Lactam Synthesis Peter Quayle Doctor of Philosophy of the University of London

Total Page:16

File Type:pdf, Size:1020Kb

Lactam Synthesis Peter Quayle Doctor of Philosophy of the University of London THE USE OF CARBANIONS IN ^-LACTAM SYNTHESIS A Thesis presented by PETER QUAYLE In Partial Fulfilment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY OF THE UNIVERSITY OF LONDON DEPARTMENT OF CHEMISTRY IMPERIAL COLLEGE OF SCIENCE & TECHNOLOGY LONDON SW7 2AY. OCTOBER, 1981. 2. To my Parents "It pays to speculate as widely and wildly as possible; people only remember when you are right!" Derek H.R. Barton, FRS. (Gordon Research Conference> 19£>4) 4. ACKNOWLEDGEMENTS I wish to thank my supervisor, Dr. A.G.M. Barrett, for his advice, insight and encouragement throughout the duration of this project. I wish to thank all my colleagues, past and present, for their stimulating lunch-time discussions. I would specially like to thank Az and Shabaht, Chris and Greg, Elizabeth and Dave, Carmen and Pagona for their unfailing friendship. I am indebted to the technical staff at Imperial College for their invaluable assistance. I thank the Science Research Council for financial support through- out my studies. I would also like to thank Maria Serrano-Widdowson for typing this thesis. Peter Quayle 15th October, 1981. The synthesis of carbapenem ring systems is reviewed. The phenylethynolate anion has been shown to undergo a novel cyclo- addition reaction with electron defficient Schiff's bases to afford highly substituted azetidin-2-ones,in good yields, in a stereoselective fashion. Attempts to react the phenylethynolate anion with less activated Schiff's bases were unsuccessful. The reaction of several related species is described. The Shapiro reaction has been successfully applied to the synthesis of a-methylene-3-lactams. The preparation of l-benzyl-3-phenylazetidin-2-one, from the readily available N-benzyl-3-hydroxy-3-phenylpropanamide, is described. Competing elimination reactions limit the general applicability of this methodology. The facile preparation of the synthetically important 4-(arylcarbonyl- methyl)azetidin-2-ones and related compounds from 4-acetoxy-l-trimethyl- silylazetidin-2-one and various silylenol ethers is described. The use of trimethylsilyl trifluoromethanesulphonate as catalyst in these C-4 displacement reactions was found to give optimum results. 6. LIST OF CONTENTS page ACKNOWLEDGEMENTS 4 ABSTRACT 5 REVIEW: SYNTHESIS OF CARBAPENEM RING SYSTEMS 7 Introduction 8 Structure Activity Relationships 12 Synthesis of Carbapenem Ring Systems 14 A. Synthesis of the carbapenem nucleus 14 B. Total Synthesis of Thienamycin and Related Compounds 38 References 65 RESULTS AND DISCUSSION: 72 Introduction 73 The Use of Ynolate Anions in the Synthesis of Azetidin-2-ones 73 Reaction of the phenylethynolate anion (17) with Schiff's bases 79 Miscellaneous reactions of the phenylethynolate anion (17) and the thiolate anion (14) 93 Aminoalkylation reactions of C-6 penicillanate enolate anions 97 C-4 Displacement Reactions 101 Preparation of cx-Methylene-3-lactams 128 Preparation of 3-Unsubstituted Azetidin-2-ones 141 EXPERIMENTAL: 153 Section 1: Ynolate Chemistry 156 Section 2: C-4 Displacement Reactions 170 Section 3: Shapiro Reactions 180 Section 4: Other N1-C4 Cyclisation Reactions 191 REFERENCES 201 REVIEW SYNTHESIS OF CARBAPENEM RING SYSTEMS 8. INTRODUCTION Nature continues to provide us with products containing new structural 1,2 variations, the class of 3-lactam antibiotics being no exception . In 1976, it was disclosed by Merck scientists that a novel B-lactam antibiotic had been isolated from the culture broths of a previousl3 y unrecognized species, subsequently designated Streptornycca cattleya . This natural product was the first member of a family of antibiotics containing the des-thiacarbapen- t 2-em nucleus, from which the name thienamycin was derived . Intense interest in these compounds results from their exceptional biological activity and unique structure. In the first part of this review, the structure and activity will be briefly discussed. The remainder will be concerned with the approaches to, and syntheses of the carbapenem systems. The assignment of the structure of thienamycin (1) was achieved by a combination of nmr, mass spectral fragmentation patterns, degradative t Throughout, the nomenclature adopted is based on the assignment of the term carbapen-2-em as: 9. 4 experiments and finally X-ray analysis . The absolute stereochemistry of 4 thianamycin was determined as 5R, 8R . Thienamycin contains several unique structural features:- (i) the carbapenem nucleus was hitherto unknown, (ii) the relative stereochemistry of the 5,6 protons is trans-, in contrast to the cis- relationship found in the penicillins and cephalosporins, (iii) the incorporation of a 1'-R-hydroxyethyl group in place of the customary amide side chains found in penicillins and cephalosporins. Thienamycin was found to be a potent antibiotic, with broad spectrum activity. Of particular importance was its activity against isolates 2 5 exhibiting resistance to other drugs ' . Its aerobic spectrum included most gram- negative bacilli tested, including E. ooli.j Pseudomonasj and S. aureus. Excellent activity was also exhibited against anaerobic bacteria 6. 2 A detailed account of the biological activity of thienamycin has appeared . Subsequent work by the Merck group indicated that at least six other closely related compounds, the epithienamycins (A-F), could be isolated 7 from a large number of strains of Sbreptomyces flavogri-esus . 8 A Beecham group independently isolated three novel (3-lactams from Streptomyoes olivaceUQ,m\ 4550, MM 13902 and MM 17880. Subsequently, four new metabolites, MM 22380, MM 22381, MM 22382 and MM 22383 were also iso- lated. Collectively, these metabolites were designated as olivanic acids. It has been suggested that the olivanic acids and epithienamycins 9 correspond to the same structures (Table 1). More recently, other metabo- 10 11 11 12 3 lites including 1PS-54 , PS-6 f • PS-7 , NS-5 , C-19393 S„£ , C-19393 AH* , and PA-31088-IV have been isolated (Table 1). It is interesting that the olivanic acids differ from thienamycin by virtue of the opposite confi- guration at C-8. 10. Tabic 1 R = H, R MM 22380 CH2CH2NHC0Me n = 0 ETM A (2) R = H, R1 = CH = CHNHCOMe MM 22382 n = 0 ETM B (3) 1 R = H0S02, R = CH = CHNHCOMe MM 13902 n = 0 ETM E R = HOSO , R1 = CH = CHNHCOMe MM 4450 n = 1 R = HOSO , R = CH CH NHCOMe MM 17880 A £ n = 0 ETM F R = H, R = CHCH NHCOMe m 22381 ETM C R = H, R1 = CH = CHNHCOMe MM 22383 ETM D /continued. 11. Table 1/continucd... S(CH2)2NHR S(CH2)2NHAC CO2H COOH R = Ac PS-5 R = H NS-5 PS-6 0© OR o' NHAc CO2H C0ZH C-19393 S2, R = SOgNa PS-7 C-19393 H2, R = S03H 0© CJGH)M S-(CH2)2N-CH o NHAc A—N HN COoH COoH PA-31088-IV MK-0787 12. STRUCTURE-ACTIVITY RELATIONSHIPS Structure-activity relationships will only be briefly mentioned here, 2 15 as further details can be obtained elsewhere ' . The factors affecting in vitro activity may be summarized as follows. (i) Stereochemistry at C-5, C-6 and C-8 Thienamycin, with the tra.ns -5R, 6S^, 8R stereochemistry, is the most potent natural antibiotic. The potency of the non-sulphated series appears to be trans-R > cis-S > trans-S^'. The trans-R series has the best peni- 9 cillanase resistance, trans-S moderate and that of the cis-S series is low . 2 Some metabolites (e.g. PS-5) are 3-lactamase inhibitors . The sulphated 9 compounds have an enhanced penicillanase inhibitory capacity . (ii) Effect of substructures Carbapen-2-em-2-carboxylic acid has the same potency as clinically used 15 penicillins . The presence of the basic function at C-3 in thienamycin maximizes antipseudomonal activity1^' . Various derivatives of thienamycin have been prepared and their activity evaluated. MK-0787 is being tested 15 clinicallt • n y in• man An important factor which has had to be considered in relation to both their clinical use and attempted synthesis is that the carbapen-2-em system in particular was found to be a highly reactive substrate towards 3 17 nucleophiles ' . In fact, the instability of thienamycin in solution has been ascribed to a bimolecular reaction, in which the nucleophilic nitrogen of one molecule attacks the 3-lactam moiety of a second 3 . Generally, the trans- or cis- refers to the relative stereochemistry of the C-5 and C-6 protons. R or S refers to the C-8 stereochemistry. 13. 3 carbapen-2-cms are also only stable over a narrow pH range . ' This instabi= 6 lity renders thienamycin itself unsuitable as a clinical agent . The inherent instability of the carbapen-2-em system has been attributed 18 to the departure from coplanarity of the 3-lactam N-l atom from the plane containing C-2, C-5 and C-7. The altitude h, of the apex N-l, from the base of the trigonal pyramid containing N-l, C-2, C-5 and C-7 is used as a convenient factor relating to the strain in such systems (4). Values of h have been computed from X-ray data. A qualitative agreement has been observed between 18 the values of h and the lability of the respective B-lactams , i.e. the larger the value of h, the greater the lability of the 3-lactam. 18 On this basis, Woodward argued that the carbapen-3-em system should be more reactive towards nucleophiles than the carbapen-2-ems, as a reflection of the greater degree of distortio3 n within the molecule. Curiously, this was not found to be the case. A -Thienamycin was found to be chemically more stable than the A 2 -isomer 17 . Other factors, e.g. electronic effects, may be of importance in determining the reactivity of such systems, as in the case 2 3 19 of the A - and A -cephems 14. SYNTHESIS OF CARBAPENEM RING SYSTEMS Duo to the chemical lability of the intact carbapen-2-em nucleus (vide supra), the formation of the bicyclic system is carried out in the latter stages of synthetic schemes*.
Recommended publications
  • Synthetic Strategies to Access Biologically Important Fluorinated Motifs: Fluoroalkenes and Difluoroketones by Ming-Hsiu Yang Su
    Synthetic Strategies to Access Biologically Important Fluorinated Motifs: Fluoroalkenes and Difluoroketones By Ming-Hsiu Yang Submitted to the graduate degree program in Medicinal Chemistry and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy Chairperson Ryan A. Altman Michael D. Clift Apurba Dutta Michael F. Rafferty Jon A. Tunge Date Defended: April 26, 2017 The Dissertation Committee for Ming-Hsiu Yang certifies that this is the approved version of the following dissertation: Synthetic Strategies to Access Biologically Important Fluorinated Motifs: Fluoroalkenes and Difluoroketones Chairperson Ryan A. Altman Date Approved: April 26, 2017 ii Abstract Ming-Hsiu Yang Department of Medicinal Chemistry, April 2017 The University of Kansas Fluorine plays an important role in drug design, because of some unique features imparted by fluorine. The incorporation of fluorine into small molecules can modulate molecular physicochemical properties, metabolic stability, lipophilicity, and binding affinity to the target proteins. However, few fluorinated molecules are biosynthesized by enzymes. This means incorporating fluorine into the molecules relies on synthetic methods. Thus, efficient synthetic strategies to access the molecules bearing a variety of privileged fluorinated moieties are important for drug discovery. Fluoroalkenes are an isopolar and isosteric mimic of an amide bond with distinct biophysical properties, including decreased H-bond donating and accepting abilities, increased lipophilicity, and metabolic stability. Moreover, fluoroalkenes can also serve as probes for conducting conformational analyses of amides. These potential applications require the development of efficient methods to access fluoroalkenes. In chapter 2, a Shapiro fluorination strategy to access peptidomimetic fluoroalkenes is demonstrated.
    [Show full text]
  • Shapiro Reaction
    MANA TV programme SHAPIRO REACTION P. Kiran Kumar Lecturer in Chemistry SGA Government Degree College Yellamanchili SHAPIRO REACTION Treatment of tosyl hydrazone of an aldehyde or a ketone with a strong base leads to the formation of vinyl anion which on hydrolysis given an olefin. Hydrazine Phenyl Hydrazine Tosyl hydrazide (p-Toluenesulfonyl hydrazide) Tosyl hydrazone Formed by Nucleophilic addition between aldehyde or ketone and Tosyl hydrazide (p-Toluenesulfonyl hydrazide) and subsequent loss of carbonyl oxygen Mechanism Deprotonation of Tosyl hydrazone with a strong base to form Hydrazone aza enolate. Elimination of aryl sulfinate gives an unstable anion. Loss of Nitrogen leads to vinyl anion Hydrazone aza enolate unstable anion Vinyl anion Vinyl anions can be trapped by number various electrophiles 1. Hydrolysis gives an Alkene 2. Reaction with D2O gives Deuterated Alkene 3. Reaction with CO2 gives α, β-unsaturated acid 4. Reaction with formaldehyde gives Primary alcohol Vinyl anionsanions can can be be trapped trapped by by number number various various electrophiles – –Cont’dCont’d 5. Reaction with DMF gives an α, β-unsaturated aldehyde 6. Reaction with Alkyl chloride gives an Alkyl substituted alkene 7. Reaction with (CH3)3SiCl gives a Vinyl Silane Shapiro reaction involving cyclic ketones Cyclohexanone Shapiro reaction involving cyclic ketones Mechanism Mechanisms Mechanisms Mechanism Shapiro reaction involving unsymmetrical ketones unsymmetrical ketones gives predominantly less substituted olefins Shapiro reaction involving unsymmetrical ketones Removal of proton from the more substituted carbon atom Not formed Stability of the carbanion: secondary versus tertiary Secondary carbanion Tertiary carbanion Secondary carbanion more stable than primary carbanion.
    [Show full text]
  • Syllabus CHEM 6352 2014
    CHEM 6352 Organic Reactions & Synthesis Fall 2014 Jeremy A. May Office: 5025 SERC Office hours: T/Th 10-11 am or by appointment (email me) Email: [email protected] Website: http://mynsm.uh.edu/groups/maygroup/wiki/b24dc/Classes.html Lectures: 154 Fleming Tuesdays and Thursdays 8:30–10:00. August 26–December 6, 2014. Homework Session Saturdays 3:00 pm to 5:30 pm in Fleming 154/160/162. No class November 27–29, 2014 (Thanksgiving recess); Oct. 31st is last day to withdraw Optional Texts (on reserve at MD Anderson Library) Zweifel, G.; Nantz, M. “Modern Organic Synthesis: An Introduction” March, J. “Advanced Organic Chemistry” Corey, E. J.; Cheng, X.-M. “The Logic of Chemical Synthesis” Warren, S. “Designing Organic Syntheses: A Programmed Introduction to the Synthon Approach” Kürti, L.; Czakó, B. “Strategic Applications of Named Reactions in Organic Synthesis” Grossman, R. “The Art of Writing Reasonable Organic Reaction Mechanisms” Model Sets: Students are strongly encouraged to purchase at least one set. HGS biochemistry molecular model sets are recommended and are available at Research Stores in the Old Science Building. Other relevant texts and references: Greene; Wuts. “Protective Groups in Organic Synthesis” Nicolaou, K.C.; Sorensen, E. “Classics in Total Synthesis” Nicolaou, K.C.; Snyder, S. “Classics in Total Synthesis II” Larock, R. C. "Comprehensive Organic Transformations" Hartwig, J. “Organotransition Metal Chemistry: From Bonding to Catalysis” Tsuji, J. “Palladium Reagents and Catalysts” Hegedus, L. “Transition Metals in the Synthesis of Complex Organic Molecules” Problem Sets: Problem Sets will be distributed on Tuesdays (or before) and are due by the next Saturday at the Homework Session.
    [Show full text]
  • Therapeutic Review Exploring Antimicrobial Potential of Hydrazones As Promising Lead
    Available online a t www.derpharmachemica.com Scholars Research Library Der Pharma Chemica, 2011, 3(1):250-268 (http://derpharmachemica.com/archive.html) ISSN 0975-413X CODEN (USA): PCHHAX Therapeutic Review Exploring Antimicrobial Potential of Hydrazones as Promising Lead Goldie Uppal, Suman Bala*, Sunil Kamboj and Minaxi Saini M.M. College of Pharmacy, Maharishi Markandeshwar University, Ambala, Haryana, India ______________________________________________________________________________ ABSTRACT This review includes detailed study of structures of various hydrazones synthesized and evaluated for their antimicrobial activity. Hydrazone is a class of organic compounds with structure R 1R2C=NNH 2. Hydrazones containing an azomethine -NHN=CH- proton which leads to an important class of compounds for new drug development. Hydrazones are present in many of the bioactive heterocyclic compounds that are of very important use because of their various biological and clinical applications. Therefore, many researchers have synthesized these compounds as target structures and evaluated their antimicrobial activities. These observations have been guiding for the development of new hydrazones that possess varied biological activities. Key Words: Hydrazones, Hydrazide, Antifungal Activity, Antimicrobial Activity. ______________________________________________________________________________ INTRODUCTION The need to design new compounds to deal with the resistant strains has become one of the most important areas of research today. Hydrazone is a versatile moiety that exhibits a wide variety of biological activities. A hydrazone is a class of organic compounds with the structure R1R2C=NNH 2. Hydrazones are basically related to ketones and aldehydes. Hydrazones are formed by the replacement of the oxygen of carbonyl compounds with the -NNH 2 functional group. Hydrazones act as reactants in many important reactions e.g.
    [Show full text]
  • Appendix I: Named Reactions Single-Bond Forming Reactions Co
    Appendix I: Named Reactions 235 / 335 432 / 533 synthesis / / synthesis Covered in Covered Featured in problem set problem Single-bond forming reactions Grignard reaction various Radical couplings hirstutene Conjugate addition / Michael reaction strychnine Stork enamine additions Aldol-type reactions (incl. Mukaiyama aldol) various (aldol / Claisen / Knoevenagel / Mannich / Henry etc.) Asymmetric aldol reactions: Evans / Carreira etc. saframycin A Organocatalytic asymmetric aldol saframycin A Pseudoephedrine glycinamide alkylation saframycin A Prins reaction Prins-pinacol reaction problem set # 2 Morita-Baylis-Hillman reaction McMurry condensation Gabriel synthesis problem set #3 Double-bond forming reactions Wittig reaction prostaglandin Horner-Wadsworth-Emmons reaction prostaglandin Still-Gennari olefination general discussion Julia olefination and heteroaryl variants within the Corey-Winter olefination prostaglandin Peterson olefination synthesis Barton extrusion reaction Tebbe olefination / other methylene-forming reactions tetrodotoxin hirstutene / Selenoxide elimination tetrodotoxin Burgess dehydration problem set # 3 Electrocyclic reactions and related transformations Diels-Alder reaction problem set # 1 Asymmetric Diels-Alder reaction prostaglandin Ene reaction problem set # 3 1,3-dipolar cycloadditions various [2,3] sigmatropic rearrangement various Cope rearrangement periplanone Claisen rearrangement hirstutene Oxidations – Also See Handout # 1 Swern-type oxidations (Swern / Moffatt / Parikh-Doering etc. N1999A2 Jones oxidation
    [Show full text]
  • Convergent Total Synthesis and Preliminary Biological Investigations
    Norrislide: Convergent Total Synthesis and Preliminary Biological Investigations Author: Krista Elizabeth Granger Persistent link: http://hdl.handle.net/2345/731 This work is posted on eScholarship@BC, Boston College University Libraries. Boston College Electronic Thesis or Dissertation, 2009 Copyright is held by the author, with all rights reserved, unless otherwise noted. Boston College The Graduate School of Arts and Sciences Department of Chemistry NORRISOLIDE: CONVERGENT TOTAL SYNTHESIS AND PRELIMINARY BIOLOGICAL INVESTIGATIONS a dissertation by KRISTA ELIZABETH GRANGER submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy August 2009 © copyright by KRISTA ELIZABETH GRANGER 2009 Norrisolide: Convergent Total Synthesis and Preliminary Biological Investigations Krista Elizabeth Granger Thesis Advisor: Professor Marc L. Snapper Abstract • Chapter 1: A review of Shapiro reactions as a coupling strategy in natural product total synthesis. The syntheses of lycoramine, galanthamine, yuehchukene analogues, ovalicin, studies toward the ingenol core, haemanthidine, pretazettine, tazettine, crinamine, Taxol, colombiasin A, elisapterosin B, the AB ring fragment of spongistatin 1 and 8-epipuupewhedione are discussed. Ar O S O nBuLi Li E+ E NH R' R' N R R R' R • Chapter 2: The convergent total synthesis of the marine natural product norrisolide is described. Both subunits, the hydrindane core and the norrisane side chain, are prepared in an asymmetric fashion through kinetic resolution and enantioselective cyclopropanation, respectively. A Shapiro reaction couples the two fragments and a Peterson olefination installs the 1,1-disubstituted olefin. O O MeO OTBS AcO MeO O O O O N Me Me Me MeO O O Me Li O OP H H Me Me Me Me norrisolide H Me Me • Chapter 3: Preliminary experiments to isolate the biological target of norrisolide through reductive alkylation and tritium labeling are investigated.
    [Show full text]
  • Rearrangement and Trapping of Organozinc Carbenoids
    Rearrangement and Trapping of Organozinc Carbenoids A Thesis Presented by Donogh John Roger O’Mahony In Partial Fulfilment of the Requirements for the Award of the Degree DOCTOR OF PHILOSOPHY of the UNIVERSITY OF LONDON Christopher Ingold Laboratories, Department of Chemistry, University College London, London WCIH OAJ. August 1995 ProQuest Number: 10016794 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest 10016794 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 ABSTRACT Abstract This thesis is divided into six chapters. Chapter one presents a review on metallocarbenoid chemistry and is divided into three parts. The first part gives a general survey of the influence of substituents on the reactivity and stability of free carbenes. The second part describes the reactions of transition metal carbenoids, particularly in relation to the oxidation state of the metal and the stoichiometry of carbenoid generation. The final part discusses the reactions of zinc carbenoids and the means of their formation. Chapter two is prefaced by a review on the generation and reactivity of organozinc carbenoids within the group, coupled with a mechanistic study of their formation.
    [Show full text]
  • Shapiro Reaction
    Robinson annulation The Robinson annulation is an organic reaction used to convert a ketone and an α,β-unsaturated ketone to a cyclohexenone using base. The mechanism begins with deprotonation with the base of the α-hydrogen of the ketone to form an enolate. The enolate then does a 1,4 addition to the conjugated olefin (Michael addition), which then abstracts a proton from water to form a diketone. Deprotonation of the other α-hydrogen with base forms another enolate which then does in intramolecular attack on the ketone group to give a cyclic alkoxy intermediate. Protonation of the alkoxy and a final elimination step result in the cyclo-hexenone produc. Mechanism The Wittig reaction or Wittig olefination is a chemical reaction of an aldehyde or ketone with a triphenyl phosphonium ylide (often called a Wittig reagent) to give an alkene and triphenylphosphine oxide. Reaction type:Nucleophilic Addition then Elimination Alkene formation from carbonyl compounds and phosphonium ylides, proceeding primarily through the proposed betaine and/or oxaphosphetane intermediates. The stereoselectivity can be controlled by the choice of ylide, carbonyl compound, and reaction conditions. When the ylide is replaced with a phosphine oxide carbanion, the reaction is referred to as the Horner reaction. When the ylide is replaced with a phosphonate carbanion, the reaction is referred to as the Horner-Emmons- Wadsworth reaction. The “Wittig Reaction” is one of the premier methods for the synthesis of alkenes. It uses a carbonyl compound as an electrophile, which is attacked by a “phosphorus ylide”. The Wittig reaction is nicely complementary to the aldol condensation, in which carbonyl compounds are attacked not by a phosphorus ylide but by an enolate.
    [Show full text]
  • Name Reactions
    Name Reactions A Collection of Detailed Reaction Mechanisms Bearbeitet von Jie Jack Li 1. Auflage 2002. Buch. xviii, 417 S. Hardcover ISBN 978 3 540 43024 7 Format (B x L): 15,5 x 23,5 cm Gewicht: 780 g Weitere Fachgebiete > Chemie, Biowissenschaften, Agrarwissenschaften > Chemie Allgemein Zu Leseprobe schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Table of Contents Preface ................................................................................................................XIII Abbreviations.......................................................................................................XV 1. Abnormal Claisen rearrangement..............................................................1 2. Alder ene reaction......................................................................................2 3. Allan–Robinson reaction ...........................................................................3 4. Alper carbonylation...................................................................................5 5. Amadori glucosamine rearrangement........................................................7 6. Angeli–Rimini hydroxamic acid synthesis................................................8
    [Show full text]
  • The Merck Index
    Browse Organic Name Reactions ● Preface ● 4CC ● Acetoacetic Ester Condensation ● Acetoacetic Ester Synthesis ● Acyloin Condensation ● Addition ● Akabori Amino Acid Reactions ● Alder (see Diels-Alder Reaction) ● Alder-Ene Reaction ● Aldol Reaction (Condensation) ● Algar-Flynn-Oyamada Reaction ● Allan-Robinson Reaction ● Allylic Rearrangements ● Aluminum Alkoxide Reduction ● Aluminum Alkoxide Reduction (see Meerwein-Ponndorf-Verley Reduction) ● Amadori Rearrangement ● Amidine and Ortho Ester Synthesis ● Aniline Rearrangement ● Arbuzov (see Michaelis-Arbuzov Reaction) ● Arens-van Dorp Synthesis ● Arndt-Eistert Synthesis ● Auwers Synthesis ● Babayan (see Favorskii-Babayan Synthesis) ● Bachmann (see Gomberg-Bachmann Reaction) ● Bäcklund (see Ramberg-Bäcklund Reaction) ● Baeyer-Drewson Indigo Synthesis ● Baeyer-Villiger Reaction ● Baker-Venkataraman Rearrangement ● Bakshi (see Corey-Bakshi-Shibata Reduction) ● Balz-Schiemann Reaction ● Bamberger Rearrangement ● Bamford-Stevens Reaction ● Barbier(-type) Reaction ● Barbier-Wieland Degradation ● Bart Reaction ● Barton Decarboxylation ● Barton Deoxygenation ● Barton Olefin Synthesis ● Barton Reaction http://themerckindex.cambridgesoft.com/TheMerckIndex/NameReactions/TOC.asp (1 of 17)19/4/2005 20:00:21 Browse Organic Name Reactions ● Barton-Kellogg Reaction ● Barton-McCombie Reaction ● Barton-Zard Reaction ● Baudisch Reaction ● Bauer (see Haller-Bauer Reaction) ● Baumann (see Schotten-Baumann Reaction) ● Baylis-Hillman Reaction ● Béchamp Reduction ● Beckmann Fragmentation ● Beckmann Rearrangement
    [Show full text]
  • A Synthetic Route to Polymeric Carbohelicenes and Cyclic Derivatives
    University of Nevada, Reno A Synthetic Route to Polymeric Carbohelicenes and Cyclic Derivatives A thesis submitted in partial fulfillment of the Requirements for the degree of Master of Science in Chemistry By William B. Thompson Dr. Benjamin T. King/Thesis Advisor December, 2014 i Abstract The King group’s interest is in the synthesis of polycylic aromatic hydrocarbons (PAHs) for their wide range of applications in materials, electronics, and mechanical properties.1 The primary focus of my own synthetic efforts in PAHs involves the production of polymeric carbohelicenes and their cyclic derivatives. Traditional methods for synthesizing helicenes structure use cross coupling of two phenanthrenes with desired functional groups. The final synthetic step usually involves a single reaction to close the ring and complete the helicenes such as Diels-Alder,2 carbenoid couplings,3or photocyclisation.4 Our own approach to synthesizing carbohelicenes is to synthesize a polymer precursor, poly{4,6-di((1E)-(2-2H)-propenyl])-m-phenylene), followed by a ring closing metathesis reaction (RCM) to stitch up the helicene. Our route is eight synthetic steps starting from commercially available m-xyene. The sequential steps involve bromination of m-xylene by electrophilic aromatic substitution, with a 70-74% yield, followed by a benzylic bromination with a 75-78% yield. Next a hydrolysis is performed using ZnBr2 in acetic acid yielding the dialdehyde in 75-80%. A double Wittig reaction follows using ethyltriphenylphosphonium bromide to obtain on average 65% yield of a mixture of EE, EZ, and ZZ isomers. Through optimization, we obtained a 95:5:0 ratio of our Wittig product (EE, EZ, and ZZ, checked by GC-MS).
    [Show full text]
  • Wilkes, Antonia (2015) Towards the Synthesis of the ABC Tricycle of Taxol
    Wilkes, Antonia (2015) Towards the synthesis of the ABC tricycle of Taxol. PhD thesis. http://theses.gla.ac.uk/5885/ Copyright and moral rights for this thesis are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Glasgow Theses Service http://theses.gla.ac.uk/ [email protected] Towards the Synthesis of the ABC Tricycle of Taxol Antonia Wilkes (MChem) Thesis submitted in part fulfillment of the requirements for the Degree of Doctor of Philosophy School of Chemistry College of Science & Engineering July 2013 Abstract Taxol is one of the world’s most successful drugs used in the treatment of cancers. Isolated from the bark of the Pacific yew tree (Taxus brevifolia), it is a molecule of great interest within organic chemistry; with six total syntheses and a number of synthetic works having been published since its discovery. A semi-convergent synthesis of an intermediate in Holton’s synthesis was planned. The overall synthetic plan is shown below. The A ring would be installed by an intramolecular pinacol condensation. The BC bicycle would be closed by ring-closing metathesis at C10- C11. The ketone at C12 would be protected as an alkyne and the BC bicycle precursor would be obtained by coupling fragment A and the C ring.
    [Show full text]