Introduction to NMR Part 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Unit 1 Old Quantum Theory
UNIT 1 OLD QUANTUM THEORY Structure Introduction Objectives li;,:overy of Sub-atomic Particles Earlier Atom Models Light as clectromagnetic Wave Failures of Classical Physics Black Body Radiation '1 Heat Capacity Variation Photoelectric Effect Atomic Spectra Planck's Quantum Theory, Black Body ~diation. and Heat Capacity Variation Einstein's Theory of Photoelectric Effect Bohr Atom Model Calculation of Radius of Orbits Energy of an Electron in an Orbit Atomic Spectra and Bohr's Theory Critical Analysis of Bohr's Theory Refinements in the Atomic Spectra The61-y Summary Terminal Questions Answers 1.1 INTRODUCTION The ideas of classical mechanics developed by Galileo, Kepler and Newton, when applied to atomic and molecular systems were found to be inadequate. Need was felt for a theory to describe, correlate and predict the behaviour of the sub-atomic particles. The quantum theory, proposed by Max Planck and applied by Einstein and Bohr to explain different aspects of behaviour of matter, is an important milestone in the formulation of the modern concept of atom. In this unit, we will study how black body radiation, heat capacity variation, photoelectric effect and atomic spectra of hydrogen can be explained on the basis of theories proposed by Max Planck, Einstein and Bohr. They based their theories on the postulate that all interactions between matter and radiation occur in terms of definite packets of energy, known as quanta. Their ideas, when extended further, led to the evolution of wave mechanics, which shows the dual nature of matter -
Magnetism, Magnetic Properties, Magnetochemistry
Magnetism, Magnetic Properties, Magnetochemistry 1 Magnetism All matter is electronic Positive/negative charges - bound by Coulombic forces Result of electric field E between charges, electric dipole Electric and magnetic fields = the electromagnetic interaction (Oersted, Maxwell) Electric field = electric +/ charges, electric dipole Magnetic field ??No source?? No magnetic charges, N-S No magnetic monopole Magnetic field = motion of electric charges (electric current, atomic motions) Magnetic dipole – magnetic moment = i A [A m2] 2 Electromagnetic Fields 3 Magnetism Magnetic field = motion of electric charges • Macro - electric current • Micro - spin + orbital momentum Ampère 1822 Poisson model Magnetic dipole – magnetic (dipole) moment [A m2] i A 4 Ampere model Magnetism Microscopic explanation of source of magnetism = Fundamental quantum magnets Unpaired electrons = spins (Bohr 1913) Atomic building blocks (protons, neutrons and electrons = fermions) possess an intrinsic magnetic moment Relativistic quantum theory (P. Dirac 1928) SPIN (quantum property ~ rotation of charged particles) Spin (½ for all fermions) gives rise to a magnetic moment 5 Atomic Motions of Electric Charges The origins for the magnetic moment of a free atom Motions of Electric Charges: 1) The spins of the electrons S. Unpaired spins give a paramagnetic contribution. Paired spins give a diamagnetic contribution. 2) The orbital angular momentum L of the electrons about the nucleus, degenerate orbitals, paramagnetic contribution. The change in the orbital moment -
Quantum Theory of the Hydrogen Atom
Quantum Theory of the Hydrogen Atom Chemistry 35 Fall 2000 Balmer and the Hydrogen Spectrum n 1885: Johann Balmer, a Swiss schoolteacher, empirically deduced a formula which predicted the wavelengths of emission for Hydrogen: l (in Å) = 3645.6 x n2 for n = 3, 4, 5, 6 n2 -4 •Predicts the wavelengths of the 4 visible emission lines from Hydrogen (which are called the Balmer Series) •Implies that there is some underlying order in the atom that results in this deceptively simple equation. 2 1 The Bohr Atom n 1913: Niels Bohr uses quantum theory to explain the origin of the line spectrum of hydrogen 1. The electron in a hydrogen atom can exist only in discrete orbits 2. The orbits are circular paths about the nucleus at varying radii 3. Each orbit corresponds to a particular energy 4. Orbit energies increase with increasing radii 5. The lowest energy orbit is called the ground state 6. After absorbing energy, the e- jumps to a higher energy orbit (an excited state) 7. When the e- drops down to a lower energy orbit, the energy lost can be given off as a quantum of light 8. The energy of the photon emitted is equal to the difference in energies of the two orbits involved 3 Mohr Bohr n Mathematically, Bohr equated the two forces acting on the orbiting electron: coulombic attraction = centrifugal accelleration 2 2 2 -(Z/4peo)(e /r ) = m(v /r) n Rearranging and making the wild assumption: mvr = n(h/2p) n e- angular momentum can only have certain quantified values in whole multiples of h/2p 4 2 Hydrogen Energy Levels n Based on this model, Bohr arrived at a simple equation to calculate the electron energy levels in hydrogen: 2 En = -RH(1/n ) for n = 1, 2, 3, 4, . -
Vibrational Quantum Number
Fundamentals in Biophotonics Quantum nature of atoms, molecules – matter Aleksandra Radenovic [email protected] EPFL – Ecole Polytechnique Federale de Lausanne Bioengineering Institute IBI 26. 03. 2018. Quantum numbers •The four quantum numbers-are discrete sets of integers or half- integers. –n: Principal quantum number-The first describes the electron shell, or energy level, of an atom –ℓ : Orbital angular momentum quantum number-as the angular quantum number or orbital quantum number) describes the subshell, and gives the magnitude of the orbital angular momentum through the relation Ll2 ( 1) –mℓ:Magnetic (azimuthal) quantum number (refers, to the direction of the angular momentum vector. The magnetic quantum number m does not affect the electron's energy, but it does affect the probability cloud)- magnetic quantum number determines the energy shift of an atomic orbital due to an external magnetic field-Zeeman effect -s spin- intrinsic angular momentum Spin "up" and "down" allows two electrons for each set of spatial quantum numbers. The restrictions for the quantum numbers: – n = 1, 2, 3, 4, . – ℓ = 0, 1, 2, 3, . , n − 1 – mℓ = − ℓ, − ℓ + 1, . , 0, 1, . , ℓ − 1, ℓ – –Equivalently: n > 0 The energy levels are: ℓ < n |m | ≤ ℓ ℓ E E 0 n n2 Stern-Gerlach experiment If the particles were classical spinning objects, one would expect the distribution of their spin angular momentum vectors to be random and continuous. Each particle would be deflected by a different amount, producing some density distribution on the detector screen. Instead, the particles passing through the Stern–Gerlach apparatus are deflected either up or down by a specific amount. -
Quantum Spectropolarimetry and the Sun's Hidden
QUANTUM SPECTROPOLARIMETRY AND THE SUN’S HIDDEN MAGNETISM Javier Trujillo Bueno∗ Instituto de Astrof´ısica de Canarias; 38205 La Laguna; Tenerife; Spain ABSTRACT The dynamic jets that we call spicules. • The magnetic fields that confine the plasma of solar • Solar physicists can now proclaim with confidence that prominences. with the Zeeman effect and the available telescopes we The magnetism of the solar transition region and can see only 1% of the complex magnetism of the Sun. • corona. This is indeed∼regrettable because many of the key prob- lems of solar and stellar physics, such as the magnetic coupling to the outer atmosphere and the coronal heat- Unfortunately, our empirical knowledge of the Sun’s hid- ing, will only be solved after deciphering how signifi- den magnetism is still very primitive, especially concern- cant is the small-scale magnetic activity of the remain- ing the outer solar atmosphere (chromosphere, transition ing 99%. The first part of this paper1 presents a gentle ∼ region and corona). This is very regrettable because many introduction to Quantum Spectropolarimetry, emphasiz- of the physical challenges of solar and stellar physics ing the importance of developing reliable diagnostic tools arise precisely from magnetic processes taking place in that take proper account of the Paschen-Back effect, scat- such outer regions. tering polarization and the Hanle effect. The second part of the article highlights how the application of quantum One option to improve the situation is to work hard to spectropolarimetry to solar physics has the potential to achieve a powerful (European?) ground-based solar fa- revolutionize our empirical understanding of the Sun’s cility optimized for high-resolution spectropolarimetric hidden magnetism. -
The Quantum Mechanical Model of the Atom
The Quantum Mechanical Model of the Atom Quantum Numbers In order to describe the probable location of electrons, they are assigned four numbers called quantum numbers. The quantum numbers of an electron are kind of like the electron’s “address”. No two electrons can be described by the exact same four quantum numbers. This is called The Pauli Exclusion Principle. • Principle quantum number: The principle quantum number describes which orbit the electron is in and therefore how much energy the electron has. - it is symbolized by the letter n. - positive whole numbers are assigned (not including 0): n=1, n=2, n=3 , etc - the higher the number, the further the orbit from the nucleus - the higher the number, the more energy the electron has (this is sort of like Bohr’s energy levels) - the orbits (energy levels) are also called shells • Angular momentum (azimuthal) quantum number: The azimuthal quantum number describes the sublevels (subshells) that occur in each of the levels (shells) described above. - it is symbolized by the letter l - positive whole number values including 0 are assigned: l = 0, l = 1, l = 2, etc. - each number represents the shape of a subshell: l = 0, represents an s subshell l = 1, represents a p subshell l = 2, represents a d subshell l = 3, represents an f subshell - the higher the number, the more complex the shape of the subshell. The picture below shows the shape of the s and p subshells: (notice the electron clouds) • Magnetic quantum number: All of the subshells described above (except s) have more than one orientation. -
4 Nuclear Magnetic Resonance
Chapter 4, page 1 4 Nuclear Magnetic Resonance Pieter Zeeman observed in 1896 the splitting of optical spectral lines in the field of an electromagnet. Since then, the splitting of energy levels proportional to an external magnetic field has been called the "Zeeman effect". The "Zeeman resonance effect" causes magnetic resonances which are classified under radio frequency spectroscopy (rf spectroscopy). In these resonances, the transitions between two branches of a single energy level split in an external magnetic field are measured in the megahertz and gigahertz range. In 1944, Jevgeni Konstantinovitch Savoiski discovered electron paramagnetic resonance. Shortly thereafter in 1945, nuclear magnetic resonance was demonstrated almost simultaneously in Boston by Edward Mills Purcell and in Stanford by Felix Bloch. Nuclear magnetic resonance was sometimes called nuclear induction or paramagnetic nuclear resonance. It is generally abbreviated to NMR. So as not to scare prospective patients in medicine, reference to the "nuclear" character of NMR is dropped and the magnetic resonance based imaging systems (scanner) found in hospitals are simply referred to as "magnetic resonance imaging" (MRI). 4.1 The Nuclear Resonance Effect Many atomic nuclei have spin, characterized by the nuclear spin quantum number I. The absolute value of the spin angular momentum is L =+h II(1). (4.01) The component in the direction of an applied field is Lz = Iz h ≡ m h. (4.02) The external field is usually defined along the z-direction. The magnetic quantum number is symbolized by Iz or m and can have 2I +1 values: Iz ≡ m = −I, −I+1, ..., I−1, I. -
Effect of Electronegative Elements on the NMR Chemical Shift in Some Simple R-X Organic Compounds
IOSR Journal of Applied Physics (IOSR-JAP) e-ISSN: 2278-4861.Volume 6, Issue 4 Ver. III (Jul-Aug. 2014), PP 45-56 www.iosrjournals.org Effect of electronegative elements on the NMR chemical shift in some simple R-X organic compounds Muhammad A. AL-Jalali1, Yahia M. Mahzia2 1Physics Department, Faculty of Science, Taif University, Taif, AL-Haweiah, , P. O. Box 888, Zip code 21974, Kingdom of Saudi Arabia 2Physics Department, Faculty of Science, Damascus University, Damascus, Syrian Arab Republic. Abstract: Organic halides and other organic compounds that contain electronegative elements, have a strong chemical shift and a brilliant NMR spectrum will prevail. Relationship between 1H, 13C NMR chemical shift and Electronegativity in some simple R-X organic compounds (X=F, Cl, Br, I, O, H, ...R=CH3 or CH3-CH2-) give nonlinear equation, as well as a power series equation appears between nuclear magnetogyric ratio, magnetic shielding constant and chemical shift, which are not included in the theoretical expressions. More investigations required to remove the discrepancy between the theoretical and the experimental results. Keywords: Electronegativity, chemical shift, shielding constant, magnetogyric ratio. I. Introduction Nuclear magnetic resonance, or NMR is a physical phenomenon was observed in 1945[1,2], which occurs when the nuclei of certain atoms, firstly, subject to nuclear Zeeman effect[3,4,5]will Precession with the Larmor frequency [6, 7]. Secondly, exposed to an oscillating electromagnetic field (radio waves), then if the radio wave frequency exactly matches the precession frequency, the resonance phenomenon will happen and this is the so-called nuclear magnetic resonance. However, experimentally, it has been noticed [8, 9, 10] that a nucleus may have a different resonant frequency for a given applied magnetic field in different chemical compounds, this difference in resonant frequency is called the chemical shift or sometimes fine structure. -
A Relativistic Electron in a Coulomb Potential
A Relativistic Electron in a Coulomb Potential Alfred Whitehead Physics 518, Fall 2009 The Problem Solve the Dirac Equation for an electron in a Coulomb potential. Identify the conserved quantum numbers. Specify the degeneracies. Compare with solutions of the Schrödinger equation including relativistic and spin corrections. Approach My approach follows that taken by Dirac in [1] closely. A few modifications taken from [2] and [3] are included, particularly in regards to the final quantum numbers chosen. The general strategy is to first find a set of transformations which turn the Hamiltonian for the system into a form that depends only on the radial variables r and pr. Once this form is found, I solve it to find the energy eigenvalues and then discuss the energy spectrum. The Radial Dirac Equation We begin with the electromagnetic Hamiltonian q H = p − cρ ~σ · ~p − A~ + ρ mc2 (1) 0 1 c 3 with 2 0 0 1 0 3 6 0 0 0 1 7 ρ1 = 6 7 (2) 4 1 0 0 0 5 0 1 0 0 2 1 0 0 0 3 6 0 1 0 0 7 ρ3 = 6 7 (3) 4 0 0 −1 0 5 0 0 0 −1 1 2 0 1 0 0 3 2 0 −i 0 0 3 2 1 0 0 0 3 6 1 0 0 0 7 6 i 0 0 0 7 6 0 −1 0 0 7 ~σ = 6 7 ; 6 7 ; 6 7 (4) 4 0 0 0 1 5 4 0 0 0 −i 5 4 0 0 1 0 5 0 0 1 0 0 0 i 0 0 0 0 −1 We note that, for the Coulomb potential, we can set (using cgs units): Ze2 p = −eΦ = − o r A~ = 0 This leads us to this form for the Hamiltonian: −Ze2 H = − − cρ ~σ · ~p + ρ mc2 (5) r 1 3 We need to get equation 5 into a form which depends not on ~p, but only on the radial variables r and pr. -
The Chemical Shift Chem 117 the Chemical Shift Key Questions (1) What Controls Proton Chemical Shifts? Eugene E
E. Kwan Lecture 2: The Chemical Shift Chem 117 The Chemical Shift Key Questions (1) What controls proton chemical shifts? Eugene E. Kwan January 26, 2012. H H H H 0.86 ppm 5.28 2.88 Br Scope of Lecture 16.4 proton chemical problem shift trends diamagnetic vs. (2) What controls carbon chemical shifts? solving paramagnetic O O shielding O CH2 H C OH the chemical 3 H3C CH3 basic DEPT 49.2 49.2 40.5 69.2 and COSY shift H-bonding and solvent (3) What are COSY and DEPT? What useful information effects spin-orbit coupling, can they give about a structure? carbon chemical effect of unsaturation shift trends 123 Helpful References 10 0 1. Nuclear Magnetic Resonance Spectroscopy... Lambert, J.B.; 1 Mazzola, E.P. Prentice-Hall, 2004. (Chapter 3) 2 2. The ABCs of FT-NMR Roberts, J.D. University Science Books, 2000. (Chapter 10) 3 3. Spectrometric Identification of Organic Compounds (7th ed.) Silverstein, R.M.; Webster, F.X.; Kiemle, D.J. Wiley, 2005. (useful charts in the appendices of chapters 2-4) 10 4. Organic Structural Spectroscopy Lambert, J.B.; Shurvell, H.F.; Lightner, D.A.; Cooks, R.G. Prentice-Hall, 1998. I thank Professors William F. Reynolds (Toronto) and Gene Mazzola (Maryland/FDA) for providing some useful 5. Organic Structure Analysis Crews, P. Rodriguez, J.; Jaspars, material for this lecture. The section on chemical shifts M. Oxford University Press, 1998. is based on the discussion in Chapter 3 of reference 1. E. Kwan Lecture 2: The Chemical Shift Chem 117 Proton Chemical Shifts Clearly, the regions overlap: reference: Lambert and Mazzola, Chapter 3. -
NMR Chemical Shifts of Common Laboratory Solvents As Trace Impurities
7512 J. Org. Chem. 1997, 62, 7512-7515 NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities Hugo E. Gottlieb,* Vadim Kotlyar, and Abraham Nudelman* Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel Received June 27, 1997 In the course of the routine use of NMR as an aid for organic chemistry, a day-to-day problem is the identifica- tion of signals deriving from common contaminants (water, solvents, stabilizers, oils) in less-than-analyti- cally-pure samples. This data may be available in the literature, but the time involved in searching for it may be considerable. Another issue is the concentration dependence of chemical shifts (especially 1H); results obtained two or three decades ago usually refer to much Figure 1. Chemical shift of HDO as a function of tempera- more concentrated samples, and run at lower magnetic ture. fields, than today’s practice. 1 13 We therefore decided to collect H and C chemical dependent (vide infra). Also, any potential hydrogen- shifts of what are, in our experience, the most popular bond acceptor will tend to shift the water signal down- “extra peaks” in a variety of commonly used NMR field; this is particularly true for nonpolar solvents. In solvents, in the hope that this will be of assistance to contrast, in e.g. DMSO the water is already strongly the practicing chemist. hydrogen-bonded to the solvent, and solutes have only a negligible effect on its chemical shift. This is also true Experimental Section for D2O; the chemical shift of the residual HDO is very NMR spectra were taken in a Bruker DPX-300 instrument temperature-dependent (vide infra) but, maybe counter- (300.1 and 75.5 MHz for 1H and 13C, respectively). -
The Zeeman Effect
THE ZEEMAN EFFECT OBJECT: To measure how an applied magnetic field affects the optical emission spectra of mercury vapor and neon. The results are compared with the expectations derived from the vector model for the addition of atomic angular momenta. A value of the electron charge to mass ratio, e/m, is derived from the data. Background: Electrons in atoms can be characterized by a unique set of discrete energy states. When excited through heating or electron bombardment in a discharge tube, the atom is excited to a level above the ground state. When returning to a lower energy state, it emits the extra energy as a photon whose energy corresponds to the difference in energy between the two states. The emitted light forms a discrete spectrum, reflecting the quantized nature of the energy levels. In the presence of a magnetic field, these energy levels can shift. This effect is known as the Zeeman effect. Zeeman discovered the effect in 1896 and obtained the charge to mass ratio e/m of the electron (one year before Thompson’s measurement) by measuring the spectral line broadening of a sodium discharge tube in a magnetic field. At the time neither the existence of the electron nor nucleus were known. Quantum mechanics was not to be invented for another decade. Zeeman’s colleague, Lorentz, was able to explain the observation by postulating the existence of a moving “corpuscular charge” that radiates electromagnetic waves. (See supplementary reading on the discovery) Qualitatively the Zeeman effect can be understood as follows. In an atomic energy state, an electron orbits around the nucleus of the atom and has a magnetic dipole moment associated with its angular momentum.