AB [email protected] First, a confession... I have a confession to make... I have built a web system! In PHP! ... and it was painfully mundane to test It is all forgotten and forgiven... It was back in 2003! First DEMO DEMO A bit of history Proving program Erlang correctness Reality – a constant issue PhD Testing is studentPhD necessary A bit of history Proving program Erlang correctness Reality – a constant issue PhD Testing is studentPhD necessary • We like to write our properties in QuickCheck • How can we control ‘a browser’ from Erlang? • Doing it all from scratch seems hard, unnecessary, stupid, ... Selenium “Selenium automates browsers. That's it. What you do with that power is entirely up to you. Primarily it is for automating web applications for testing purposes, but is certainly not limited to just that. Boring web-based administration tasks can (and should!) also be automated as well.” Selenium • Basically you can create and run scripts • Supported by a wide range of browsers and operating systems • Run tests in: Chrome, IE, Opera, Firefox, and partial support also for other browsers. • Runs on: Windows, OS X, Linux, Solaris, and others. • Script recording using Selenium IDE (Firefox plugin). • Language support for: C#, Java, Python, Ruby, and partial support for Perl and PHP. • Widely used to create Unit-tests and regression testing suites for web services. Selenium 2 - WebDriver • In version 2, Selenium introduced the WebDriver API • Via WebDriver it is possible to drive the browser natively • The browser can be local or remote – possible to use a grid test • It is a compact Object Oriented API • Supports Chrome, Firefox, HtmlUnit, Opera, IE, and IPhone and Android • Languages implementing driver: C#, Java, Python, and Ruby.
    [Show full text]
  • Experience Report: the Next 1100 Haskell Programmers
    Experience Report: The Next 1100 Haskell Programmers Jasmin Christian Blanchette Lars Hupel Tobias Nipkow Lars Noschinski Dmitriy Traytel Fakultat¨ fur¨ Informatik, Technische Universitat¨ Munchen,¨ Germany Abstract mathematics, and linear algebra. The information systems students We report on our experience teaching a Haskell-based functional had only had a basic calculus course and were taking discrete programming course to over 1100 students for two winter terms. mathematics in parallel. The dramatis personae in addition to the students were lecturer The syllabus was organized around selected material from various 1 sources. Throughout the terms, we emphasized correctness through Tobias Nipkow, who designed the course, produced the slides, QuickCheck tests and proofs by induction. The submission archi- and gave the lectures; Masters of TAs Lars Noschinski and Lars tecture was coupled with automatic testing, giving students the pos- Hupel, who directed a dozen teaching assistants (TAs) and took sibility to correct mistakes before the deadline. To motivate the stu- care of the overall organization; furthermore the (Co)Masters of dents, we complemented the weekly assignments with an informal Competition Jasmin Blanchette (MC) and Dmitriy Traytel (CoMC), competition and gave away trophies in a award ceremony. who selected competition problems and ranked the solutions. Categories and Subject Descriptors D.1.1 [Programming Tech- 2. Syllabus niques]: Applicative (Functional) Programming; D.3.2 [Program- ming Languages]: Language Classifications—Applicative (func- The second iteration covered the following topics in order. (The tional) languages; K.3.2 [Computers and Education]: Computer first iteration was similar, with a few exceptions discussed below.) and Information Science Education—Computer science education Each topic was the subject of one 90-minute lecture unless other- wise specified.
    [Show full text]
  • Quickcheck - Random Property-Based Testing
    QuickCheck - Random Property-based Testing Arnold Schwaighofer QuickCheck - Random Property-based Haskell - A Truly (Cool) Functional Programming Testing Language Why Functional Programming And In Particular Quickcheck - A Truly Cool QuickCheck Is Cool Property Based Testing Tool Summary Custom Random Arnold Schwaighofer Data Generators Resources Institute for Formal Models and Verification References Johannes Kepler University Linz 26 June 2007 / KV Debugging QuickCheck - Random Outline Property-based Testing Arnold Schwaighofer Haskell - A Truly (Cool) Functional Programming Language Haskell - A Truly (Cool) Functional What - Functional Programming Programming Language How - Functional Programming Quickcheck - A Why - Functional Programming Truly Cool Property Based Testing Tool Quickcheck - A Truly Cool Property Based Testing Tool Summary Custom Random What - Random Property Based Testing Data Generators How - Random Property Based Testing Resources Why - Random Property Based Testing References Success Stories Related Work And Outlook Summary QuickCheck - Random Outline Property-based Testing Arnold Schwaighofer Haskell - A Truly (Cool) Functional Programming Language Haskell - A Truly (Cool) Functional What - Functional Programming Programming Language How - Functional Programming Quickcheck - A Why - Functional Programming Truly Cool Property Based Testing Tool Quickcheck - A Truly Cool Property Based Testing Tool Summary Custom Random What - Random Property Based Testing Data Generators How - Random Property Based Testing Resources
    [Show full text]