Monitoring Proteolytic Efficiency of Engineered Trypsin Via Chymotrypsinogen Activity Assa Y
Total Page:16
File Type:pdf, Size:1020Kb
MONITORING PROTEOLYTIC EFFICIENCY OF ENGINEERED TRYPSIN VIA CHYMOTRYPSINOGEN ACTIVITY ASSA Y A thesis submitted to the faculty of f t 5 San Francisco State University 3 ^ In partial fulfillment of Z^O 1 ? The requirements for C t t m The Degree , V f f Master of Science In Chemistry Concentration in Biochemistry By Rodolfo Villa San Francisco, California San Francisco State University July 2019 CERTIFICATION OF APPROVAL I certify that I have read MONITORING PROTEOLYTIC EFFICIENCY OF ENGINEERED TRYPSIN VIA CHYMOTRYPSINOGEN ACTIVITY ASSAY by Rodolfo Villa, and that in my opinion this work meets the criteria for approving a thesis submitted in partial fulfillment of the requirement for the degree Master of Science in Chemistry: Biochemistry at San Francisco State University. MONITORING PROTEOLYTIC EFFICIENCY OF ENGINEERED TRYPSIN VIA CHYMOTRYPSINOGENACTIVITYASSAY Rodolfo Villa San Francisco, California 2019 Protease therapeutics have been on the rise and have gained recognition for having diverse clinical applications. One major complication faced is the abundance of protease inhibitors that serve to regulate proteolytic activity resulting in a short therapeutic half-life. Previous research with the model serine protease trypsin showed that residues 39 and 60 play a key role in protease: inhibitor binding. Compared to wild type, four trypsin single variants (Y39A, Y39F, K60A, K60V) which were all catalytically similar using a synthetic substrate displayed altered.sensitivity towards bovine pancreatic trypsin inhibitor (BPTI) compared to wild type. In order to ascertain the viability of these engineered variants for inhibitor resistance in vivo, the interactions between naturally occurring macro molecular substrates were evaluated in this study. Variant Y39A displayed the highest kcat/KM (pM'1Min-1) at 3.34 ± 0.06, while K60V displayed at 0.58 ± 0.01. Variant Y39A activated the most chymotrypsinogen (Cg) with a total 30% activation 1.48 ± 0.05 jvM (out of 5 pM) while K60V had the lowest with 14% or 0.70 ± 0.04 pM. With 20 nM BPTI, the K60A variant had an activation drop of 49% while K60V dropped by 16%. At 30 nM, 50 nM and 100nM BPTI, the Y39F variant displayed greater activation than wild-type and the K60 variants in the presence of BPTI. At higher concentrations of BPTI, the K60 variants s have become more sensitive to inhibition, along with having lower kcat/KM and less total chymotrypsin activation. Overall K60 variants seemed to be less proteolytically efficient towards macromolecular substrates with less resistance towards inhibition, while Y39F displayed promising results in both studies. I certify that the Abstract is a correct presentation of the content of this ) Date ACKNOWLEDGEMENTS I would like to thank the support of the Student Enrichment Opportunities program that allowed me to take part in the Bridges to the Doctorate program which provided me with not only with financial assistance but allowed my development as a scientist. I extend my sincerest gratitude to my principal investigator of this work Dr. Teaster Baird, who took me into his lab and provided with mentorship support with my studes and research, for his patience, motivation, and immense knowledge that has been shared. I could not have asked for a better mentor and advisor. I would also like to thank the rest of my thesis committee: Dr. Ray Esquerra, and Dr. George Gassner, for their encouragement and support. Last, I would like to thank my parents Rodolfo Villa and Candelaria Villa for supporting me on every move and decision I have made throughout my life. TABLE OF CONTENTS List of Tables.......................................................................................................... viii List of Figures.......................................................................................................... ix List of Equations...................................................................................................... x 1. Introduction.......................................................................................................... 1 Protease Classification................................................................................ 2 Serine Proteases.......................................................................................... 4 Catalytic Mechanism....................................................................................7 Protease Inhibition....................................................................................... 8 Protease Therapeutics............................................................................... 12 Protease Engineering................................................................................. 15 2. Experimental design........................................................................................... 17 Kinetic Characterization Using Macromolecular Substrates.................... 17 Inhibition Characterization..........................................................................19 3. Methods..............................................................................................................20 Generation of Trypsin Variants...................................................................20 Expression of Wild Type Trypsin............................................................... 20 Fast Protein Liquid Chromatography (FPLC)........................................... 21 Zymogen Activation....................................................................................21 Separation of Trypsin from Trypsinogen................................................... 22 Active Site Titration.....................................................................................22 Kinetic Characterization............................................................................. 23 BPTI Inhibition Kinetics.............................................................................. 23 Data Analysis..............................................................................................24 4. Discussion..........................................................................................................25 YPDS-Zeocin plates/Bacterial growth....................................................... 25 Large Scale Expression............................................................................. 25 Fast Protein Liquid Chromatography (FPLC)........................................... 26 Zymogen Activation................................................................................... 27 Separation of Trypsin from Trypsinogen................................................... 28 Active Site Titration.................................................................... 29 Kinetic Characterization............................................................................31 BPTI Inhibition Kinetics...............................................................................35 5. Future Directions.................................................................................................43 6. Citations..............................................................................................................44 vii LIST OF TABLES Table Page 1. Protease Classifications....................................................................................... 3 2. Major Features of Serine Protease Inhibitors.....................................................9 3. FDA- Approved Protease Drugs.........................................................................14 4 Active Site Titration Wild-Type and Variants........................................................30 5. Kinetic Parameters Kcat/Km and total amount of active chymotrypsin 34 6. Ratio of active chymotrypsin in the presence of BPTI...................................... 37 LIST OF FIGURES Figures Page 1. Structure of Wild-Type Trypsin........................................................................... 5 2. Oxyanion H ole................................................... 6 3. Trypsin and BPTI Inhibitor complex.................................................................. 11 4. Z-Gly-Pro-Arg-p-nitroanilide (Z-GPR-pNA)..................................................... 17 5. Kinetic Characterization Scheme...................................................................... 18 6. SDS-PAGE Protein Activation....................................................... 28 7. PAB Column SDS-PAGE...................................................................................29 8. Fluorescence Standard Curve.......................................................................... 30 9. Kinetic Characterization Control.........................................................................32 10. Kinetic Characterization Results .............................................................. 34 11.. BPTI Inhibition Kinetics...................................................................................37 12. Wild-Type Trypsin S1 ’ Pocket, Kinetic, Inhibition Results.............................38 13. Y39A Trypsin S1 ’ Pocket,b) Kinetic, c) Inhibition Results.............................. 39 14. Y39F Trypsin S1 ’ Pocket,b) Kinetic, c) Inhibition Results...............................40 15. K60A Trypsin S1’ Pocket,b) Kinetic, c) Inhibition Results...............................41 16. K60V Trypsin S1’ Pocket,b) Kinetic, c) Inhibition Results...............................42 EQUATIONS Equations Figures 1. Exponential Burst Equation..............................................................................