Species Description Taxonomy

Total Page:16

File Type:pdf, Size:1020Kb

Species Description Taxonomy Midget Faded Rattlesnake Species Description Midget faded rattlesnakes are the smallest member of the western rattlesnake (Crotalus oreganus) species complex with a maximum total length only up to 75 cm, although most individuals measure 45- 55 cm. The mass of large adults can reach up to 300 grams, but are generally considerably less than this. There is sexual size dimorphism in both length (males average 44 cm snout-vent length and females Photo: Josh Parker 41 cm snout-vent length) and mass (males average 70 g and females 45 g). Midget faded rattlesnake coloration and patterning fades with age as the name suggests, but neonates and juveniles can have brighter coloration. Background coloration ranges from cream to yellowish brown to tan with dorsal blotches that are tan to light brown. Blotches tend to be shaped like a rectangle or oval, but can be highly irregular or fused and individuals can be identified by their unique pattern of blotch shapes. Facial markings include a small bar that extends from the eye to the corner of the mouth. Finally, as a rattlesnake, its tail ends in a series of keratinized segments that form the rattle. Midget faded rattlesnakes have a venom composition that is different from all other western rattlesnake subspecies and is one of the most lethal rattlesnake venoms known. This is due to the presence of a neurotoxic element known as concolor toxin. Interestingly, venom toxicity does not change between juveniles and adults, which is different than other western rattlesnake subspecies, which tend to shift to lower toxicity in adults. Taxonomy The midget faded rattlesnake was first formally described by Angus Woodbury in 1929 from a specimen in Utah as Crotalus concolor. The species name “concolor” means uniform color and this represents the tendency for older individuals to attain a faded, uniform color. In the 1930s the midget faded rattlesnake was considered a subspecies of the western rattlesnake and named Crotalus viridis concolor. This name stood until 2001 when genetic evidence suggested at least two species within the western rattlesnake complex and the scientific name was changed to Crotalus oreganus concolor. This is the name that is currently listed in the standard scientific names publication produced by the Society for the Study of Amphibian and Reptiles, although Douglas et al. (2002) proposed midget faded rattlesnakes to full species status as Crotalus concolor. The proposal for full species status is based on the fact there is no evidence for any current gene flow between midget faded rattlesnakes and any other western rattlesnake subspecies. Distribution Midget faded rattlesnakes are only found in southwest Wyoming, western Colorado and eastern Utah and their distribution is largely centered on the Green River formation of the Colorado Plateau in these three states. Their range is likely largely limited by geology, as they require exposed rocky outcrops (characteristic of the Green River formation) for denning habitat. Within the overall extent of their range, populations are not continuous, but rather patchy dependent on suitable denning and foraging habitat. However, little is known of their specific distribution within their potential range and we currently do not know whether their range is stable, declining or expanding. Habitat Midget faded rattlesnakes can be considered habitat specialists, especially in regards to denning habitat. They require rocky outcrops with southern exposure for denning habitat. These rocky outcrops not only serve as overwintering areas, but are also used for shedding aggregations and for parturition. Snakes use the same specific rocks every year for shedding and parturition (generally, the same rock is not used for both shedding and parturition). Furthermore, juveniles and post-partum females remain at the den site year-round. Adult males and adult females in reproductive condition do migrate from the denning areas during the summer active season and move to foraging/mating core areas. Less is known regarding the foraging areas as compared to den sites, but snakes tracked by radio telemetry have moved to sites characterized by intermediate densities of shrub vegetation, including sagebrush, as well as riparian areas. Canyon draws are often used as movement corridors between den and foraging areas. In most cases, migrating individuals return to the same den site each year. Movement and Home Range Movement patterns of midget faded rattlesnakes vary by age and reproductive status. Juveniles and gravid females are generally non-migratory and stay nearby the den site. For example, on average radio-tracked gravid females only moved a maximum of 115 meters from the den sites and had a home range of less than 5 hectares. Adult males and non-gravid adult females have much larger movement distances and home ranges and feature disjunct summer and winter ranges. The average distance moved from the denning sites is 779 meters for males and 681 meters for females. These distances are smaller than most known movement distances for other northern temperate rattlesnakes, and likely are due to the small size of this snake. However, adult midget faded rattlesnakes have home range areas that are comparable or larger than most other rattlesnakes. Total home ranges ranged from 200-300 hectares and core areas averaged 57 hectares for males and 28 hectares for females. This suggests that although midget faded rattlesnakes do not typically move long linear distances, they may move more actively during the summer activity season. Movement patterns are not uniform among individuals. Three general patterns have been observed: (1) direct straight-line movement to and from the den, (2) straight-line movement to a core area in which multi- directional movements occur and (3) multi-directional movements without an initial straight-line movement. However, individuals tend to move to the same habitat features each year. Midget faded rattlesnakes are the only rattlesnakes known to have at least some individuals remain at the denning area year-round. Thus, at least for juvenile and gravid snakes, the level of population density and food availability appear to be sufficient at the den sites. Migrating snakes are likely involved in mate searching during much of the active season as well as foraging for small mammal prey. Observations of migrating individuals suggest that individuals participate in both foraging and mate searching activities throughout the active season. Movements away from the den typically take place between June and September. Diet Midget faded rattlesnakes are limited in their dietary breadth due to their small size. Previous research has demonstrated a distinct ontogenetic shift in dietary preferences. Juveniles feed almost exclusively on lizards with adults shifting to a diet of 80% small mammals and 20% lizards. Adults also will occasionally feed on small birds. Known prey species include sagebrush lizards (Sceloporus graciosus), plateau fence lizards (Sceloporus tristichus), side-blotched lizards (Uta stansburiana) tiger whiptails (Aspidoscelis tigris), plateau striped whiptails (Aspidoscelis velox), deer mouse (Peromyscus maniculatus), bushy-tailed woodrat (Neotoma cinerea), western harvest mouse (Reithrodontomys megalotis) and the least chipmunk (Tamias minimus). Among adults, deer mice appear to be the most common food item. Reproduction Midget faded rattlesnakes are a relatively long lived species with low reproductive output. They are ovoviviparous, which means that eggs are retained in the female and young are born live. Age to first reproduction is probably around 5 years (at least for females), although there are some instances of younger gravid females. Average longevity is unknown, although individuals can live at least 15-20 years. On average, 25% of adult females are gravid and females probably reproduce once every three years. Sex ratio appears biased toward females, ranging from 1.25-2 females for every male. Mating occurs during July and August after migration from the denning area. The following year gravid females give birth to four to five young in August. Neonates measure 19 cm and average mass is 8 grams. The clutch size for midget faded rattlesnakes is lower than most other rattlesnake species and is correlated with snout-vent length in females. Therefore, small body size likely limits the reproductive potential of midget faded rattlesnakes and probably increases their susceptibility to population disturbance. Literature Cited: Ashton, K.G. and T.M. Patton. 2001. Movement and reproductive biology of female midget faded rattlesnakes, Crotalus viridis concolor, in Wyoming. Copeia 2001: 229-234. Douglas, M.E., M.R. Douglas, G.W.Schuett, L.W. Porras, and A.T. Holycross. 2002. Phylogeography of the western rattlesnake (Crotalus viridis) complex, with emphasis on the Colorado Plateau. Pages 11-50 in G.W. Schuett, M. Hoggren, M.E. Douglas, and H.W. Greene (editors). Biology of the Vipers.Eagle Mountain Publishing, Company. Mackessy, S.P., K. Williams, and K.G. Ashton. 2003. Ontogenetic variation in venom composition and diet of Crotalus oreganus concolor: A case of venom paedomorphosis? Copeia 2003: 769-782. Parker, J.M. 2003. The ecology and behavior of the midget faded rattlesnake in Wyoming. PhD Dissertation, University of Wyoming. Laramie, Wyoming, USA. Parker, J.M., and S.H. Anderson. 2007. Ecology and behavior of the midget faded rattlesnake (Crotalus oreganus concolor) in Wyoming. Journal of Herpetology 41: 41-51. Woodbury, A.M. 1929. A new rattlesnake from Utah. Bulletin of the University of Utah 20:1. .
Recommended publications
  • Crotalus Oreganus Concolor: Envenomation Case with Venom Analysis and a Diagnostic Conundrum of Myoneurologic Symptoms
    WILDERNESS & ENVIRONMENTAL MEDICINE XXXX; XXX(XXX): 1e6 CASE REPORT Crotalus oreganus concolor: Envenomation Case with Venom Analysis and a Diagnostic Conundrum of Myoneurologic Symptoms Daniel E. Keyler, PharmD 1; Vinay Saini, MD 2;MarkO’Shea, Prof. 3;JeffGee,EMT4; Cara F. Smith, MS 5; Stephen P. Mackessy, PhD 5 1Department of Experimental & Clinical Pharmacology, University of Minnesota, Minneapolis, MN; 2Mimbres Memorial Hospital, Deming, New Mexico; 3Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK; 4Portal Rescue, Portal, AZ; 5School of Biological Sciences, University of Northern Colorado, Greeley, CO A case of midget-faded rattlesnake (Crotalus oreganus concolor) envenomation of an adult male profes- sional herpetologist occurred in a rural setting and resulted in an array of venom induced myoneurologic symptoms. The patient experienced blurry vision, total body paresthesia, dyspnea, chest tightness, and waves of spastic muscle movements of the hands and feet that resembled tetany. It was not apparent whether these symptoms were potentially venom induced or were related to stress-induced physiologic responses. Local envenomation effects were minimal, and coagulation parameters remained within normal limits. Anti- venom was not administered per patient concerns related to a history of acute allergic reactions to antivenom. Venom was collected from the Crotalus oreganus concolor responsible for the bite, and analysis revealed the presence of high levels of myotoxins (SR calcium pump antagonists) and
    [Show full text]
  • Crotalus Oreganus Concolor: Envenomation Case with Venom Analysis, and a Diagnostic Conundrum of Myo-Neurological Symptoms
    1 Crotalus oreganus concolor: Envenomation Case with Venom Analysis, and a Diagnostic Conundrum of Myo-neurological Symptoms Short Title: Crotalus oreganus concolor Envenomation Daniel E. Keyler, PharmD; Vinay Saini, MD; Mark O’Shea, DSc; Jeff Gee, EMT; Cara F Smith, MS; Stephen P Mackessy, PhD From the Department of Experimental & Clinical Pharmacology, University of Minnesota, Minneapolis, MN (Dr Keyler); Mimbres Memorial Hospital, Deming, New Mexico (Dr Saini); Faculty of Science and Engineering, University of Wolverhampton, UK (Professor O’Shea); Portal Rescue, Portal, AZ (Mr. Gee); School of Biological Sciences, University of Northern Colorado, Greeley, CO (Ms Smith and Dr Mackessy). Corresponding Author: Daniel E. Keyler Professor Department of Experimental & Clinical Pharmacology 7-115 Weaver-Densford Hall 308 Harvard St. S.E. University of Minnesota Minneapolis, Minnesota, 55455 USA Phone (612) 840-0425 Email: [email protected] Word Count Abstract - 161 Manuscript + References = 2312 + 723; Total 3035 Reference Count - 33 Figure Count – 3 Table Count - 2 Meeting Presentation Platform presentation by Daniel E Keyler at the Venom Week VI Meeting, March 14, 2018; Texas A&M University, Kingsville, Texas, USA 2 Abstract A case of Midget-faded Rattlesnake (Crotalus oreganus concolor) envenoming to an adult male professional herpetologist occurred in a rural setting and resulted in what appeared as an array of venom induced myo-neurological symptoms. The patient experienced blurry vision, total body paresthesia, dyspnea, chest tightness, and waves of spastic muscle movements of the hands and feet that appeared like tetany. These symptoms were confounding as to whether they were potentially venom induced or were related to stress-induced physiological responses.
    [Show full text]
  • PREDATION of the ENDANGERED BLUNT-NOSED LEOPARD LIZARD (GAMBELIA SILA) in the SAN JOAQUIN DESERT of CALIFORNIA Author: David J
    PREDATION OF THE ENDANGERED BLUNT-NOSED LEOPARD LIZARD (GAMBELIA SILA) IN THE SAN JOAQUIN DESERT OF CALIFORNIA Author: David J. Germano Source: The Southwestern Naturalist, 63(4) : 276-280 Published By: Southwestern Association of Naturalists URL: https://doi.org/10.1894/0038-4909-63-4-276 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/The-Southwestern-Naturalist on 22 Oct 2019 Terms of Use: https://bioone.org/terms-of-use Access provided by Southwestern Association of Naturalists THE SOUTHWESTERN NATURALIST 63(4): 276–280 PREDATION OF THE ENDANGERED BLUNT-NOSED LEOPARD LIZARD (GAMBELIA SILA) IN THE SAN JOAQUIN DESERT OF CALIFORNIA DAVID J. GERMANO Department of Biology, California State University, Bakersfield, CA 93311-1099 Correspondent: [email protected] ABSTRACT—Predation can significantly affect prey populations, which could be significant for recovering species threatened with extinction.
    [Show full text]
  • (Crotalus Oreganus Helleri) Hunting Behavior Through Community Science
    diversity Article Quantifying Southern Pacific Rattlesnake (Crotalus oreganus helleri) Hunting Behavior through Community Science Emily R. Urquidi * and Breanna J. Putman Department of Biology, California State University San Bernardino, 5500 University Parkway, San Bernardino, CA 92407, USA; [email protected] * Correspondence: [email protected] Abstract: It is increasingly important to study animal behaviors as these are the first responses organisms mount against environmental changes. Rattlesnakes, in particular, are threatened by habitat loss and human activity, and require costly tracking by researchers to quantify the behaviors of wild individuals. Here, we show how photo-vouchered observations submitted by community members can be used to study cryptic predators like rattlesnakes. We utilized two platforms, iNaturalist and HerpMapper, to study the hunting behaviors of wild Southern Pacific Rattlesnakes. From 220 observation photos, we quantified the direction of the hunting coil (i.e., “handedness”), microhabitat use, timing of observations, and age of the snake. With these data, we looked at whether snakes exhibited an ontogenetic shift in behaviors. We found no age differences in coil direction. However, there was a difference in the microhabitats used by juveniles and adults while hunting. We also found that juveniles were most commonly observed during the spring, while adults were more consistently observed throughout the year. Overall, our study shows the potential of using Citation: Urquidi, E.R.; Putman, B.J. community science to study the behaviors of cryptic predators. Quantifying Southern Pacific Rattlesnake (Crotalus oreganus helleri) Keywords: citizen science; conservation; ontogeny; behavioral lateralization; snakes Hunting Behavior through Community Science. Diversity 2021, 13, 349. https://doi.org/10.3390/ d13080349 1.
    [Show full text]
  • Venomous Reptiles of Nevada
    Venomous Reptiles of Nevada Figure 1 The buzz from a rattlesnake can signal a heart stopping adventure to even the most experienced outdoor enthusiast. Figure 2 Authors M. L. Robinson, Area Specialist, Water/Environmental Horticulture, University of Nevada Cooperative Extension Polly M. Conrad, Wildlife Diversity Biologist—Reptiles, Nevada Department of Wildlife Maria M. Ryan, Area Specialist, Natural Resources, University of Nevada Cooperative Extension Updated from G. Mitchell, M.L. Robinson, D.B. Hardenbrook and E.L. Sellars. 1998. What’s the Buzz About Nevada’s Venomous Reptiles? University of Nevada Cooperative Extension—Nevada Department of Wildlife Partnership Publication. FS-98-35. SP 07-07 (Replaces FS-98-35) NEVADA’S REPTILES Approximately 52 species of snakes and lizards share the Nevada landscape with us. Of these, only 12 are considered venomous. Only 6 can be dangerous to people and pets. Encountering them is uncommon because of their body camouflage and secretive nature, which are their first defenses in evading predators. Consider yourself fortunate if you do see one! As with all wildlife, treat venomous reptiles with respect. Reptiles are ectothermic, meaning their body temperature increases or decreases in response to the surrounding environment. They are most active in the spring, summer and early fall when it’s comfortable, short sleeve weather for us. Reptiles usually hibernate, or brumate, in winter in response to colder temperatures. During high summer temperatures in the Mojave Desert, reptiles may spend time underground in order to maintain vital body temperatures. In most cases*, collecting Nevada’s native reptiles is not allowed without the appropriate permit, which is issued by the Nevada Department of Wildlife.
    [Show full text]
  • Effects of Disturbance on the Northern Pacific Rattlesnake (Crotalus Oreganus Oreganus) in British Columbia
    EFFECTS OF DISTURBANCE ON THE NORTHERN PACIFIC RATTLESNAKE (CROTALUS OREGANUS OREGANUS) IN BRITISH COLUMBIA by EMILY V. LOMAS BSc., University of British Columbia, 2009 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science in Environmental Science Thompson Rivers University Kamloops, British Columbia, Canada April 2013 Thesis examining committee: Karl Larsen (PhD), Professor and Thesis Supervisor, Natural Resource Sciences, Thompson Rivers University Lauchlan Fraser (PhD), Professor, Natural Resource Sciences, Thompson Rivers University Robert Hood (PhD), Associate Professor, Tourism Management Department, Thompson Rivers University Christine Bishop (PhD), Research Scientist, Environment Canada Leigh Anne Isaac (PhD) (External Examiner), Wildlife Biologist, VAST Resource Solutions Inc. ii ACKNOWLEDGEMENTS I would like to sincerely thank my supervisor, Dr. Karl Larsen, for presenting me with the opportunity to work with, arguably, one of Canada’s most unique and extraordinary animals. His patience, supportive work environment, and first-rate stories have been greatly appreciated. Special thanks to Dr. Christine Bishop, without whom this project would not have been possible. Dr. Bishop’s dedication to the snake research program and support of my research has been invaluable. My experience working with snakes has been fascinating, challenging, and one I will never forget. Thanks also to my committee members Dr. Lauchlan Fraser and Dr. Robert Hood for their time, insight, and feedback. My time at Nk’Mip Desert Cultural Centre has been one full of new friends and fond memories. A huge thank you to Charlotte Stringam, who was very supportive and always made me feel more than welcome. Margaret Holm was instrumental in securing funds for the project and helping me with the small details with always speedy responses.
    [Show full text]
  • Crotalus Oreganus)
    Central Washington University ScholarWorks@CWU All Master's Theses Master's Theses Spring 2018 Coloration, Camouflage, and Sexual Dichromatism in the Northern Pacific Rattlesnake (Crotalus oreganus) Jefferson Brooks Central Washington University, [email protected] Follow this and additional works at: https://digitalcommons.cwu.edu/etd Part of the Biology Commons, and the Laboratory and Basic Science Research Commons Recommended Citation Brooks, Jefferson, "Coloration, Camouflage, and Sexual Dichromatism in the Northern Pacific Rattlesnake (Crotalus oreganus)" (2018). All Master's Theses. 957. https://digitalcommons.cwu.edu/etd/957 This Thesis is brought to you for free and open access by the Master's Theses at ScholarWorks@CWU. It has been accepted for inclusion in All Master's Theses by an authorized administrator of ScholarWorks@CWU. For more information, please contact [email protected]. COLORATION, CAMOUFLAGE, AND SEXUAL DICHROMATISM IN THE NORTHERN PACIFIC RATTLESNAKE (Crotalus oreganus) __________________________________ A Thesis Presented to The Graduate Faculty Central Washington University ___________________________________ In Partial Fulfillment of the Requirements for the Degree Master of Science Biology ___________________________________ by Jefferson Davis Brooks June 2018 CENTRAL WASHINGTON UNIVERSITY Graduate Studies We hereby approve the thesis of Jefferson Davis Brooks Candidate for the degree of Master of Science APPROVED FOR THE GRADUATE FACULTY ______________ _________________________________________ Dr. Daniel Beck,
    [Show full text]
  • C O Concolor Keyler Et Al. DEK 11-12-18 Submit
    Crotalus oreganus concolor (Viperidae; Crotalinae): a Case of Envenomation with Venom Analysis from the Envenomating Snake: a Diagnostic Conundrum of Myo-neurological Symptoms Daniel E Keyler1, Vinay Saini2, Mark O’Shea3, Jeff Gee4, Cara F Smith5, Stephen P Mackessy5 1Dept. Experimental & Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455 USA; 2 Mimbres Memorial Hospital, Deming, New Mexico 88030 USA; 3 Faculty of Science and Engineering, University of Wolverhampton, UK; 4Portal Rescue, Portal, AZ 85632 USA; 5School of Biological Sciences, University of Northern Colorado, Greeley, CO 80639- 0017 USA Corresponding Author Daniel E. Keyler Professor Department of Experimental & Clinical Pharmacology 7-115 Weaver-Densford Hall 308 Harvard St. S.E, University of Minnesota Minneapolis, Minnesota, USA 55455 Email: [email protected] Highlights • Midget-faded rattlesnake envenomation is an uncommon occurrence. • Myo-neurological symptoms may result from Midget-faded rattlesnake envenomation. • Stress-induced physiological responses may result following a rattlesnake bite. • Venom-induced and stress-induced effects may cause a diagnositic conundrum. • Concolor presynaptic neurotoxin can cause myotoxic effects. Abstract Crotalus oreganus concolor is a small species of North American rattlesnake, indigenous to a confined middle region of the western United States. Reports of envenomation to humans are quite rare, and studies regarding the toxicity and pharmacological actions of C. o. concolor venom have shown the presence of a presynaptic PLA2-based neurotoxin, low molecular weight myotoxins with myotoxic effects, and very low metalloproteinase (SVMP) activity. A case of envenomation that resulted in what appeared as potentially venom-induced myo-neurological symptoms is described. The patient sustained a single fang puncture from the bite of a captive C.
    [Show full text]
  • Crotalus Oreganus)
    THE BEHAVIORAL AND PHYSIOLOGICAL EFFECTS OF LONG-DISTANCE TRANSLOCATION ON WESTERN RATTLESNAKES (CROTALUS OREGANUS) A Thesis presented to the Faculty of California Polytechnic State University, San Luis Obispo In Partial Fulfillment of the Requirements for the Degree Master of Science in Biological Sciences by Kory Hayden Heiken December 2013 © 2013 Kory Hayden Heiken ALL RIGHTS RESERVED ii COMMITTEE MEMBERSHIP TITLE: The behavioral and physiological effects of long- distance translocation on Western Rattlesnakes (Crotalus oreganus) AUTHOR: Kory Hayden Heiken DATE SUBMITTED: December 2013 COMMITTEE CHAIR: Emily N. Taylor, PhD Associate Professor of Biological Sciences COMMITTEE MEMBER: Sean C. Lema, PhD Assistant Professor of Biological Sciences COMMITTEE MEMBER: John D. Perrine, PhD Associate Professor of Biological Sciences iii ABSTRACT The behavioral and physiological effects of long-distance translocation on Western Rattlesnakes (Crotalus oreganus) Kory Hayden Heiken Long-distance translocation (LDT), the relocation of an animal outside of its home range, is a popular strategy for mitigating conflict between humans and venomous snakes. While LDT has been demonstrated to prevent a snake’s return to the location of capture, it may result in increased mortality, magnitude and frequency of movements, and activity range sizes. Thus, it has generally been discouraged. However, the effects of LDT on stress physiology and thermoregulation have gone largely unstudied in reptiles. To elucidate these effects, we conducted an experimental LDT on Western Rattlesnakes (Crotalus oreganus) on Vandenberg Air Force base in California. Fourteen snakes were monitored, beginning in mid July 2012 and ending in early September. Each was implanted with a radio transmitter and iButton temperature data logger within the coelomic cavity.
    [Show full text]
  • Western Rattlesnake 5 Web Version.Indd
    Utah Division of Wildlife Resources Wildlife Notebook Series No. 22 Western Ratt lesnake (Crotalus oreganus) Few sounds evoke panic as quickly as the buzz of a rattle- America with the southern end of their range dipping into snake. As far as humans go, the sight and sound of a rattle- South America. More than 20 species and numerous sub- snake ranks pretty high on the avoidance scale. We seem to species of rattlesnakes have been recognized in the United be frightened and mesmerized at the same time. The parade States. of TV programs about poisonous snakes and snake handlers attests to that. The most common rattlesnake in Utah is the western rattle- snake (Crotalus oreganus), with two of its fi ve subspecies Mankind’s love-hate relationship and fascination with being found in Utah: the Great Basin Rattlesnake (C. o. snakes dates back to our earliest recorded history. We see lutosus) and the midget faded rattlesnake (C. o. concolor). evidence in Egyptian hieroglyphics, Mayan sculptures, and Herpetologists formerly classifi ed the western rattlesnake as ancient Indian rock art. Snakes have long been associated Crotalus viridis, but this classifi cation is now reserved for with the supernatural as well as shaman and medicine men. the prairie rattlesnake. Most people have little affection for snakes, especially Utah is home to additional rattlesnake species and subspe- poisonous ones. It’s diffi cult to cultivate positive feel- cies. These include the Mojave (Crotalus scutulatus) and ings toward a scaly, legless creature, capable of unleashing speckled (Crotalus mitchellii) rattlesnakes and the sidewind- excruciating pain or death.
    [Show full text]
  • Life History Account for Western Rattlesnake
    California Wildlife Habitat Relationships System California Department of Fish and Wildlife California Interagency Wildlife Task Group WESTERN RATTLESNAKE Crotalus oreganus Family: VIPERIDAE Order: SQUAMATA Class: REPTILIA R076 Written by: S. Morey Reviewed by: T. Papenfuss Edited by: R. Duke Updated by: CWHR Staff, November 2014 DISTRIBUTION, ABUNDANCE, AND SEASONALITY This common snake ranges widely in California including Santa Catalina Island. It is absent only from true desert regions. Found in virtually all habitats, except desert. Elevation sea level to 3350 m (11,000 ft). SPECIFIC HABITAT REQUIREMENTS Feeding: Western rattlesnakes forage in or near brushy areas, rock outcrops, mammal burrows, around and under surface objects, and in the open. Adult rattlesnakes take primarily rodents, especially ground squirrels. A variety of rodents, rabbits, birds, and even carrion are also taken (Cunningham 1959, Stebbins 1972 Diller 1981, Lillywhite 1982). Juvenile snakes take mostiy lizards, especially western fence lizards and side-blotched lizards. Young rodents are also taken. Prey is subdued largely by poisonous venom produced in modified salivary glands, and delivered by long, hollow fangs. Cover: When inactive, western rattlesnakes seek cover in crevices in rock outcrops, under surface objects, beneath dense vegetation, and in mammal burrows. At high elevations rattlesnakes hibernate for up to several months, usually in crevices in rocky accumulations. Reproduction: Young are born alive without a nest often in a secluded site. Water: No information on water requirements. The western rattlesnake occurs in moister habitats than other rattlesnakes found in California. Pattern: Found in all but desert habitat types. SPECIES LIFE HISTORY Activity Patterns: Mostly nocturnal and crepuscular, rattlesnakes may be active whenever temperatures are favorable.
    [Show full text]
  • Western Rattlesnake (Crotalus Oreganus) Is the Most Venomous Snake Found in British Columbia
    COSEWIC Assessment and Status Report on the Western Rattlesnake Crotalus oreganus in Canada THREATENED 2004 COSEWIC COSEPAC COMMITTEE ON THE STATUS OF COMITÉ SUR LA SITUATION ENDANGERED WILDLIFE DES ESPÈCES EN PÉRIL IN CANADA AU CANADA COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: Please note: Persons wishing to cite data in the report should refer to the report (and cite the author(s)); persons wishing to cite the COSEWIC status will refer to the assessment (and cite COSEWIC). A production note will be provided if additional information on the status report history is required. COSEWIC 2004. COSEWIC assessment and status report on the western rattlesnake Crotalus oreganus in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 26 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Didiuk, A.B., J.M. Macartney and L.A. Gregory. 2004. COSEWIC status report on the western rattlesnake Crotalus oreganus in Canada, in COSEWIC assessment and status report on the western rattlesnake Crotalus oreganus in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 1-26 pp. Production note: 1. The report was overseen and edited by Ron Brooks, COSEWIC Co-chair (Reptiles) Amphibians and Reptiles Species Specialist Subcommittee. 2. In Crother et al. (2000), which COSEWIC has used as the basis for all reptile nomenclature, this snake is called the Northern Pacific rattlesnake, Crotalus viridis oreganus. A second subspecies of C. viridis in Canada was C. viridis viridis, the prairie rattlesnake.
    [Show full text]