TC08 / 6. Hadamard Codes 3.12.07 SX

Total Page:16

File Type:pdf, Size:1020Kb

TC08 / 6. Hadamard Codes 3.12.07 SX TC08 / 6. Hadamard codes 3.12.07 SX Hadamard matrices. Paley’s construction of Hadamard matrices Hadamard codes. Decoding Hadamard codes Hadamard matrices A Hadamard matrix of order is a matrix of type whose coefficients are1 or 1 and such that . Note that this relation is equivalent to say that the rows of have norm √ and that any two distinct rows are orthogonal. Since is invertible and , we see that 2 and hence is also a Hadamard matrix. Thus is a Hadamard matrix if and only if its columns have norm √ and any two distinct columns are orthogonal. If is a Hadamard matrix of order , then det ⁄ . In particular we see that the Hadamard matrices satisfy the equality in Hadamard’s inequality: / |det| ∏∑ , which is valid for all real matrices of order . Remark. The expression / is the supremum of the value of det when runs over the real matrices such that 1. Moreover, the equality is reached if and only if is a Hadamard matrix. 3 If we change the signs of a row (column) of a Hadamard matrix, the result is clearly a Hadamard matrix. If we permute the rows (columns) of a Hadamard matrix, the result is another Hadamard matrix. Two Hadamard matrices are called equivalent (or isomorphic) if it is to go from one to the other by means of a sequence of such operations. Observe that by changing the sign of all the columns that begin with 1, and afterwards all the rows that begin with 1, we obtain an equivalent Hadamard matrix whose first row and first column only contain 1. Of such matrices we say that are normalized Hadamard matrices. 1 1 Example. is the unique normalized Hadamard matrix of 11 order 2. More generally, if we define , 2, recursively by the formula 4 , then is a normalized Hadamard matrix of order 2. It is also easy to check that if and are Hadamard matrices of orders and , then the tensor product is a Hadamard matrix of order (the matrix , also called the Kronecker product of and , can be defined as the matrix obtained by substituting each component of by the matrix ). For example, if is a Hadamard matrix of order , then is a Hadamard matrix of order 2. Notice also that . 5 Proposition. If is a Hadamard matrix of order 3, then is divisible by 4. Remark. Any two Hadamard matrices of order 4 are equivalent. . The same happens for order 8, but later on we will see that this is no longer the case for order 12. The Paley construction of Hadamard matrices Suppose that the cardinal of , , is odd, so that with 2, prime. Let : 1 6 be the Legendre character of , namely 1 if is a square ⁄ 1 if not a square (conventionally we define 0 0). Note that ∑ 0. If we enumerate the elements of (in some order), 0, ,…,, the Paley matrix of , , is defined by the formula . 7 Proposition. if is the matrix with all its entries equal to 1, then has the following properties: 1) 2) 3) 4) 1/. 8 THeorem. iF 10 mod4,1 then the matrix 1 is a Hadamard matrix of order . It is called the Hadamard matrix of . In the case that 1 is not divisible by 4, it is possible to construct a Hadamard matrix of order 2 2, as we will see in the exercises. We are going to use the following concept: a matrix of order 1 is a conference matrix if its principal diagonal is zero, the other elements are 1 and 1. It is immediate to check that the order of a conference matrix is necessarily even. 1 The first ten that satisfy this condition are 7, 11, 19, 23, 27, 31, 37,43, 47, 59. 9 Remark. Let S be the Paley matrix of a finite field , odd, and let 1 if is symmetric and 1 if is skew‐symmetric. Then 0 is a conference matrix of order 1 (it is called the conference matrix of ). This matrix is symmetric if 1 mod 4 and skew‐symmetric if 3 mod 4. Note that in the case 3 mod 4 the matrix is equivalent to the matrix of the previous theorem. Remark. a) If is an skew‐symmetric conference matrix of order , is a Hadamard matrix. b) If is a symmetric conference matrix of order , is a Hadamard matrix of order 2. 10 c) If is the conference matrix of a finite field , and 1 is divisible by 4, (b) yields a Hadamard matrix of order 2 2. This matrix will be called the Hadamard matrix de . Remark. The Hadamard matrices , , , have order 4, 8, 16, 32. For 7, 11, 19, 23, 27, 31, the theorem yields Hadamard matrices , , , , , . Part (c) of the preceding remark, applied to the fields , and , provides us with matrices , , . Thus we have Hadamard matrices of orders 4, 8, 12, 16, 20, 24, 28 and 32. Proceeding in similar ways, and with others that are beyond the scope of these notes, we can construct Hadamard matrices for many orders. The first ordre for which no Hadamard matrix is known is n=668 (the previous value was 428, but it was solved by Behruz Tayfeh‐Rezaie in 2004). 11 Is is conjectured that for any that is multiple of 4 there is a Hadamard matrix of order . This is usually called the Hadamard conjecture, but it is probably due to Raymond Paley (1993). Remark. The matrices and are distinct, but they are equivalent (all the Hadamard matrices of order 8 are equivalent). It can also be seen that the matrices and are equivalent, even though it turns out that there are Hadamard matrices of order 12 that are not equivalent. 12 Code associated to a Hadamard matrix We associate a code of type , 2 to any Hadamard matrix of order as follows: , where () is the binary matrix obtained by the substitution 1 0 in (). Notice that the words in can also be obtain as the complements of the words in . Since two rows of differ in exactly /2 positions, the minimum distance of is /2. Hence is a code of type , 2, /2. In general this code is not linear (a necessary condition for linearity is that be a power of 2). Note that is not equidistant, as it contains the words and . 13 Example. The code is equivalent to the parity completion of the Hamming code 7,4,3. In particular, it is a linear code. 1 1 1 1 1 1 1 1 1234 1 0 1 1 0 1 0 0 134 1 0 0 1 1 0 1 0 14 1 0 0 0 1 1 0 1 1 0 1 1 0 0 1 1 0 12 1 0 1 0 0 0 1 1 13 1 1 0 1 0 0 0 1 124 1 1 1 0 1 0 0 0 123 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 2 0 1 1 0 0 1 0 1 23 0 1 1 1 0 0 1 0 234 0 0 1 1 1 0 0 1 34 0 1 0 1 1 1 0 0 24 0 0 1 0 1 1 1 0 3 0 0 0 1 0 1 1 1 4 14 Example. The code 32,64,16 is the code used in the period 1969‐1972 by the Mariner spacecraft to transmit images of Mars (this code also turns out to be linear, and actually equivalent to lineal 5). Decoding Hadamard codes Let be the Hadamard code associated to the Hadamard matrix . Let be the order of and /2 1/2 2/4 4/4 its error‐correcting capacity . Given a vector of length , let 1, 1 be the result of performing the substitution 01 in . For example, from the definition of it turns out that if (or ), then (or –) is a row of . 15 Lemma. Let be a binary vector of length , the result of negating an entry of , and any row of . Then ̂| | 2. Proposition. Let , where is a Hadamard matrix of order . Suppose that is the sent vector, that is the error vector and that is the received vector. Let || and suppose that . Then there is a unique row of such that ||| /2 and ||| /2 for all other rows of . Moreover, or according to whether | 0 or | 0. 16 Decoding algorithm Input: (the received vector). 1) Calculate . 2) Calculate | for the successive rows of , and stop as soon as || /2 or if there are no more rows. In this second case return Error. 3) Return the result of performing the substitution 1 0 in the vector () if 0 (0). Exercise. The code is equivalent to the Hadamard code . Hint: If is a control matrix of Ham, then the matrix 1 is a generating matrix of . .
Recommended publications
  • Short Low-Rate Non-Binary Turbo Codes Gianluigi Liva, Bal´Azs Matuz, Enrico Paolini, Marco Chiani
    Short Low-Rate Non-Binary Turbo Codes Gianluigi Liva, Bal´azs Matuz, Enrico Paolini, Marco Chiani Abstract—A serial concatenation of an outer non-binary turbo decoding thresholds lie within 0.5 dB from the Shannon code with different inner binary codes is introduced and an- limit in the coherent case, for a wide range of coding rates 1 alyzed. The turbo code is based on memory- time-variant (1/3 ≤ R ≤ 1/96). Remarkably, a similar result is achieved recursive convolutional codes over high order fields. The resulting codes possess low rates and capacity-approaching performance, in the noncoherent detection framework as well. thus representing an appealing solution for spread spectrum We then focus on the specific case where the inner code is communications. The performance of the scheme is investigated either an order-q Hadamard code or a first order length-q Reed- on the additive white Gaussian noise channel with coherent and Muller (RM) code, due to their simple fast Hadamard trans- noncoherent detection via density evolution analysis. The pro- form (FHT)-based decoding algorithms. The proposed scheme posed codes compare favorably w.r.t. other low rate constructions in terms of complexity/performance trade-off. Low error floors can be thus seen either as (i) a serial concatenation of an outer and performances close to the sphere packing bound are achieved Fq-based turbo code with an inner Hadamard/RM code with down to small block sizes (k = 192 information bits). antipodal signalling, or (ii) as a coded modulation Fq-based turbo/LDPC code with q-ary (bi-) orthogonal modulation.
    [Show full text]
  • Orthogonal Arrays and Codes
    Orthogonal Arrays & Codes Orthogonal Arrays - Redux An orthogonal array of strength t, a t-(v,k,λ)-OA, is a λvt x k array of v symbols, such that in any t columns of the array every one of the possible vt t-tuples of symbols occurs in exactly λ rows. We have previously defined an OA of strength 2. If all the rows of the OA are distinct we call it simple. If the symbol set is a finite field GF(q), the rows of an OA can be viewed as vectors of a vector space V over GF(q). If the rows form a subspace of V the OA is said to be linear. [Linear OA's are simple.] Constructions Theorem: If there exists a Hadamard matrix of order 4m, then there exists a 2-(2,4m-1,m)-OA. Pf: Let H be a standardized Hadamard matrix of order 4m. Remove the first row and take the transpose to obtain a 4m by 4m-1 array, which is a 2-(2,4m-1,m)-OA. a a a a a a a a a a b b b b 2-(2,7,2)-OA a b b a a b b a b b b b a a constructed from an b a b a b a b order 8 Hadamard b a b b a b a matrix b b a a b b a b b a b a a b Linear Constructions Theorem: Let M be an mxn matrix over Fq with the property that every t columns of M are linearly independent.
    [Show full text]
  • A Simple Low Rate Turbo-Like Code Design for Spread Spectrum Systems Durai Thirupathi and Keith M
    A simple low rate turbo-like code design for spread spectrum systems Durai Thirupathi and Keith M. Chugg Communication Sciences Institute Dept. of Electrical Engineering University of Southern California, Los Angeles 90089-2565 thirupat,chugg ¡ @usc.edu Abstract chine. The disadvantage of the SOTC is that the decoding com- plexity increases dramatically with decrease in code rate. On In this paper, we introduce a simple method to construct the other hand, THC, which is constructed using weaker con- very low rate recursive systematic convolutional codes from a stituent codes has slower rate of convergence which might not standard rate- ¢¤£¦¥ convolutional code. These codes in turn are be a desired property for practical applications. So, in design- used in parallel concatenation to obtain very low rate turbo like ing very low rate turbo-like codes for practical applications, one codes. The resulting codes are rate compatible and require low of the critical issues is to design strong enough constituent con- complexity decoders. Simulation results show that an additional volutional codes with decoding complexity of the overall code coding gain of 0.9 dB in additive white Gaussian noise (AWGN) being almost independent of the code rate. channel and 2 dB in Rayleigh fading channel is possible com- In this paper, we introduce a technique to construct such a pared to rate-1/3 turbo code. The low rate coding scheme in- class of low rate convolutional codes. These codes are then creases the capacity by more than 25% when applied to multi- used to build very low rate turbo codes. Since these codes are ple access environments such as Code Division Multiple Access constructed from rate- ¢¤£¦¥ parent codes, the complexity of the (CDMA).
    [Show full text]
  • Local List-Decoding of Reed-Muller Codes Over F2 Original Paper by Gopalan, Klivans, and Zuckerman [6, 7]
    Local List-Decoding of Reed-Muller Codes over F2 Original paper by Gopalan, Klivans, and Zuckerman [6, 7] Sahil Singla Manzil Zaheer Computer Science Department Electrical and Computer Engineering Carnegie Mellon University Carnegie Mellon University [email protected] [email protected] December 7, 2014 Abstract In this report we study the paper titled, \List-Decoding Reed-Muller Codes over Small Fields" by Parikshit Gopalan, Adam R. Klivans and David Zuckerman [6, 7]. The Reed-Muller codes are multivariate generalization of Reed-Solomon codes, which use polynomials in multiple variables to encode messages through functional encoding. Next, any list decoding problem for a code has two facets: Firstly, what is the max- imal radius up to which any ball of that radius contains only a constant number of codewords. Secondly, how to find these codewords in an efficient manner. The paper by GKZ presents the first local list-decoding algorithm for the r-th order Reed-Muller code RM(r; m) over F2 for r ≥ 2. Given an oracle for a received word m R : F2 ! F2, their randomized local list-decoding algorithm produces a list containing all degree r polynomials within relative distance (2−r − ) from R for any > 0 in time poly(mr; r). Since RM(r; m) has relative distance 2r, their algorithm beats the Johnson bound for r ≥ 2. Moreover, as the list size could be exponential in m at radius 2−r, their bound is optimal in the local setting. 1 Contents 1 Introduction 3 1.1 Basics of Code . .3 1.1.1 Johnson Bound .
    [Show full text]
  • TC+0 / 6. Hadamard Codes S
    TC+0 / 6. Hadamard codes S. Xambó Hadamard matrices. Paley’s construction of Hadamard matrices Hadamard codes. Decoding Hadamard codes Hadamard matrices A Hadamard matrix of order is a matrix of type whose coefficients are 1 or 1 and such that . Note that this relation is equivalent to say that the rows of have norm √ and that any two distinct rows are orthogonal. Since is invertible and we see that 2 and hence is also a Hadamard matrix. Thus is a Hadamard matrix if and only if its columns have norm √ and any two distinct columns are orthogonal. If is a Hadamard matrix of order , then det ⁄ . In particular we see that the Hadamard matrices satisfy the equality in Hadamard’s inequality: / |det| ∏∑ which is valid for all real matrices of order . Remark. The expression / is the supremum of the value of det when runs over the real matrices such that 1. Moreover, the equality is reached if and only if is a Hadamard matrix. 3 If we change the signs of a row (column) of a Hadamard matrix, the result is clearly a Hadamard matrix. If we permute the rows (columns) of a Hadamard matrix, the result is another Hadamard matrix. Two Hadamard matrices are called equivalent (or isomorphic) if it is possible to go from one to the other by means of a sequence of such operations. Observe that by changing the sign of all the columns that begin with 1 and afterwards of all the rows that begin with 1 we obtain an equivalent Hadamard matrix whose first row and first column only contain 1.
    [Show full text]
  • An Ultimate-Shannon-Limit-Approaching Gbps Throughput Encoder/Decoder System S
    1 An Ultimate-Shannon-Limit-Approaching Gbps Throughput Encoder/Decoder System S. Jiang, P. W. Zhang, F. C. M. Lau and C.-W. Sham Abstract—A turbo-Hadamard code (THC) is a type of low-rate component of the encoding/decoding system is fully opti- channel code with capacity approaching the ultimate Shannon mized to achieve high hardware-utilization rate. Arrange- − limit, i.e., 1.59 dB. In this paper, we investigate the hardware ment is made to ensure the data corresponding to different design of a turbo-Hadamard encoder/decoder system. The entire system has been implemented on an FPGA board. A bit error codewords are in an orderly manner such that they can be −5 rate (BER) of 10 can be achieved at Eb/N0 = 0.04 dB with received/stored/retrieved/processed efficiently at the decoder. a throughput of 3.2 Gbps or at Eb/N0 = −0.45 dB with a Last but not the least, we construct rate-adaptive THCs by throughput of 1.92 Gbps. puncturing the parity bits of the code. Sect. II briefly reviews the THC. Sect. III describes our overall design of the THC encoder/decoder system and evaluates the latency of each sub- I. INTRODUCTION decoder. Sect. IV shows the FPGA implementation results, Turbo code, low-density parity-check (LDPC) code, and including hardware utilization, throughput and bit error rate polar code are the most widely studied and implemented performance. Finally, Sect. ?? provides some concluding re- error-correction codes over the last two-and-a-half decades marks. because of their capacity-approaching capabilities [1], [2], [3], [4], [5], [6].
    [Show full text]
  • Download Issue
    JJCIT Jordanian Journal of Computers and Information Technology (JJCIT) The Jordanian Journal of Computers and Information Technology (JJCIT) is an international journal that publishes original, high-quality and cutting edge research papers on all aspects and technologies in ICT fields. JJCIT is hosted by Princess Sumaya University for Technology (PSUT) and supported by the Scientific Research Support Fund in Jordan. Researchers have the right to read, print, distribute, search, download, copy or link to the full text of articles. JJCIT permits reproduction as long as the source is acknowledged. AIMS AND SCOPE The JJCIT aims to publish the most current developments in the form of original articles as well as review articles in all areas of Telecommunications, Computer Engineering and Information Technology and make them available to researchers worldwide. The JJCIT focuses on topics including, but not limited to: Computer Engineering & Communication Networks, Computer Science & Information Systems and Information Technology and Applications. INDEXING JJCIT is indexed in: EDITORIAL BOARD SUPPORT TEAM LANGUAGE EDITOR EDITORIAL BOARD SECRETARY Haydar Al-Momani Eyad Al-Kouz All articles in this issue are open access articles distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/). JJCIT ADDRESS WEBSITE: www.jjcit.org EMAIL: [email protected] ADDRESS: Princess Sumaya University for Technology, Khalil Saket Street, Al-Jubaiha B.O. BOX: 1438 Amman 11941 Jordan TELEPHONE: +962-6-5359949 FAX: +962-6-7295534 JJCIT EDITORIAL BOARD Ahmad Hiasat (EIC) Aboul Ella Hassanien Adil Alpkoçak Adnan Gutub Adnan Shaout Christian Boitet Gian Carlo Cardarilli Hamid Hassanpour Abdelfatah Tamimi Arafat Awajan Gheith Abandah Haytham Bani Salameh Ismail Ababneh Ismail Hmeidi João L.
    [Show full text]
  • Math 550 Coding and Cryptography Workbook J. Swarts 0121709 Ii Contents
    Math 550 Coding and Cryptography Workbook J. Swarts 0121709 ii Contents 1 Introduction and Basic Ideas 3 1.1 Introduction . 3 1.2 Terminology . 4 1.3 Basic Assumptions About the Channel . 5 2 Detecting and Correcting Errors 7 3 Linear Codes 13 3.1 Introduction . 13 3.2 The Generator and Parity Check Matrices . 16 3.3 Cosets . 20 3.3.1 Maximum Likelihood Decoding (MLD) of Linear Codes . 21 4 Bounds for Codes 25 5 Hamming Codes 31 5.1 Introduction . 31 5.2 Extended Codes . 33 6 Golay Codes 37 6.1 The Extended Golay Code : C24. ....................... 37 6.2 The Golay Code : C23.............................. 40 7 Reed-Muller Codes 43 7.1 The Reed-Muller Codes RM(1, m) ...................... 46 8 Decimal Codes 49 8.1 The ISBN Code . 49 8.2 A Single Error Correcting Decimal Code . 51 8.3 A Double Error Correcting Decimal Code . 53 iii iv CONTENTS 8.4 The Universal Product Code (UPC) . 56 8.5 US Money Order . 57 8.6 US Postal Code . 58 9 Hadamard Codes 61 9.1 Background . 61 9.2 Definition of the Codes . 66 9.3 How good are the Hadamard Codes ? . 67 10 Introduction to Cryptography 71 10.1 Basic Definitions . 71 10.2 Affine Cipher . 73 10.2.1 Cryptanalysis of the Affine Cipher . 74 10.3 Some Other Ciphers . 76 10.3.1 The Vigen`ereCipher . 76 10.3.2 Cryptanalysis of the Vigen`ereCipher : The Kasiski Examination . 77 10.3.3 The Vernam Cipher . 79 11 Public Key Cryptography 81 11.1 The Rivest-Shamir-Adleman (RSA) Cryptosystem .
    [Show full text]
  • Background on Coding Theory
    6.895 PCP and Hardness of Approximation MIT, Fall 2010 Lecture 3: Coding Theory Lecturer: Dana Moshkovitz Scribe: Michael Forbes and Dana Moshkovitz 1 Motivation In the course we will make heavy use of coding theory. In this lecture we review the basic ideas and constructions. We start with two motivating examples. 1.1 Noisy Communication Alice gets a k-bit message x to send to Bob. Unfortunately, the communication channel is corrupted, and some number of bits may flip. For conceretness, say twenty percent of all bits sent on the channel may flip. Which bits are flipped is unknown, and different bits may flip for different messages sent on the channel. Can Alice still send a message that can be reliably received by Bob? We allow Alice and Bob to make any agreements prior to Alice learning about her message x. We also allow Alice to send more than k bits on the channel. The redundant bits can compesate for the bits lost due to corruption. We will see that Alice can send only n = Θ(k) bits of information about her message, such that even if twenty percent of those bits are flipped, the mistakes can be detected, and all of the original k bits can be recovered by Bob! 1.2 Equality Testing The following example is a classic example from communication complexity. Its setup and ideas are very useful for understanding PCPs. Suppose there are two players, Alice and Bob, as well as a verifier. Each player receives a private k-bit string. Alice's string is denoted x, and Bob's string is denoted y.
    [Show full text]
  • An Introduction of the Theory of Nonlinear Error-Correcting Codes
    Rochester Institute of Technology RIT Scholar Works Theses 1987 An introduction of the theory of nonlinear error-correcting codes Robert B. Nenno Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Nenno, Robert B., "An introduction of the theory of nonlinear error-correcting codes" (1987). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. An Introduction to the Theory of Nonlinear Error-Correcting Codes Robert B. Nenno Rochester Institute of Technology ABSTRACT Nonlinear error-correcting codes are the topic of this thesis. As a class of codes, it has been investigated far less than the class of linear error-correcting codes. While the latter have many practical advantages, it the former that contain the optimal error-correcting codes. In this project the theory (with illustrative examples) of currently known nonlinear codes is presented. Many definitions and theorems (often with their proofs) are presented thus providing the reader with the opportunity to experience the necessary level of mathematical rigor for good understanding of the subject. Also, the examples will give the reader the additional benefit of seeing how the theory can be put to use. An introduction to a technique for finding new codes via computer search is presented. Categories and Subject Descriptors: E.4 [Coding and Information Theory] For mal models of communication; H.l.l [Models and Principles] Systems and Infor mation Theory General Terms: Algorithms, Theory Additional Key Words and Phrases: Bounds on codes, designs, nongroup codes, Hadamard matrices, nonlinear error-correcting codes, uniformly packed codes October 8, 1987 TABLE OF CONTENTS Chapter 1 .
    [Show full text]
  • Coding Vs. Spreading for Narrow-Band Interference Suppression
    1 Coding vs. Spreading for Narrow-Band Interference Suppression Xiaofu Wu and Zhen Yang Abstract—The use of active narrow-band interference (NBI) suppression in spread-spectrum systems. In general, there are suppression in direct-sequence spread-spectrum (DS-SS) com- two categories for these techniques, one is based on linear munications has been extensively studied. In this paper, we signal processing techniques [3] and the other employs model- address the problem of optimum coding-spreading tradeoff for NBI suppression. With maximum likelihood decoding, we based techniques [1], including nonlinear filtering techniques first derive upper bounds on the error probability of coded and multiuser detection techniques. In [2], [4], a code-aided systems in the presence of a special class of NBI, namely, approach was proposed by Poor and Wang for NBI suppression multi-tone interference with orthogonal signatures. By employ- in direct-sequence code-division multiple-access (DS/CDMA) ing the well-developed bounding techniques, we show there is networks. This method, which is based on the minimum mean no advantage in spreading, and hence a low-rate full coding approach is always preferred. Then, we propose a practical square error (MMSE) linear detector, has been shown to out- low-rate turbo-Hadamard coding approach, in which the NBI perform all of the previous linear or nonlinear methods for NBI suppression is naturally achieved through iterative decoding. The suppression. In recent years, NBI suppression has also been proposed turbo-Hadamard coding approach employs a kind of considered in ultra-wide bandwidth (UWB) communications coded spread-spectrum signalling with time-varying spreading [5]–[9].
    [Show full text]
  • Walsh Codes, PN Sequences and Their Role in CDMA Technology Term Paper - EEL 201 Kunal Singhal, 2012CS10231 Student, CSE Department, IIT Delhi
    1 Walsh Codes, PN Sequences and their role in CDMA Technology Term Paper - EEL 201 Kunal Singhal, 2012CS10231 Student, CSE Department, IIT Delhi 1 1 Abstract—Walsh codes are error correcting orthogonal codes H1 = 1 H2 = and PN sequences are deterministically generated sequences 1 −1 which appear to be random noises. Both of these concepts HN HN are used in error free communication. This paper outlines H2N = HN −HN properties of Walsh codes and PN sequences and discuss the For correctness, we see that, practical implementation in software and hardware. The paper T T T HN HN HN HN explores and model Walsh Codes and Hadamard matrices as a H2N H2N = T T finite orthogonal vector space. It further describe their role in HN −HN HN −HN T T T T communication technologies in particular CDMA. HN HN + HN HN HN HN − HN HN = T T T T Index Terms—Walsh code, Pseudo-Noise sequences, PN se- HN HN − HN HN HN HN + HN HN quence, generator matrix, recursion, hamming weight, hamming 2IN 0 distance, locally decodable, Hadamard matrices, linear codes, = = 2I2N 0 2IN pseudorandom sequences, shift registers, spreading spectrum technique, CDMA, Cryptographic Secure PN codes Walsh codes can be generated from Hadamard matrices of orders which are a power of 2. The rows of the matrix of order 2N constitutes the Walsh codes which encodes N I. INTRODUCTION bit sequences. Now, instead of 1 and -1 consider 1 and 0. ALSH codes are mutually orthogonal error correcting That is consider the matrix and the codes over the field F2 or W codes.
    [Show full text]