Programming Technologies for Engineering Quality Multicore
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Investigating Statistical Privacy Frameworks from the Perspective of Hypothesis Testing 234 Able Quantity
Investigating Statistical Privacy Frameworks from the Perspective of Hypothesis Testing 234 able quantity. Only a limited number of previous works which can provide a natural and interpretable guide- [29, 34, 35] have investigated the question of how to line for selecting proper privacy parameters by system select a proper value of ǫ, but these approaches ei- designers and researchers. Furthermore, we extend our ther require complicated economic models or lack the analysis on unbounded DP to bounded DP and the ap- analysis of adversaries with arbitrary auxiliary informa- proximate (ǫ, δ)-DP. tion (see Section 2.3 for more details). Our work is in- Impact of Auxiliary Information. The conjecture spired by the interpretation of differential privacy via that auxiliary information can influence the design of hypothesis testing, initially introduced by Wasserman DP mechanisms has been made in prior work [8, 28, 32, and Zhou [27, 30, 60]. However, this interpretation has 33, 39, 65]. We therefore investigate the adversary’s ca- not been systematically investigated before in the con- pability based on hypothesis testing under three types text of our research objective, i.e., reasoning about the of auxiliary information: the prior distribution of the in- choice of the privacy parameter ǫ (see Section 2.4 for put record, the correlation across records, and the corre- more details). lation across time. Our analysis demonstrates that the We consider hypothesis testing [2, 45, 61] as the tool auxiliary information indeed influences the appropriate used by the adversary to infer sensitive information of selection of ǫ. The results suggest that, when possible an individual record (e.g., the presence or absence of and available, the practitioners of DP should explicitly a record in the database for unbounded DP) from the incorporate adversary’s auxiliary information into the outputs of privacy mechanisms. -
2008 Annual Report
2008 Annual Report NATIONAL ACADEMY OF ENGINEERING ENGINEERING THE FUTURE 1 Letter from the President 3 In Service to the Nation 3 Mission Statement 4 Program Reports 4 Engineering Education 4 Center for the Advancement of Scholarship on Engineering Education 6 Technological Literacy 6 Public Understanding of Engineering Developing Effective Messages Media Relations Public Relations Grand Challenges for Engineering 8 Center for Engineering, Ethics, and Society 9 Diversity in the Engineering Workforce Engineer Girl! Website Engineer Your Life Project Engineering Equity Extension Service 10 Frontiers of Engineering Armstrong Endowment for Young Engineers-Gilbreth Lectures 12 Engineering and Health Care 14 Technology and Peace Building 14 Technology for a Quieter America 15 America’s Energy Future 16 Terrorism and the Electric Power-Delivery System 16 U.S.-China Cooperation on Electricity from Renewables 17 U.S.-China Symposium on Science and Technology Strategic Policy 17 Offshoring of Engineering 18 Gathering Storm Still Frames the Policy Debate 20 2008 NAE Awards Recipients 22 2008 New Members and Foreign Associates 24 2008 NAE Anniversary Members 28 2008 Private Contributions 28 Einstein Society 28 Heritage Society 29 Golden Bridge Society 29 Catalyst Society 30 Rosette Society 30 Challenge Society 30 Charter Society 31 Other Individual Donors 34 The Presidents’ Circle 34 Corporations, Foundations, and Other Organizations 35 National Academy of Engineering Fund Financial Report 37 Report of Independent Certified Public Accountants 41 Notes to Financial Statements 53 Officers 53 Councillors 54 Staff 54 NAE Publications Letter from the President Engineering is critical to meeting the fundamental challenges facing the U.S. economy in the 21st century. -
Arxiv:1510.00844V3 [Cs.DC] 16 Nov 2016 Splitting (As Opposed to Replicating) Input Submatrices Across Processor Layers
EXPLOITING MULTIPLE LEVELS OF PARALLELISM IN SPARSE MATRIX-MATRIX MULTIPLICATION ARIFUL AZAD∗, GREY BALLARDy , AYDIN BULUC¸ z , JAMES DEMMELx , LAURA GRIGORI{, ODED SCHWARTZk, SIVAN TOLEDO∗∗, AND SAMUEL WILLIAMSyy Abstract. Sparse matrix-matrix multiplication (or SpGEMM) is a key primitive for many high-performance graph algorithms as well as for some linear solvers, such as algebraic multigrid. The scaling of existing parallel implementations of SpGEMM is heavily bound by communication. Even though 3D (or 2.5D) algorithms have been proposed and theoretically analyzed in the flat MPI model on Erd}os-R´enyi matrices, those algorithms had not been implemented in practice and their complexities had not been analyzed for the general case. In this work, we present the first implementation of the 3D SpGEMM formulation that exploits multiple (intra-node and inter-node) levels of parallelism, achieving significant speedups over the state-of-the-art publicly available codes at all levels of concurrencies. We extensively evaluate our implementation and identify bottlenecks that should be subject to further research. Key words. Parallel computing, numerical linear algebra, sparse matrix-matrix multiplication, 2.5D algorithms, 3D algorithms, multithreading, SpGEMM, 2D decomposition, graph algorithms. AMS subject classifications. 05C50, 05C85, 65F50, 68W10 1. Introduction. Multiplication of two sparse matrices (SpGEMM) is a key operation for high-performance graph computations in the language of linear alge- bra [31, 40]. Examples include graph contraction [25], betweenness centrality [13], Markov clustering [47], peer pressure clustering [43], triangle counting [4], and cycle detection [49]. SpGEMM is also used in scientific computing. For instance, it is often a performance bottleneck for Algebraic Multigrid (AMG), where it is used in the set- up phase for restricting and interpolating matrices [7]. -
Digital Communication Systems 2.2 Optimal Source Coding
Digital Communication Systems EES 452 Asst. Prof. Dr. Prapun Suksompong [email protected] 2. Source Coding 2.2 Optimal Source Coding: Huffman Coding: Origin, Recipe, MATLAB Implementation 1 Examples of Prefix Codes Nonsingular Fixed-Length Code Shannon–Fano code Huffman Code 2 Prof. Robert Fano (1917-2016) Shannon Award (1976 ) Shannon–Fano Code Proposed in Shannon’s “A Mathematical Theory of Communication” in 1948 The method was attributed to Fano, who later published it as a technical report. Fano, R.M. (1949). “The transmission of information”. Technical Report No. 65. Cambridge (Mass.), USA: Research Laboratory of Electronics at MIT. Should not be confused with Shannon coding, the coding method used to prove Shannon's noiseless coding theorem, or with Shannon–Fano–Elias coding (also known as Elias coding), the precursor to arithmetic coding. 3 Claude E. Shannon Award Claude E. Shannon (1972) Elwyn R. Berlekamp (1993) Sergio Verdu (2007) David S. Slepian (1974) Aaron D. Wyner (1994) Robert M. Gray (2008) Robert M. Fano (1976) G. David Forney, Jr. (1995) Jorma Rissanen (2009) Peter Elias (1977) Imre Csiszár (1996) Te Sun Han (2010) Mark S. Pinsker (1978) Jacob Ziv (1997) Shlomo Shamai (Shitz) (2011) Jacob Wolfowitz (1979) Neil J. A. Sloane (1998) Abbas El Gamal (2012) W. Wesley Peterson (1981) Tadao Kasami (1999) Katalin Marton (2013) Irving S. Reed (1982) Thomas Kailath (2000) János Körner (2014) Robert G. Gallager (1983) Jack KeilWolf (2001) Arthur Robert Calderbank (2015) Solomon W. Golomb (1985) Toby Berger (2002) Alexander S. Holevo (2016) William L. Root (1986) Lloyd R. Welch (2003) David Tse (2017) James L. -
An Economic Analysis of Privacy Protection and Statistical Accuracy As Social Choices
An Economic Analysis of Privacy Protection and Statistical Accuracy as Social Choices John M. Abowd and Ian M. Schmutte August 15, 2018 Forthcoming in American Economic Review Abowd: U.S. Census Bureau HQ 8H120, 4600 Silver Hill Rd., Washington, DC 20233, and Cornell University, (email: [email protected]); Schmutte: Department of Eco- nomics, University of Georgia, B408 Amos Hall, Athens, GA 30602 (email: [email protected]). Abowd and Schmutte acknowledge the support of Alfred P. Sloan Foundation Grant G-2015-13903 and NSF Grant SES-1131848. Abowd acknowledges direct support from NSF Grants BCS-0941226, TC-1012593. Any opinions and conclusions are those of the authors and do not represent the views of the Census Bureau, NSF, or the Sloan Foundation. We thank the Center for Labor Economics at UC–Berkeley and Isaac Newton Institute for Mathematical Sciences, Cambridge (EPSRC grant no. EP/K032208/1) for support and hospitality. We are extremely grateful for very valuable com- ments and guidance from the editor, Pinelopi Goldberg, and six anonymous referees. We acknowl- edge helpful comments from Robin Bachman, Nick Bloom, Larry Blume, David Card, Michael Castro, Jennifer Childs, Melissa Creech, Cynthia Dwork, Casey Eggleston, John Eltinge, Stephen Fienberg, Mark Kutzbach, Ron Jarmin, Christa Jones, Dan Kifer, Ashwin Machanavajjhala, Frank McSherry, Gerome Miklau, Kobbi Nissim, Paul Oyer, Mallesh Pai, Jerry Reiter, Eric Slud, Adam Smith, Bruce Spencer, Sara Sullivan, Salil Vadhan, Lars Vilhuber, Glen Weyl, and Nellie Zhao along with seminar and conference participants at the U.S. Census Bureau, Cornell, CREST, George Ma- son, Georgetown, Microsoft Research–NYC, University of Washington Evans School, and SOLE. -
Calibrating Noise to Sensitivity in Private Data Analysis
Calibrating Noise to Sensitivity in Private Data Analysis Cynthia Dwork1, Frank McSherry1, Kobbi Nissim2, and Adam Smith3? 1 Microsoft Research, Silicon Valley. {dwork,mcsherry}@microsoft.com 2 Ben-Gurion University. [email protected] 3 Weizmann Institute of Science. [email protected] Abstract. We continue a line of research initiated in [10, 11] on privacy- preserving statistical databases. Consider a trusted server that holds a database of sensitive information. Given a query function f mapping databases to reals, the so-called true answer is the result of applying f to the database. To protect privacy, the true answer is perturbed by the addition of random noise generated according to a carefully chosen distribution, and this response, the true answer plus noise, is returned to the user. Previous work focused on the case of noisy sums, in which f = P i g(xi), where xi denotes the ith row of the database and g maps database rows to [0, 1]. We extend the study to general functions f, proving that privacy can be preserved by calibrating the standard devi- ation of the noise according to the sensitivity of the function f. Roughly speaking, this is the amount that any single argument to f can change its output. The new analysis shows that for several particular applications substantially less noise is needed than was previously understood to be the case. The first step is a very clean characterization of privacy in terms of indistinguishability of transcripts. Additionally, we obtain separation re- sults showing the increased value of interactive sanitization mechanisms over non-interactive. -
Readdressing Network Layers
Readdressing Network Layers James McCauley Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2020-161 http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-161.html August 14, 2020 Copyright © 2020, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. Readdressing Network Layers By James Ash McCauley A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Computer Science in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Scott Shenker, Chair Professor Sylvia Ratnasamy Professor Coye Cheshire Summer 2020 Readdressing Network Layers Copyright 2020 by James Ash McCauley 1 Abstract Readdressing Network Layers by James Ash McCauley Doctor of Philosophy in Computer Science University of California, Berkeley Professor Scott Shenker, Chair It has long been common practice to split the functionality of computer networks into distinct layers. In the context of the most common networks today, there are five such layers, bracketed by hardware at the lowest layer and application software at the highest. While this modularization has generally been a huge success story for the field, networks have now been subject to decades of changes in terms of both technologies and use cases. -
Plenary Speakers
FoCM95 Park City: Plenary speakers: WEEK 1 Marie-Francoise Roy, Universite de Rennes Shmuel Winograd, IBM Dima Y. Grigoriev, Pennsylvania State University Richard S. Varga, Kent State University Steve Smale, University of California, Berkeley John CannyUniversity of California, Berkeley Felipe Cucker, Universitat Pampeu Fabra, Spain Victor Pan, Herbert H. Lehman College, CUNY Michael Shub, IBM Roger Brockett, Harvard University WEEK 2 Henryk Wozniakowski, University of Warsaw David Donoho, University of California, Berkeley and Columbia University Yosef Yomdin, Weizmann Institute of Science, Israel Margaret H. Wright, AT&T Bell Laboratories N. Karmarker, AT&T Bell Laboratories Manuel Blum, University of California, Berkeley Roger Temam, Indiana University Arkadi Nemirovski, Israel Institute of Technology Hubertus Th.Jongen, Reinisch-Westf Tech Hochschule James M. Renegar, Cornell University WEEK 3 Herb Keller, California Institute of Technology Gene H. Golub, Stanford University Alexandre J. Chorin, University of California, Berkeley T. Y. Li, Michigan State University James Yorke, University of Maryland Lenore Blum, MSRI Eugene L. Allgower, Colorado State University Arieh Iserles, University of Cambridge, UK James W. Demmel, University of California, Berkeley W. Dahmen, Reinisch-Westf Tech Hochschule WEEK 4 Ronald A. DeVore, University of South Carolina, Columbia Ulrich Kulisch, University of Karlsruhe Victor A. V. Vassiliev, Institute for System Studies, Moscow Jacques Louis Lions, College de France Henryk Wozniakowski, University of -
Architectural Support for Security Management in Enterprise Networks
ARCHITECTURAL SUPPORT FOR SECURITY MANAGEMENT IN ENTERPRISE NETWORKS A DISSERTATION SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Martin Casado August 2007 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 3281806 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. ® UMI UMI Microform 3281806 Copyright 2007 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, Ml 48106-1346 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. (c) Copyright by Martin Casado 2007 All Rights Reserved ii Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. f f- f (Nick McKeown) Principal Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. -
Grey Ballard [email protected] PO Box 7311 • Computer Science Department • Wake Forest University • Winston Salem, NC 27106
Grey Ballard [email protected] www.wfu.edu/~ballard PO Box 7311 • Computer Science Department • Wake Forest University • Winston Salem, NC 27106 Professional Assistant Professor 2016 { present Wake Forest University Department of Computer Science, Winston Salem NC Harry S. Truman Postdoctoral Fellow 2013 { 2016 Sandia National Laboratories, Livermore CA Education Ph.D. in Computer Science Fall 2008 { Spring 2013 University of California Berkeley, with a Designated Emphasis in Computational Science and Engineering Advisor: James Demmel, Thesis: Avoiding Communication in Dense Linear Algebra M.A. in Mathematics Fall 2006 { Spring 2008 Wake Forest University, Advisor: John Baxley B.S. in Mathematics and Computer Science Fall 2002 { Spring 2006 Wake Forest University, summa cum laude with honors in mathematics and honors in computer science Honors and Awards WFU Award for Excellence in Research 2021 Awarded to early-career faculty member for significant research, creative activity, or scholarly activity NSF CAREER Award 2020-2024 National Science Foundation Faculty Early Career Development Program Dunn-Riley Faculty Fellowship 2020-2022 Wake Forest Faculty Fellowship Program ACM Senior Member 2021 Recognizes those ACM members with at least 10 years of professional experience who have demonstrated performance through technical leadership, and technical or professional contributions ICDM Best Paper Award 2015 Awarded by the program committee, with coauthors Tamara Kolda, Ali Pinar, and C. Seshadri ACM Doctoral Dissertation Award - Honorable Mention -
David Samuel Bindel Research Interests Education Professional
David Samuel Bindel Associate Professor of Computer Science http://www.cs.cornell.edu/~bindel/cv/cv.pdf Department of Computer Science [email protected] Cornell University www.cs.cornell.edu/~bindel Ithaca, NY 14853 Office: 607-255-5395 Research interests • Applied numerical linear algebra • Scientific computing • High-performance computing • Spectral network analysis methods • Optimization via surrogate models • Finite element analysis • Computational tools for electrical power grids • Simulation tools for micro-electro-mechanical systems (MEMS) Education May 1999 B.S. in Mathematics and in Computer Science, University of Maryland, College Park December 2006 Ph.D. in Computer Science, University of California, Berkeley Advisors: James Demmel (Computer Science Division and Department of Mathematics) Sanjay Govindjee (Department of Civil Engineering) Dissertation title: Structured and Parameter-Dependent Eigensolvers for Simulation-Based Design of Resonant MEMS Professional Experience Summer 2017-present. Associate Professor, Department of Computer Science, Cornell University Spring 2019. Visiting Scholar, Department of Statistics, University of Chicago Fall 2018. Faculty Research Participant, Argonne National Laboratory Summer 2009-Summer 2017. Assistant Professor, Department of Computer Science, Cornell University Fall 2006-Summer 2009. Courant Instructor of Mathematics, New York University Fall 1999-Summer 2006. Graduate Student Researcher, CS Division, UC Berkeley Fall 2005 and Spring 2001. Graduate Student Instructor, CS Division, UC Berkeley 1 Awards 2020 James and Mary Tien Excellence in Teaching Award Highest award for teaching in Cornell's College of Engineering. 2019 KDD Best Research Paper Award 2018 Cornell COE Research Excellence Award Awarded annually to two Cornell engineering professors at each level. 2018 ASPLOS Most Influential Paper Award 2018 Recognizes a historical ASPLOS paper that has had major influence on the field. -
Nick Feamster
Nick Feamster Neubauer Professor [email protected] Department of Computer Science https://people.cs.uchicago.edu/˜feamster/ University of Chicago https://noise.cs.uchicago.edu/ 5730 South Ellis Avenue https://medium.com/@feamster/ Chicago, Illinois 60637 Research Interests My research focuses on networked computer systems, with an emphasis on network architecture and protocol design; network security, management, and measurement; routing; and anti-censorship techniques. The primary goal of my research is to design tools, techniques, and policies to help networks operate better, and to enable users of these networks (both public and private) to experience high availability and good end-to-end performance. The problems that I tackle often involve the intersection of networking technology and policy. I study problems in the pricing and economics of Internet interconnection, global Internet censorship and information control, the security and privacy implications of emerging technologies, and the performance of consumer, commercial, and enterprise networks. My research achieves impact through new design paradigms in network architecture, the release of open-source software systems, and data and evidence that can influence public policy discourse. Education Degree Year University Field Ph.D. 2005 Massachusetts Institute of Technology Computer Science Cambridge, MA Dissertation: Proactive Techniques for Correct and Predictable Internet Routing Sprowls Honorable Mention for best MIT Ph.D. dissertation in Computer Science Advisor: Hari Balakrishnan