Recent Invasive Hemipterans and Their Biological Control in Asia

Total Page:16

File Type:pdf, Size:1020Kb

Recent Invasive Hemipterans and Their Biological Control in Asia RECENT INVASIVE HEMIPTERANS AND THEIR BIOLOGICAL CONTROL IN ASIA R. Muniappan Program Director, IPM CRSP, Virginia Tech 526 Prices Fork Road, Blacksburg, VA 24061, U.S.A. E-mail: [email protected] Abstract: In recent years, there is an increase in movement of invasive exotic species from one region of the world to others. Whiteflies and mealybugs constitute a major part of this invasion among the economically important arthropods. The spiraling whitefly, Aleurodicus dispersus, a native of the Caribbean and Central America established in Hawaii in 1978. Since then, it invaded the Pacific Islands in the early 1980s and then moved to Asia and Africa in the 1990s. It has been effectively controlled by the introduction of the parasitoid Encarsia? haitiensis and the coccinellid Nephaspis oculatus. Other neotropical species that are currently spreading in Asia is the giant whitefly Aleurodicus dugesii, that has established in Hawaii in 2002 and Indonesia in 2007 and the nesting whitefly, Paraleyrodes minei that has established in the middle east. The mealybugs that invaded old world tropics from the neotropics are the papaya mealybug Paracoccus marginatus, solenopsis mealybug Phenacoccus solenopsis, cassava mealybug Phenacoccus manihoti, Madeira mealybug Phenacoccus madeirensis and Pseudococcus jackbeardsleyi. Papaya mealybug was first collected in Mexico and it spread to the Caribbean in 1990s, the Pacific in early 2000 and Asia in late 2000. This mealybug has been effectively controlled by the introduction of the parasitoids Acerophagus papayae, Anagyrus loecki, and Pseudleptomastix mexicana. Solenopsis mealybug was first collected in New Mexico in 1897 and started to spread in early 1990s. Between 2005 and 2009, it caused severe damage to cotton in Pakistan and India. A fortuitously introduced parasitoid Aenasius bambawalei, discovered in the region successfully suppressed this pest. Recently this mealybug has been reported from Cambodia, Thailand and Indonesia. The cassava mealybug, originally from central South America, caused devastation of cassava in the 1980s when it was accidentally introduced to equatorial Africa. It was reported from Thailand, Cambodia, and Laos in 2009, and Indonesia in 2010. This mealybug has been successfully controlled in Africa by introducing the parasitoid Anagyrus lopezi. Madeira mealybug is also of neotropical origin and widespread in tropical South America. It was reported from Pakistan in 1997, Taiwan in 2006 and Thailand in 2010. Pseudococcus jackbeardsleyi, another neotropical species was introduced to Singapore in 1958, Hawaii in 1959, the remainder of the Southeast Asia in 1970s and to Maldives in 1994. It is possible that local parasitoids are keeping Madeira mealybug and P. jackbeardsleyi under control in some of these countries. Introduction. The globalization and the concomitant increase in international travel and commerce are directly correlated to the resultant enhancement in introduction and spread of exotic invasive species. Often species introduced without their natural enemies from the new world to old world and vice versa become invasive in the countries into which they were introduced. Invasive species cause loss of biodiversity, modify the habitat and cause extensive environmental and economic harm (Fish et al., 2010). In the recent years, several species of economically important arthropods have been introduced to different countries and the rate of introduction in the tropics is much higher than in the temperate regions. For example, Hawaii and Florida experience for more number of introductions per year than the other states in United States of America. Losses caused by invasive arthropods alone account for several billions of dollars per year. Invasive species have lead to abandoning of cultivation of crops and associated economic consequences in many parts of the world. From 2005 to 2009, cultivation of cotton in Pakistan and India came under severe stress because of the accidentally introduced pest, Phenacoccus solenopsis Tinsley. This paper outlines some of the hemipteran insect pests that are invading Asia from the neotropics and the classical biological control programs adopted for their suppression. Whiteflies (Hemiptera: Aleyrodidae) The spiraling whitefly, Aleurodicus dispersus Russell It is native to the Caribbean region and Central America (Waterhouse and Norris, 1989). It was first recorded from Florida in 1957. In the Pacific, it was reported from Hawaii (1978) and Guam and other islands (1981 and afterwards) (Waterhouse and Norris, 1989). In Asia it was reported in the Philippines (1981), Indonesia (1991), India (1993), Bangladesh (1997), and China (2006) (Yu et al., 2007). It was accidentally introduced to Nigeria around 1992 and to rest of the West Africa afterwards (Akinlosotu et al., 1993; Legg et al., 2003). It reached Kenya in 2010 (Mware, 2010). It is a polyphagous pest and it is known to attack over 481 species of plants in India (Srinivasa, 2000). Damage was caused by direct feeding as well as reducing photosynthetic surface by nurturing sooty mold through copious production of honeydew. In India, Saminathan and Jayaraj (2001) found that the cotton variety SVPR 2 was most susceptible as it harbored 34 nymphs and 36 adults per plant and 62% of the plants were infested. In contrast, the variety MCU 9 was most tolerant to A. dispersus, with 14 nymphs and 14 adults per plant with a total infestation level of 21% of the plants. When A. dispersus became a serious problem, Hawaii Department of Agriculture conducted exploratory work in the Caribbean and introduced three coccinellids and two aphelinid parasitoids in 1979. Of these, the coccinellid Nephaspis oculatus Blatchley) (=N. amnicola) (Coleoptera: Coccinellidae) and the parasitoids Encarsia ?haitiensis Dozier and Encarsia sp. (Hymenoptera: Aphelinidae) were found to be effective in suppressing the whitefly population. When A. dispersus spread to other Pacific Islands in the 1980s, E. ?haitiensis and N. oculatus were introduced from Hawaii (Waterhouse and Norris, 1989). The parasitoids Encarsia guadeloupae Viggiani and E. ?haitiensis were fortuitously introduced into Asia and Africa and they seem to control this pest effectively (Legg et al., 2003; Mani, 2010). In countries wherein A. dispersus established without its natural enemies, introduction of E. guadaloupae, E. ?haitiensis and N. oculatus should provide satisfactory control of this pest. The giant whitefly, Aleurodicus dugasii Cockerell This whitelfy is of Central America in origin and it has spread to Texas (1991) California (1992), Louisiana and Florida (1996), and Hawaii (2002) (Gill 1992; Hodges, 2004; Heu et al., 2004). It was reported from Java, Indonesia in 2008, a first report from Asia (Muniappan et al., 2011). It is likely to spread through Asia similar to A. dispersus. Giant whitefly is polyphagous and it prefers woody dicotyledonous hosts including cotton, fruit trees, and ornamental plants. Adults and nymphs damage plants by sucking sap through their needle-like mouthparts. Heavy infestations usually result in decline in plant growth. When the giant whitefly became a problem in southern California, two entomologists from the University of California at Riverside, explored Mexico for natural enemies in 1997. Two parasitoids, Idioporus affinis LaSalle and Polaszek (Hymenoptera: Pteromalidae) and Encarsiella noyesii Hayat (Hymenoptera: Aphelinidae) and released in 1997 and 1998 (Bellows and Meisenbacher, 2000). Another parasitoid, Entedononecremnus krauteri Zolnerowich and Rose (Hymenoptera: Eulophidae) was found in Texas and it has also been distributed to California and Florida in 1995 (Zolnerowich and Rose, 1996). In addition, a local parasitoid Encarsia hispida De Santis (Hymenoptera: Aphelinidae) was also found attacking early instars this whitefly. In Hawaii the parasitoid, I. affinis was introduced fortuitously from California in 2003 and it has kept this whitefly under control. The nesting whitefly, Paraleyrodes minei Iaccarino It is another whitefly of neotropical origin was accidentally introduced to California (1984) (Bellows et al.1998), Syria (1989), Israel (1993), Turkey (1994), Lebanon (1999), Benin (2000), and Spain (2006). It has been recorded on 37 host plants belonging to 21 families in Syria (Mohammad and Abboud, 2001). No classical biological control program has been attempted for this whitefly possibly because of control by local natural enemies. Mealybugs (Hemiptera: Pseudococcidae) Papaya mealybug, Paracoccus marginatus Williams and Granara de Willink The papaya mealybug is a native of to Mexico and/or Central America (Miller et al., 1999) and it was described in 1992 from the specimens collected in Mexico. In 1997 it appeared in St. Martin Island and later spread to rest of the Caribbean Islands, Florida and some countries in South America. In 2002, it was reported in the Pacific Islands (Meyerdirk et al., 2004, Muniappan et al., 2006) and in 2008 in Indonesia, India, and Sri Lanka (Muniappan et al. 2008). In 2009, it was reported from Bangladesh and Maldives and in 2010 in Cambodia, Philippines and Thailand (Muniappan et al., 2011). Papaya mealybug has a wide host range of over 60 species of plants including Annona squamosa, Carica papaya, Hibiscus rosa-sinensis, Ipomea spp., Gossypium spp., Jatropha sp., Manihot esculenta, Parthenium hysterophorus, Sida acuta, Acalypha indica, Cassia sericea and others (Meyerdirk and Kauffman, 2001; Shylesha et al., 2010). Affected young leaves crinkled, the shoots become stunted
Recommended publications
  • Effect of Invasive Pest Phenacoccus Manihoti Matile-Ferrero (Hemiptera; Pseudococcidae) in Cassava Nila Wardani1, Aunu Rauf2, I Wayan Winasa2, Sugeng Santoso2
    International Journal of Environment, Agriculture and Biotechnology (IJEAB) Vol-4, Issue-5, Sep-Oct- 2019 https://dx.doi.org/10.22161/ijeab.45.24 ISSN: 2456-1878 Effect of Invasive Pest Phenacoccus manihoti Matile-Ferrero (Hemiptera; Pseudococcidae) in Cassava Nila Wardani1, Aunu Rauf2, I Wayan Winasa2, Sugeng Santoso2 1Lampung Assesment Institute for Agriculture Technology, Jl. ZA. Pagar Alam No. IA, Bandar Lampung, email: [email protected] 2Department of Plant Protection, Bogor Agricultural University, Dramaga Campus, Bogor, West Java, Indonesia 16680 Abstract—Heavy damage by the cassava mealybug, Phenacoccua manihoti Matile-Ferrero (Hempiptera: Pseudococcidae) caused symptoms of bunchy top, shortened and distorted nodes, leaf drops, and inhibition of plant growth. The consequences of these pests can cause yield losses of 80%. This study was to determine the development of P. manihoti and cassava yield loss. Field observations indicated that symptoms of bunchy top appeared as early as 8 weeks after planting (wap) and rose quickly started 16 wap, at the same time with the advent of the dry season (May-June). Level of infestation developed faster on variety Jimbul; at 18 wap all plants had bunchy tops. While on varieties Roti and Manggu, 100% infestation occurred at 30 and 36 wap, respectively. There was a correlation between early infetation with plant height ang yield. Cassava plants infested during early stage were shorter and the yield lower, compared to those infested at further stages. Lower yields of variety Jimbul (0.94 kg/tree) than variety Manggu (3.16 kg/plant), was thought to be related to heavy infestation which occurred during early stage.
    [Show full text]
  • Factors Influencing the Life Table Statistics of the Cassava Mealybug Phenacoccus Manihoti
    Insect Sci. Applic. Vol. 8, Nos 4/5/6, pp. 851-856, 1987 0191-9040/87 $3.00 + 0.00 Printed in Great Britain. All rights reserved © 1987 ICIPE—ICIPE Science Press FACTORS INFLUENCING THE LIFE TABLE STATISTICS OF THE CASSAVA MEALYBUG PHENACOCCUS MANIHOTI F. SCHULTHESS1, J. U. BAUMGARTNER2 and H. R. HERREN1 'International Institute of Tropical Agriculture, Oyo Road, PMB 5320, Ibadan Nigeria; 'Institute of Phytomedicine, Swiss Federal Institute of Technology, 8092 Zurich, Switzerland (Received 27 November 1986) Abstract—Detailed age-specific life table studies were carried out under controlled conditions to measure the effect of temperature, leaf quality (= age), variety and plant drought stress on net production rate (RQ), intrinsic rate of increase (rm) and generation time (G) of Phenacoccus manihoti Mat.-Ferr. in order to explain changes in population densities observed in the field. The developmental threshold calculated from our data and results published by various authors was 14.7°C. At 35°C all mealybugs died before reaching the adult stage. Mealybugs reared on leaves of different ages showed little differences in rm, and the higher occurrence of P. manihoti on plant tips and oldest leaves could not be explained with better nutritive value of these plant parts alone. Cassava varieties have a strong influence on the intrinsic rate of increase, which could explain differences in results published by other authors. Plant drought stress had little influence on the life table statistics, but rainfall is assumed to be a determinant factor in the dynamics of the mealybug. Key Words: Age-specific life tables, temperature, leaf quality, variety, plant drought stress Resume—Des etudes visant a etablir une table de survie detaillee par categories d'age ont ete menees en environnement controle arm d'evaluer l'impact de la temperature, de la qualite du feuillage (age), de la variete et des contraintes hydriques sur le taux de production net (/?o)> ^e taux de croissance intrinseque (rm) et la duree des generations (G) de Phenacoccus manihoti Mat.-Ferr.
    [Show full text]
  • The Potential Distribution of Cassava Mealybug (Phenacoccus Manihoti), a Threat to Food Security for the Poor
    RESEARCH ARTICLE The potential distribution of cassava mealybug (Phenacoccus manihoti), a threat to food security for the poor Tania Yonow1,2, Darren J. Kriticos1,2,3*, Noboru Ota4 1 HarvestChoice, InSTePP, University of Minnesota, St. Paul, MN, United States of America, 2 CSIRO, Canberra ACT, Australia, 3 The University of Queensland, School of Biological Sciences, St. Lucia, QLD, Australia, 4 CSIRO, Wembley WA, Australia a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 a1111111111 Abstract The cassava mealybug is a clear and present threat to the food security and livelihoods of some of the world's most impoverished citizens. Niche models, such as CLIMEX, are useful tools to indicate where and when such threats may extend, and can assist with planning for OPEN ACCESS biosecurity and the management of pest invasions. They can also contribute to bioeconomic Citation: Yonow T, Kriticos DJ, Ota N (2017) The analyses that underpin the allocation of resources to alleviate poverty. Because species can potential distribution of cassava mealybug invade and establish in areas with climates that are different from those that are found in (Phenacoccus manihoti), a threat to food security their native range, it is essential to define robust range-limiting mechanisms in niche models. for the poor. PLoS ONE 12(3): e0173265. doi:10.1371/journal.pone.0173265 To avoid spurious results when applied to novel climates, it is necessary to employ cross- validation techniques spanning different knowledge domains (e.g., distribution data, experi- Editor: Nikos T. Papadopoulos, University of Thessaly School of Agricultural Sciences, GREECE mental results, phenological observations). We build upon and update a CLIMEX niche model by Parsa et al.
    [Show full text]
  • International Symposium on Biological Control of Arthropods 424 Poster Presentations ______
    POSTER PRESENTATIONS ______________________________________________________________ Poster Presentations 423 IMPROVEMENT OF RELEASE METHOD FOR APHIDOLETES APHIDIMYZA (DIPTERA: CECIDOMYIIDAE) BASED ON ECOLOGICAL AND BEHAVIORAL STUDIES Junichiro Abe and Junichi Yukawa Entomological Laboratory, Kyushu University, Japan ABSTRACT. In many countries, Aphidoletes aphidimyza (Rondani) has been used effectively as a biological control agent against aphids, particularly in greenhouses. In Japan, A. aphidimyza was reg- istered as a biological control agent in April 1999, and mass-produced cocoons have been imported from The Netherlands and United Kingdom since mass-rearing methods have not yet been estab- lished. In recent years, the effect of imported A. aphidimyza on aphid populations was evaluated in greenhouses at some Agricultural Experiment Stations in Japan. However, no striking effect has been reported yet from Japan. The failure of its use in Japan seems to be caused chiefly by the lack of detailed ecological or behavioral information of A. aphidimyza. Therefore, we investigated its ecological and behavioral attributes as follows: (1) the survival of pupae in relation to the depth of pupation sites; (2) the time of adult emergence in response to photoperiod during the pupal stage; (3) the importance of a hanging substrate for successful mating; and (4) the influence of adult size and nutrient status on adult longev- ity and fecundity. (1) A commercial natural enemy importer in Japan suggests that users divide cocoons into groups and put each group into a plastic container filled with vermiculite to a depth of 100 mm. However, we believe this is too deep for A. aphidimyza pupae, since under natural conditions mature larvae spin their cocoons in the top few millimeters to a maxmum depth of 30 mm.
    [Show full text]
  • 1.6 Parasitoids of Giant Whitefly
    UC Riverside UC Riverside Electronic Theses and Dissertations Title Life Histories and Host Interaction Dynamics of Parasitoids Used for Biological Control of Giant Whitefly (Aleurodicus dugesii) Cockerell (Hemiptera: Aleyrodidae) Permalink https://escholarship.org/uc/item/8020w7rd Author Schoeller, Erich Nicholas Publication Date 2018 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA RIVERSIDE Life Histories and Host Interaction Dynamics of Parasitoids Used for Biological Control of Giant Whitefly (Aleurodicus dugesii) Cockerell (Hemiptera: Aleyrodidae) A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Entomology by Erich Nicholas Schoeller March 2018 Dissertation Committee: Dr. Richard Redak, Chairperson Dr. Timothy Paine. Dr. Matthew Daugherty Copyright by Erich Nicholas Schoeller 2018 The Dissertation of Erich Nicholas Schoeller is approved: Committee Chairperson University of California, Riverside Acknowledgements This dissertation was made possible with the kind support and help of many individuals. I would like to thank my advisors Drs. Richard Redak, Timothy Paine, and Matthew Daugherty for their wisdom and guidance. Their insightful comments and questions helped me become a better scientist and facilitated the development of quality research. I would particularly like to thank Dr. Redak for his endless patience and unwavering support throughout my degree. I wish to also thank Tom Prentice and Rebeccah Waterworth for their support and companionship. Their presence in the Redak Lab made my time there much more enjoyable. I would like to thank all of the property owners who kindly allowed me to work on their lands over the years, as well as the many undergraduate interns who helped me collect and analyze data from the experiments in this dissertation.
    [Show full text]
  • Cassava-Mealybug Interactions
    Cassava-Mealybug Interactions Paul-André Calatayud Bruno Le Rü IRD I ACTIQUES Diffusion ✓ support papier support cédérom Cassava–Mealybug Interactions La collection « Didactiques » propose des ouvrages pratiques ou pédagogiques. Ouverte à toutes les thématiques, sans frontières disciplinaires, elle offre à un public élargi des outils éducatifs ou des mises au point méthodologiques qui favorisent l’application des résultats de la recherche menée dans les pays du Sud. Elle s’adresse aux chercheurs, enseignants et étudiants mais aussi aux praticiens, décideurs et acteurs du développement. JEAN-PHILIPPE CHIPPAUX Directeur de la collection [email protected] Parus dans la collection Venins de serpent et envenimations Jean-Philippe Chippaux Les procaryotes. Taxonomie et description des genres (cédérom) Jean-Louis Garcia, Pierre Roger Photothèque d’entomologie médicale (cédérom) Jean-Pierre Hervy, Philippe Boussès, Jacques Brunhes Lutte contre la maladie du sommeil et soins de santé primaire Claude Laveissière, André Garcia, Bocar Sané Outils d’enquête alimentaire par entretien Élaboration au Sénégal Marie-Claude Dop et al. Awna Parikwaki Introduction à la langue palikur de Guyane et de l’Amapá Michel Launey Grammaire du nengee Introduction aux langues aluku, ndyuka et pamaka Laurence Goury, Bettina Migge Pratique des essais cliniques en Afrique Jean-Philippe Chippaux Manuel de lutte contre la maladie du sommeil Claude Laveissière, Laurent Penchenier Cassava–Mealybug Interactions Paul-André Calatayud Bruno Le Rü IRD Éditions INSTITUT DE RECHERCHE POUR LE DÉVELOPPEMENT Collection Paris, 2006 Production progress chasing Corinne Lavagne Layout Bill Production Inside artwork Pierre Lopez Cover artwork Michelle Saint-Léger Cover photograph: C. Nardon/Cassava mealybug (Phenacoccus manihoti) La loi du 1er juillet 1992 (code de la propriété intellectuelle, première partie) n’autorisant, aux termes des alinéas 2 et 3 de l’article L.
    [Show full text]
  • PEST ALERT Occurrence of Cassava Mealybug Phenacoccus Manihoti
    PEST ALERT Occurrence of cassava mealybug Phenacoccus manihoti Matile-Ferrero in India Phenacoccus manihoti Matile-Ferrero is one of the most destructive pests of cassava in the world. It is native to South America, but has become acclimatized throughout sub-Saharan Africa since its unintentional introduction into the continent in the early 1970s causing up to 84% loss of yield and endangering the subsistence of about 200 million people. This pest was not known to occur in Asia until 2008, when it was first detected in Thailand. At present the pest is distributed in Neotropical Region (Argentina, Bolivia, Brazil, Colombia, Paraguay); Australasian Region (Indonesia); African Region (Angola, Benin, Burundi, Congo, Côte d'Ivoire, Gambia, Ghana, Guinea, Guinea-Bissau, Kenya, Malawi, Mali, Mozambique, Nigeria, Rwanda, Senegal, Sierra Leone, Sudan, Tanzania, Togo, Uganda, Zaire, Zambia, Zanzibar); and Oriental Region (Cambodia, Malaysia, Thailand and Vietnam). Cassava mealybug is known to infest plants belonging to 9 families viz., Cyperaceae, Euphorbiaceae, Fabaceae, Lamiaceae, Malvaceae, Nyctaginaceae, Portulacaceae, Rutaceae and Solanaceae. Besides cassava, P. manihoti can infest crops like citrus, Solanum species and basil. So far thirty-three natural enemies have been recorded on this pest in other countries. In India, infestation of this pest was observed on around 2000 square meter experimental plot of cassava (Manihot esculenta Crantz) in Thrissur, Kerala (Fig. 1 A). All the stages of mealybug viz., eggs, nymphs and adults (Fig. 1 B & C) were observed on all the plant parts including undersurface of leaves (Fig. 1 D) causing curling up of the leaves at growing tip of the plant leading to formation of bunchy tops (Fig.
    [Show full text]
  • Chalcidoidea: Eulophidae) of Mexico
    Folia Entorno/. Mex. 40(2):189-211 (2001) ANNOTATED CHECKLIST OF THE ENTEDONINAE (CHALCIDOIDEA: EULOPHIDAE) OF MEXICO 1 2 1 SVETLANA N. MYARTSEV A • AND ENRIQUE RUIZ- CANCINO 'Centro de investigación, UAM Agronomía y Ciencias, Universidad Autónoma de Tamaulipas, 87149 Ciudad Victoria, Tamaulipas, MEXICO. 'National Institute of Deserts, Flora and Fauna, Ministry of Nature Protection of Turkmenistan, 744000 Ashgabat, TURKMENISTAN. ABSTRACT. An annotated checklist of Mexican fauna of Entedoninae is presented. One hundred and twenty species in 15 genera are recorded. Valid names, state records within México, geographical distribution, host families and references for each genus and species are given. KEY WORDS: Eulophidae, Entedoninae, parasitoids, México. RESUMEN. Se presenta una lista comentada de la fauna mexicana de Entedoninae. Ciento veinte especies de 15 géneros han sido registradas. Se anotan los nombres válidos, registros estatales en México, distribución geográfica, familias hospederas y referencias para cada género y especie. PALABRAS CLAVE: Eulophidae, Entedoninae, parasitoides, México. Eulophidae is one of the largest families of Chalcidoidea. The family is cosmopolitan in distribution, and includes about 3400 described species in about 280 genera. In the Nearctic region about 600 species -in 110 genera are known (Schauff et al., 1997). The family is comprised of 4 subfamilies: Entedoninae, Euderinae, Eulophinae and Tetrastichinae. The Entedoninae is very rich in number and diversity of species and has economic importance in biological control of pests. Sorne authors have referred to it as Entedontinae (e.g. Yoshimoto, 1973a, 1973b, 1977,1978; Burles, 1979; Subba Rao & Hayat, 1985; Hansson, 1985, 1990); and others as Entedoninae (Boucek, 1988; Schauff, 1991; La Salle & Parrella, 1991; Triapitsyn & Headrick, 1995; Hansson, 1995 a, 1995b, 1996 a, 1996 b, 1997 b; Schauff et al.
    [Show full text]
  • Impact Assessment of the Biological Control of the Cassava
    CORE Metadata, citation and similar papers at core.ac.uk Provided by RERO DOC Digital Library Bull. ent. Res. 79, 579-594 579 Published 1989 Impact assessment of the biological control of the cassava mealybug, Phenacoccus manihoti Matile-Ferrero (Hemiptera: Pseudococcidae), by the introduced parasitoid Epidinocarsis lopezi (De Santis) (Hymenoptera: Encyrtidae) P. NEUENSCHWANDER and W. N. O. HAMMOND Biological Control Programme, International Institute of Tropical Agriculture, Benin Research Station, B.P. 062523 Cotonou, Benin A. P. GUTIERREZ Division of Biological Control, University of California, Berkeley, 1050 San Pablo Avenue, Albany, CA 94706, USA A. R. CUDJOE and R. ADJAKLOE Plant Protection and Quarantine Unit, Department of Agriculture, P.O. Box M37, Accra, Ghana J. U. BAUMGARTNER Division of Phytomedicine, Swiss Federal Institute of Technology, ETH-Zentrum, Zurich, Switzerland U. REGEV Department of Economics, Ben Gurion University, Beersheva, Israel Abstract The impact of Phenacoccus manihoti Matile-Ferrero on growth and tuber yield of cassava, and the results of its biological control by the exotic parasitoid Epidinocarsis lopezi (De Santis) were investigated in a survey of 60 farmers' fields in Ghana and Ivory Coast over an area of 180 000 km2 of the savanna and forest ecosystems. Twenty-nine variables associated with plant growth, agronomic and environmental factors, and insect populations were recorded. Densities of P. manihoti were closely correlated with stunting of the cassava shoot tips and, less so, with the rate of stunting early in the growing season. With increasing mealybug infestations, average harvest indi- ces declined and populations of E. lopezi and of indigenous coccinellids increased, but parasitoids were found at lower host levels than were preda- tors.
    [Show full text]
  • Biology of Prochiloneurus Insolitus (Alam) (Hymenoptera, Encyrtidae)
    Biology of Prochiloneurus insolitus (Alam) (Hymenoptera, Encyrtidae), a hyperparasitoid on mealybugs (Homoptera, Pseudococcidae) : immature morphology, host acceptance and host range in West Africa Autor(en): Goergen, G. / Neuenschwander, P. Objekttyp: Article Zeitschrift: Mitteilungen der Schweizerischen Entomologischen Gesellschaft = Bulletin de la Société Entomologique Suisse = Journal of the Swiss Entomological Society Band (Jahr): 63 (1990) Heft 3-4: Gedenkschrift zum Rücktritt von Prof. Dr. Vittorio Delucchi PDF erstellt am: 30.09.2021 Persistenter Link: http://doi.org/10.5169/seals-402404 Nutzungsbedingungen Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber. Haftungsausschluss Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für
    [Show full text]
  • Parasitoides De Aleurodicus Spp. (Hemiptera: Aleyrodidae) En México, Con La Descripción De Una Nueva Especie De Encarsia (Hymenoptera: Aphelinidae)
    ISSN 0065-1737 Acta Zoológica MexicanaActa Zool. (n.s.), Mex. 29(3): (n.s.) 641-653 29(3) (2013) PARASITOIDES DE ALEURODICUS SPP. (HEMIPTERA: ALEYRODIDAE) EN MÉXICO, CON LA DESCRIPCIÓN DE UNA NUEVA ESPECIE DE ENCARSIA (HYMENOPTERA: APHELINIDAE) S. N. MYARTSEVA,1* E. RUIZ-CANCINO,1 J. Ma. CORONADO-BLANCO1 & J. CAMBERO-CAMPOS2 1Facultad de Ingeniería y Ciencias, Universidad Autónoma de Tamaulipas, 87149 Cd. Victoria, Tamaulipas, México. 2Unidad Académica de Agricultura, Universidad Autónoma de Nayarit, Carretera Tepic-Compostela Km 9. 63780, Xalisco, Nayarit, México. *Autor de correspondencia: <[email protected]> Myartseva, S. N., Ruíz-Cancino, E., Coronado-Blanco, J. Ma. & Cambero-Campos, J. 2013. Parasitoides de Aleurodicus spp. (Hemiptera: Aleyrodidae) en México, con la descripción de una nueva especie de Encarsia (Hymenoptera: Aphelinidae). Acta Zoológica Mexicana (n.s.), 29(3): 641-653. RESUMEN. Se incluyen datos de los parasitoides asociados al género Aleurodicus en México (familias Aphelinidae, Eulophidae, Encyrtidae, Signiphoridae y Pteromalidae). Se reportan por primera vez los parasitoides de A. coccolobae Quaintance & Baker obtenidos en México. Se describe una nueva especie, Encarsia nayarita Myartseva n. sp., parasitoide de A. coccolobae y se elabora una clave para la separa- ción de hembras del grupo noyesi del género Encarsia. Palabras clave: Mosquitas blancas, Hymenoptera, parasitoides, México. Myartseva, S. N., Ruíz-Cancino, E., Coronado-Blanco, J. Ma. & Cambero-Campos, J. 2013. Parasitoids of Aleurodicus spp. (Hemiptera: Aleyrodidae) in Mexico, with description of a new species of Encarsia (Hymenoptera: Aphelinidae). Acta Zoológica Mexicana (n.s.), 29(3): 641-653. ABSTRACT. Data on whitefly parasitoids of the genus Aleurodicus distributed in Mexico are given (families Aphelinidae, Eulophidae, Encyrtidae, Signiphoridae and Pteromalidae).
    [Show full text]
  • First Record of Cassava Mealybug, Phenacoccus Manihoti (Hemiptera: Pseudococcidae), in Malaysia
    Zootaxa 3957 (2): 235–238 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Correspondence ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3957.2.8 http://zoobank.org/urn:lsid:zoobank.org:pub:5C879096-2FE8-4873-8C34-A3380D545E9A First record of cassava mealybug, Phenacoccus manihoti (Hemiptera: Pseudococcidae), in Malaysia DEWI SARTIAMI1, GILLIAN W. WATSON2, MOHAMAD ROFF M.N3., MOHD HANIFAH Y3 & IDRIS. A.B1 1School of Environmental and Natural Sciences, Faculty of Science and Technology, National University of Malaysia, Bangi 43000, Selangor, Malaysia. E-mail addresses: [email protected] and [email protected] 2Plant Pest Diagnostic Center, California Department of Food and Agriculture, 3294 Meadowview Road, Sacramento CA 95832, Sacramento, California, U.S.A. E-mail: [email protected] 3Horticulture Research Center, Malaysian Agricultural Research and Development Institute, Persiaran MARDI-UPM, 43400 Serdang, Selangor, Malaysia. E-mail addresses: [email protected] and [email protected] Cassava (Manihot esculenta Crantz, Euphorbiaceae) is an important staple food crop in tropical countries. The leaves and tubers are used for human consumption and livestock feed. The tubers are processed into starch (Winotai et al. 2010) and biofuel (Howeler 2007). In Africa, cassava is a particularly important crop because the tubers can be stored to provide staple food during severe droughts (Calatayud & Le Rü 2006). In the 1970s, an undescribed mealybug (Hemiptera: Pseudococcidae) of Neotropical origin was accidentally introduced into West Africa and devastated the cassava crop, causing up to 84% loss of yield (Nwanze 1982) and endangering the subsistence of about 200 million people (Herren & Neuenschwander 1991).
    [Show full text]