Expo. Math. 24 (2006) 1–37 www.elsevier.de/exmath The Cantor function O. Dovgosheya, O. Martiob,∗, V. Ryazanova, M. Vuorinenc aInstitute of Applied Mathematics and Mechanics, NAS of Ukraine, 74 Roze Luxemburg Str., Donetsk 83114, Ukraine bDepartment of Mathematics and Statistics, P.O. Box 68 (Gustaf Hällströmin Katu 2b), University of Helsinki, FIN - 00014, Finland cDepartment of Mathematics, University of Turku, FIN - 20014, Finland Received 4 January 2005 Abstract This is an attempt to give a systematic survey of properties of the famous Cantor ternary function. ᭧ 2005 Elsevier GmbH. All rights reserved. MSC 2000: primary 26-02; secondary 26A30 Keywords: Singular functions; Cantor function; Cantor set 1. Introduction The Cantor function G was defined in Cantor’s paper [10] dated November 1883, the first known appearance of this function. In [10], Georg Cantor was working on extensions of the Fundamental Theorem of Calculus to the case of discontinuous functions and G serves as a counterexample to some Harnack’s affirmation about such extensions [33, p. 60]. The interesting details from the early history of the Cantor set and Cantor function can be found in Fleron’s note [28]. This function was also used by H. Lebesgue in his famous “Leçons sur l’intégration et la recherche des fonctions primitives” (Paris, Gauthier-Villars, 1904). For this reason G is sometimes referred to as the Lebesgue function. Some interesting function ∗ Corresponding author. Fax: +35 80 19122879. E-mail addresses:
[email protected] (O. Dovgoshey),
[email protected].fi (O. Martio),
[email protected] (V. Ryazanov), vuorinen@csc.fi (M.