Research Experiences for High School Science and Math Teachers

Summer 2002

Advanced Research Program/ Advanced Technology Program

Texas Higher Education Coordinating Board

July 2002

Supplemental Grants for High School Science and Math Teachers B Summer 2002

The Advanced Research Program/Advanced Technology Program (ARP/ATP) were created by the Legislature in 1987 as competitive grants programs for faculty members at Texas institutions of higher education. More than 400 research projects are funded each biennium in a number of different disciplines and research areas.

In January 1999, the Texas Higher Education Coordinating Board extended the programs to provide small supplementary grants to existing grantees who employ high school science and mathematics teachers to work on these projects during the summer. The grants are used by research faculty members primarily to pay for the teachers= salaries for the four to nine weeks they will work in the university laboratories and to cover costs for laboratory supplies and travel.

This program helps build linkages between high school teachers and university research faculty, gives the teachers experiences that they will carry back to their classrooms, and results in increased interest in science and engineering among high school students.

Forty-six teachers participated in research projects in summer 2001. At the end of the summer, almost all of the responding faculty researchers and high school teachers judged the program to be excellent or good.

This document lists the teachers and faculty members participating in the program during summer 2002, and briefly describes the work that each teacher will do.

This summer, teachers are working on projects at 13 different universities, five health-related institutions, and one experiment station. Teachers are engaged in a wide variety of different activities ... from computer modeling to sample preparation to using various scientific instruments to make measurements.

Projects at ... begin on page ...

Baylor College of Medicine...... 1

Lamar University ...... 1

Midwestern State University...... 2

Southwest Texas State University...... 2

Sul Ross State University...... 5

Texas A&M University...... 6

Texas A&M University at Corpus Christi ...... 7

Texas A&M University at Galveston...... 7

Texas A&M University System Health Science Center...... 8

Texas Agricultural Experiment Station ...... 8

Texas Tech University...... 11

Texas Tech University Health Sciences Center...... 12

University of Houston ...... 13

University of North Texas Health Science Center at Fort Worth..... 16

The University of Texas at Arlington ...... 17

The University of Texas at Austin...... 19

The University of Texas at Dallas...... 21

The University of Texas-Pan American ...... 22

The University of Texas M.D. Anderson Cancer Center ...... 22

TEXAS HIGHER EDUCATION COORDINATING BOARD ADVANCED RESEARCH PROGRAM/ADVANCED TECHNOLOGY PROGRAM SUPPLEMENTARY GRANTS FOR HIGH SCHOOL SCIENCE AND MATH TEACHERS SUMMER 2002

Teachers and Professors Teacher activity as described by grantee

Kathreen Lee Polyethyleneimine-Gene Therapy Given by Aerosol: An Effective Treatment for Pulmonary Biology and Physics teacher Metastases YES College Preparatory School Houston Ms. Lee will play an important role in our Technology Development Transfer project aimed at developing aerosol gene delivery technology for clinical application in the treatment of lung cancer in human Charles L. Densmore pediatric patients. This technology uses a tumor suppressor gene (p53) and/or a cytokine gene (IL-12) Professor in a unique and patented nonviral formulation which appears to be highly effective in animal tumor Department of Molecular Physiology models while exhibiting very low toxicity. Ms. Lee has worked with our collaborator on this grant, Dr. Baylor College of Medicine Genie Kleinerman, of the M.D. Anderson Cancer Center and is already familiar with some of the methodology that will be used. This makes her efforts for the coming summer even more valuable. Ms. Lee has expertise in areas of molecular biology that will enable her to work on redesigning the plasmids we are using in an effort to increase the persistence of gene expression. Such an improvement could potentially make the difference between success and failure in our planned pediatric cancer trials. She will also be involved with animal tumor and tissues culture studies and aerosol particle size studies. These studies should enable Ms. Lee to transfer her research experience to the classroom.

Bonnie J. Ardoin Super-Porous Titania/NLO-Coated Fiber Optic Photoreactor for Environmental Applications Chemistry teacher West Brook High School Ms. Ardoin will work with two research assistants, under the supervision of the principal investigators, on Beaumont the synthesis of aerogel TiO2, coating of TiO2 mixed with a nonlinear optical crystal (LiB3O5 or KNbO3) on optical fibers, and measurement of photocatalytic oxidation efficiency of a selected volatile organic Daniel H. Chen compound in air. These research activities need strong chemistry knowledge and laboratory Professor experiences. Ms. Ardoin will have the opportunity to learn and use a Nova surface analyzer, X-ray Chemical Engineering Department fluorescence spectrometer GC-FID, and GC-MS. It is estimated to take three weeks in each of the Lamar University above tasks. Ms. Ardoin will learn from the laboratory work, interact with the research personnel, and have the opportunity to contribute to this emerging technology in air pollution control. It will have a significant impact on the high school science teaching.

1 Teachers and Professors Teacher activity as described by grantee

Janice Lack Internet- and Component-Based Modeling System for Lake Water Quality and Fish Habitat Chemistry teacher Projections Central High School Beaumont The goal of this research is to develop a modeling system to predict water quality and fish habitat in lakes, which can be accessed by users via the internet. These projections require complex numerical Xing Fang models that integrate various physical and biochemical processes, e.g. hydrodynamics, air-water surface Professor exchange, and biochemical reactions. The system is designed for three user levels: (1) general Civil Engineering Department audience, more specifically, science class students in high school, (2) inexperienced and (3) Lamar University experienced water quality modelers. Ms. Janice Lack will work on the project and continue her literature review in the areas of lake ecology, limnology, lake water quality, and water chemistry. Based on her understanding on what has been taught in high school science classes, she will assess and assemble information that should be presented on internet for high school science students to learn water quality and fish habitat models for lakes. She will use advanced web technology and organize information on the project internet site (http://lakefish.lamar.edu) in HTML and DHTML format with multimedia images. She will participate in a research group meeting with Co-Principal Investigators at the University of Houston and Southwest Texas State University.

Cerise Wuthrich Flexible Integrated Caching Approach (FICA) for Efficient Content Delivery in Wireless Internet Algebra and Computer Science teacher The research project involves the use of web through wireless devices. Ms. Wuthrich will develop web Archer City High School pages based on the new WML mark-up language. Ms. Wuthrich will then monitor those web pages, Archer City which will be accessed by students, gathering data with respect to navigation aspects of the defined hyperlinks. This data will be later utilized in the simulation of web caching described in the main Nelson Luiz Passos research project. Expected results include the preparation of Ms. Wuthrich for work in a wireless Professor environment and her training on the development of a web site under such conditions. Ms. Wuthrich will Computer Science Program also have direct participation in the main research topic by preparing the required simulation data and Midwestern State University making observations to be used in future papers describing the research results.

Steve Michaud Improvement of the Performance of Thermoplastic Polymers and Thermosets by Addition of Physics teacher Fluoropolymers Harlandale High School San Antonio Mr. Michaud will work on the characterization of materials made possible by the early phases of this grant. He will use microscopy techniques such as scanning force microscopy and scanning friction Patrick Cassidy microscopy to characterize surface changes at a nanoscale level. Mr. Michaud has previously worked at Professor Southwest Texas State University in the physics department. Department of Chemistry and Biochemistry Southwest Texas State University

2 Teachers and Professors Teacher activity as described by grantee

Matt Holmes Species Recognition Versus Mate-Quality Recognition Biology teacher Lanier High School Part 3 of this Advanced Research Program project consists of observing the behavior of male sailfin Austin mollies in the field to determine whether their behavior in the lab correlates with their behavior in their natural setting. Matt is familiar with observing fish in the field because his project last year in the Caitlin Gabor Principal Investigator’s lab consisted of observing and recording male behavior in a nearby population. Professor Matt and the Principal Investigator will videotape male interactions in each of the sympatric populations Department of Biology from which males are tested by visually following males until they move out of sight. They will then bring Southwest Texas State University the tapes into the lab and obtain the following data. For each focal male (1) the male’s size class will be estimated, and we will count (2) the number of conspecific males, (3) the number of females within two body lengths from the focal male, and (4) the number of mating attempts (thrusting, and displays) and aggressive interactions.

Ken Bowen Polymer-Derived Nanowires for Integrated Circuit Strategies Chemistry teacher New Braunfels High School Mr. Bowen will dry-blend block copolymers with the goal of developing improved nanopore/nanowire New Braunfels devices. Mr. Bowen will gain experience discerning dynamical variables such as volume fraction. This is the variable, when adjusted properly, that has been found to give the required texture for nanopore Heather Galloway development. Working with faculty to undergraduate students, Mr. Bowen will prepare solutions of block Professor copolymer/homopolymer blends in good solvents, poor solvents, and theta solvents available for spin- Department of Technology casting. While the literature shows only theta solvents as those for spin-casting, other solvents will be Southwest Texas State University explored in an effort to gain understanding of the behavior of the blend systems in terms of the nanopore development.

Mr. Bowen’s experience will be enhanced through professional activities such as technical meetings, group discussions, and individual presentations. The experience gained through these interactions will be returned to the classroom environment. Furthermore, Mr. Bowen will gain experience in the use of super-critical carbon dioxide film processing. Atomic force microscopic analyses will be done under the expert supervision of the physics department.

3 Teachers and Professors Teacher activity as described by grantee

Teresa A. Taylor Microarray-Based Neuropathology Studies Biology teacher Smithson Valley High School Astrogliosis is a characteristic response of astrocytes in the central nervous system (CNS) to injury and Spring Branch a broad spectrum of degenerative diseases such as multiple sclerosis (MS), Alzheimer’s and HIV-1 encephalitis. Recent studies have identified important marker molecules related to neurological Joseph R. Koke pathology. The goal of the research described here is to use these antibodies with the chip-based Professor immunosorbent assay system established at The University of Texas at Austin for the determination of Department of Biology clinically important neuropathology marker molecules in tissue culture supernatants, plasma and Southwest Texas State University cerebrospinal fluid samples. The long-term objective is to use this novel assay system as a research tool in conjunction with cellular and animal studies conducted in parallel at Southwest Texas State University to increase our understanding of the inflammatory and pathological processes that occur in neural tissue.

Ms. Taylor has experience in immunocytochemistry from previous summer Advanced Technology Program teacher programs. Her activities in this project will primarily be immunostaining of cells cultured under normal conditions and comparison of these to cells grown on micro-array chips, as part of establishing baseline conditions for the cell-based taste chip assay. This will expose her to new aspects of biotechnology and enhance her ability to teach from a first-hand perspective.

The studies described in this proposal will answer the following questions: 1) can chip-based microsphere arrays (subsequently referred to as “Taste Chips”) provide a practical, rapid detection of conditions leading to astrogliosis (and thus a rapid detection or diagnosis of the presence of neurological disorders); 2) can we use the Taste Chip to better understand the factors that cause astrocytes to become reactive (cause astrogliosis); and 3) can we use the Taste Chip to determine if and how astrocytes confer the reactive state on each other? Successfully answering these questions will significantly advance detection, understanding, and effective treatment of nerve tissue injury.

4 Teachers and Professors Teacher activity as described by grantee

Judith A. Koke Biodesulfurization of Recalcitrant Organosulfur Compounds Aquatic Science and Biology teacher Smithson Valley High School The overall goal of Judith Koke’s summer research project will be to screen a library of enzymes for Spring Branch enhanced activity and broadened specificity. One of the overall goals of this Advanced Technology Program funded project is to screen a library of genetically engineered bacteria for the ability to Linette M. Watkins desulfurize one- and two-ring recalcitrant organosulfur compounds in crude oil, and Mrs. Koke’s summer Professor research will be directed at achieving this goal. She will work directly with the principal investigator and Department of Chemistry and the co-Principal Investigator learning new techniques in analytical biochemistry. Specifically, Mrs. Koke Biochemistry will learn how to conduct high throughput screening of the library using growth-based assays. Bacteria Southwest Texas State University isolated from the screening experiments will be used to treat hydrodesulfurized fuel. Mrs. Koke will perform the experiment to characterize the ability of these newly identified strains to remove recalcitrant organo sulfur compounds from fuel.

Prior to receiving her teaching certificate, Mrs. Koke worked as a laboratory technician for 20 years. Her previous laboratory experience will enable Mrs. Koke to quickly learn the new techniques in molecular biology and biochemistry and be a productive member of the research group. In addition to contributing to the success of the Advanced Technology Program funded project, the techniques learned and the knowledge gained by Mrs. Koke will be incorporated into the curriculum of her biology classes and her students will ultimately benefit from this research experience.

Amy Causey Microbial Pathogens and Multi-Drug Resistant Bacteria in Irrigation Water and on Vegetables Biology and Environmental Science teacher Ms. Causey will perform genetic characterization and strain typing of antibiotic resistant bacterial strains Fort Davis High School isolated from irrigation waters derived from the Rio Grande. Isolates of Escherichia coli and Fort Davis Enterococcus sp. will be genetically characterized for resistance to several antibiotics using PCR primers. The enterococcal bacteria will be identified to species using a combination of clinical Keith L. Sternes identification kits and PCR analysis. Identification to strain in order to determine genetic relatedness of Professor same species isolates will be undertaken using restriction digests of bacterial DNA that is then separated Department of Biology using pulsed field gel electrophoresis. Techniques used during this supplemental grant research Sul Ross State University endeavor, will include: bacterial isolation from sediment and water, DNA isolation from Gram positive and Gram negative organisms, restriction enzyme digest of DNA, gel electrophoresis, pulsed field gel electrophoresis, and polymerase chain reaction.

5 Teachers and Professors Teacher activity as described by grantee

Janet Hassan Analysis of a Statistical Host-Parasite Model for Bees and Mites Calculus and Algebra teacher Science Academy of South Texas This grant would support Janet Hassan’s participation in research on stochastic logistic models for Mercedes African bee colonies. The deterministic logistic population growth model is central in population ecology. Janet Hassan, supported by a 1999 Supplemental Grant, was an active participant and is a co-author on James Matis a paper accepted in Ecological Modeling, which develops a saddlepoint approximation for the Professor equilibrium distribution of the stochastic logistic model. The new methodology is relatively easy to use, Department of Statistics and we expect that it will greatly expand the use of the stochastic logistic model in quantative ecology. Texas A&M University Our current research is extending the biological realism of the previous model, including the addition of multiple colony ‘births’. The research would again develop cumulant approximations directly from assumed (or known) population kinetic parameters for bee colonies, and then substitute these approximations into third-order saddlepoint approximations. Ms. Hassan would again participate actively in helping to develop a new scientific paper and in assisting with a research workshop.

Carol McNamara Lead Exposure and Polydrug Self-Administration Biology teacher Bryan High School Ms. McNamara will work 40 hours per week in a drug self-administration laboratory that is supervised by Bryan Dr. Jack R. Nation (Principal Investigator). Ms. McNamara will be integrally involved in all phases of a project that is designed to evaluate the effects of developmental (gestation/lactation) lead or cadmium Jack R. Nation exposure on the intravenous self-administration of cocaine or heroin. Her activities will include surgery Professor and placement of catheters into the jugular vein of adult male rats that have been exposed to metals in Department of Psychology early development. In addition, Ms. McNamara will be responsible for maintaining patency of the Texas A&M University catheters and collecting and analyzing data during the grant period. Also, Ms. McNamara will acquire skills in the use of statistical packages such as SigmaStat and graphic design. At the conclusion of the project, Ms. McNamara will assist in preparing a written manuscript that summarizes the findings from the project. This manuscript will be submitted to an appropriate scientific journal and Ms. McNamara will be included as a co-author.

6 Teachers and Professors Teacher activity as described by grantee

Sharon Doramus Extension of HF Radar for Water Currents and Direct Observation of Transport Model Geometry, Algebra and Calculus Coefficients teacher Calallen High School Managing our coastal resources requires “nowcasts” and “forecasts” of coastal hydrodynamics. This Corpus Christi includes currents, waves, and water quality parameters. This Technology Development and Transfer (TDT) project will extend HF radar applications to predict the origins and fates of oil spills, water quality, James S. Bonner and thermal and contaminant plume tracking. In addition, we are furthering our environmental sensor Professor capabilities in the Gulf of Mexico nearshore waters by deploying in-situ real-time sensors that can Conrad Blucher Institute monitor such parameters as particle sizes, total suspended solids, etc. The HF radar and the in-situ Texas A&M University-Corpus monitoring instruments complement our modeling efforts in that the data from the radar system can be Christi used in groundtruthing our hydrodynamic models and the environmental sensor data helps us verify/calibrate our water quality models.

As we develop these methods of predicting the dispersion of crude oil using HF radar, field verification will be conducted using tracer studies in . Ms. Doramus will have opportunities to work in the field while the tracer studies are being conducted. The fieldwork will also include working with the in-situ environmental sensors as they are calibrated and deployed in Corpus Christi Bay. In addition, Ms. Doramus will work with our graduate students on the modeling. This prediction aspect of the research is particularly intriguing to her and she foresees integrating components of it into her classroom. In particular, the trigonometry unit of the Pre-Calculus classes would lend itself to the forecasting of waves, etc. As many of these students will take Physics concurrently, she can envision working with the Physics teacher to incorporate some of the research into that course as well.

Daniel J. Hochman Vibrio Parahaemolyticus and Texas Oysters: Biology and Public Health Significance Chemistry teacher Ball High School Mr. Hochman will directly participate in the Seafood Safety Laboratory’s experimental and monitoring Galveston activities involving pathogenic Vibrios associated with Texas oysters. This work includes both bench and field studies designed to elucidate the population levels and spatial distribution of Vibrio John R. Schwarz parahaemolyticus and Vibrio vulnificus. Both of these pathogenic bacteria are present at high densities Professor during the summer months and can cause illness and death in certain high-risk individuals in the general Department of Marine Biology population following raw oyster consumption. Mr. Hochman will expand the training and experience Texas A&M University at Galveston obtained during Summer 2001 by implementing procedures and techniques learned last year in the analysis of this summer’s oyster samples. Specifically, he will determine what environmental conditions are present this year when DNA isolated from Vibrios in oysters matches the DNA of clinical Vibrio specimens isolated from people who in the past have become ill from raw oyster consumption. PFGE and DGGE electrophoretic techniques will be used to determine the degree to which the DNAs match. A written report will be required which details how the newly acquired information can and will be utilized in Mr. Hochman’s classes.

7 Teachers and Professors Teacher activity as described by grantee

Janice Marie Lalor Biological Activities of Citrus Flavonoids Biology teacher Skyline High School Some of the flavonoids have already been purified and sent to our laboratory for testing this summer. Dallas Janice Lalor will participate in all aspects of the research. Under the supervision of Dr. Miller, she will be involved initially in the care and treatment of the animals. In addition, she will help with the processing of Edward G. Miller the tissues for histological evaluation, the analysis of the tumor data, and the preparation of computer Professor generated research presentations. As indicated in Ms. Lalor’s resume, she has worked for two summers Department of Biomedical in this department with another investigator on a Health Science Center Tobacco Research Grant. Sciences During this time, she was cleared for work with animals and was also trained in histological techniques. Texas A&M University System This prior experience will allow her to quickly assume an active role in our research project. In addition, HSC-Baylor College of Dentistry this research project will give Ms. Lalor insight into another primary risk factor for the development of cancer – diet.

Mary Booth Lyle Generating Conditional FMDV Resistance in Cattle by Inducible Ribozyme Degration of IRES RNA Biology and Chemistry teacher Foot-and-mouth disease virus (FMDV) is the cause of a highly contagious disease of cattle and other La Grange cloven-hoofed animals. The FMDV genome is a single-stranded, positive-sense RNA of 8.4 kb which is translated to produce a single polyprotein that is then processed by proteases to mature viral proteins. Patrick Dunne To prevent the spread of the disease to unaffected animals following initial exposure, we propose to Professor express catalytically active sense and antisense RNA (ribozymes) that disrupt the regulatory IRES Department of Veterinary Anatomy element on both plus and minus viral strands. As a first step in developing the system, we propose to And Public Health generate a set of test ribozymes directed to all predicted conserved single-stranded regions in the FMDV Texas Agricultural Experiment IRES. In order to test the efficiency of these constructs, we will fuse the IRES element to a luciferase Station reporter construct and co-transfect BHK cells with IRES-Luciferase and plasmids containing various ribozymes expression cassettes.

Ms. Lyle will participate in the construction of one or more ribozyme expression cassettes and in testing their efficiency in inhibiting FMDV IRES-mediated expression of the reporter. Ms. Lyle will learn some of the basic techniques of molecular biology such as PCR analysis, DNA cloning and DNA sequencing as well as some basic procedures of mammalian cell tissue culture.

8 Teachers and Professors Teacher activity as described by grantee Jasson Brock Conner Conservation of Nitrogen and Phosphorus in Open-Lot Cattle Feedyards Chemistry and Agriculture teacher Amarillo Area Center for Advanced The purpose of this supplemental Advanced Technology Program (ATP) grant for a high school Learning chemistry and wildlife recreational management teacher is to introduce the environmental research Amarillo needs of the Texas Panhandle to area high schools through teacher training, especially for the Amarillo Area Center for Advanced Learning. This training will be designed for Mr. Jasson Conner who teaches L. W. Greene in the Amarillo Independent School District. During week 1, Mr. Conner will be provided a directed study Professor in environmental sciences affecting the Beef Cattle Industry of the Southern High Plains. This work will Department of Animal Science include library research culminating with a seminar to the ATP research team. Following the seminar Texas Agricultural Experiment presentation, a general discussion of the research in progress and research to complete will be Station generated by faculty, staff and students involved with the project. Beginning on week 2 of the training, Mr. Conner’s primary workstation will be the Texas Agricultural Experiment Station Research Feedyard. At the feedyard, Mr. Conner will be responsible for setting up the in vitro air emission chambers to determine volatile ammonia excreted from cattle fed different protein diets. After data samples are collected, Mr. Conner will then work with the laboratory technician to analyze nitrogen and phosphorus concentration in the samples.

Judy Taylor Sustainable Cultivated Pasture Systems for Texas Meat Goats Biology, Physics and Chemistry teacher Judy Taylor will continue her research into the nutritional anti-quality factors found in recently collected Stephenville High School native legume germplasm. She has collected plant material in 2001 from germplasm established in 2000 Stephenville and will collect more material in 2002. These plants will continue to be observed in the field for growth habit, reproductive cycles and productivity. Plant components will be analyzed in the laboratory for plant James P. Muir dry matter concentrations of neutral detergent fiber, acid detergent fiber, acid detergent fiber residue Professor lignin, condensed tannins and macro-minerals including phosphorus and nitrogen. Rumen-fistulated Research and Extension Center goats will also be used to screen both native and introduced legumes for disappearance rates, an Texas Agricultural Experiment indication of digestibility. This material will be summarized in the Agronomy Society of America annual Station meeting where Ms. Taylor will present a paper, with project support, in November 2002.

9 Teachers and Professors Teacher activity as described by grantee Glenda Overfelt Hydrology and Salinity Monitoring and Modeling Along the Middle Rio Grande Environmental Science, Biology, and Chemistry teacher Ms. Overfelt will collect water samples from Lake Amistad, contributing tributaries, groundwater wells, Del Rio High School and rain gauges for isotopic and water quality analysis. She will also be involved in intensive sampling in Del Rio and around Lake Amistad for the Advanced Technology Program. Ms. Overfelt will participate with investigators to calculating Lake Amistad’s water balance and contributing sources for lake salinity. Ranjan S. Muttiah Professor Blackland Research and Extension Center Texas Agricultural Experiment Station

David Nitsche Development of an Early Warning System for Sorghum Ergot Using Doppler Radar and the NPET Biology teacher Network Amarillo Center for Advanced Learning A major aspect of our research will be to determine the specific environmental conditions that favor Amarillo disease development. Dave Nitsche will be involved in greenhouse and laboratory studies that relate specific temperature and moisture regimes to disease incidence and severity. He will help set up Charlie Rush experiments, maintain the study, and collect data. He will learn how to identify the fungal pathogen that Professor causes sorghum ergot and how to work with the organism. He will learn standard microbiological Department of Animal Science procedures for working with plant pathogens, how to inoculate plants with pathogens, and how to Texas Agricultural Experiment reisolate pathogens from infected tissue. He will be exposed to numerous procedures and techniques Station for identifying and differentiating plant pathogens. Based on this experience, Mr. Nitsche should be able to set up new lessons for his biology classes that focus on plant-disease relationships. This is a subject seldom taught in traditional high school classrooms.

10 Teachers and Professors Teacher activity as described by grantee

Pamela Sharrock Anti-Edema Mechanisms: Nitric Oxide and Thromboxane in the Regulation of Lymphatic Biology and Chemistry teacher Function Centerville Jr/Sr High School Centerville Mrs. Sharrock will be working with a laboratory team consisting of two veterinary students, one undergraduate student, one laboratory technician and the principal investigator in a study designed to Randolph H. Stewart investigate the mechanisms involved in the control of lymphatic function and regulation of tissue fluid Professor volume. Mrs. Sharrock will be involved in the acquisition, preparation and instrumentation of the Department of Veterinary Physiology lymphatic vessels to be evaluated. She will become familiar with the computer-based system used to and Pharmacology acquire, record and analyze data from the experiments and will be primarily responsible for this aspect of Texas Agricultural Experiment the studies. This data acquisition system (PowerLab, ADInstruments) is particularly suited for use in a Station high school laboratory setting because of its flexibility and ease of use and the company’s commitment to supplying and supporting teaching laboratories. Mrs. Sharrock will be able to incorporate, not only the techniques learned, but also the knowledge gained concerning the scientific method and biological control systems into her biology and chemistry classes.

Sonja Crowell Room Temperature Ionic Liquids – Novel Media for Chemical Separations Physics and Chemistry teacher Lubbock High School Mrs. Crowell will be involved in the preparation of new ionic liquids, determination of their physical Lubbock properties, and application in metal ion separations by microcyclic polyethers.

Richard A. Bartsch Professor Department of Chemistry and Biochemistry Texas Tech University

11 Teachers and Professors Teacher activity as described by grantee

Rubeth Griffing Vibrational Dynamics of Microconfined Liquids Biology, Chemistry and Physics teacher Ms. Griffing worked on this project last summer. She learned how to synthesize and fabricate O’Donnell High School nanoporous glasses using the sol-gel method. She was shown how Raman spectroscopic O’Donnell measurements were carried out on liquids confined in these nanoporous glasses. Her main focus last summer was in the analysis of Raman data, specifically, smoothing and fitting the data to Lorentzian Edward L. Quitevis lineshapes. This summer, she will actually run the Raman spectrometer to obtain data on her own. She Professor will use the Raman spectrometer to obtain spectra of neat liquids and then spectra of liquids confined in Department of Chemistry and nanoporous glasses. She will use glass samples that she helped prepare last summer. Using the Biochemistry methods she learned last summer, she will smooth the Raman data for both the neat and confined Texas Tech University liquids. The smoothed data will then be further analyzed using autoregressive analysis to understand the effect of confinement on the Raman lineshape. She will help in the preparation of figures and tables for poster presentations and manuscripts.

Tobi McMillan Clinical Trial of Oral Interferon Alpha in Idiopathic Pulmonary Fibrosis Physical Sciences, Biology, Anatomy Physiology teacher This project involves a Phase 2 clinical trial of an experimental drug for possible treatment of a rare Lubbock-Cooper High School disease that compromises the exchange of gases in the lungs. Life expectancy after diagnosis is 4.5 Lubbock years and there is no objective evidence that any current treatment increases either the time of survival or the quality of life. In this study, subjects will be treated with the study drug for 12 months and periodic Lorenz O. Lutherer, M.D. assessment will be made of their pulmonary function and progression of their disease. Professor Department of Physiology Tobi McMillan, under supervision of the Principal Investigator and the Clinical Research Nurse, will Texas Tech University Health interview potential subjects, explain the study to them, maintain contact with the subjects during the Sciences Center study, observe the various tests being done, be involved in data collection and initial data analysis. Through these activities and interaction with the Principal Investigator, Ms. McMillan will obtain information to take back to her classroom about the processes involved in developing new treatments for diseases. These include integrating information from the literature that suggests a drug might be efficacious for treating a certain disease, designing a study to test possible efficacy, getting approval of the study design from the FDA and the institutional IRB, running the study and evaluating the results.

On days that no subjects are scheduled for clinic visits and data processing is up-to-date, we propose to involve Ms. McMillan in some ongoing animal studies exploring the mechanisms for the respiratory responses made by our subjects in order to compensate for the damage to their lungs. This will give Ms. McMillan a hands-on experience with the same measurements done in the patients. This secondary experience will very closely compliment what will be seen in the clinical study. Therefore, it will contribute to her having a better understanding of what is going on in the clinical study and make it easier for her to take a complete and meaningful story back to the classroom.

12 Teachers and Professors Teacher activity as described by grantee

Richard Lee Franks Proton Pumps at Cell’s Surface are Targets to Halt Angiogenesis and Metastasis in Breast Physics, Astronomy, Geology and Cancer Cell Aquatic Sciences teacher Lubbock High School We hypothesize that plasmalemmal vacuolar type H+-ATPase (pmV-ATPase) activity at the plasma Lubbock membrane can create pH gradients in tumor cells. Whether this is sufficient to create a proton motive force (PMF) to drive ATP synthesis via F0/F1 ATP synthase (putatively located also at the cell’s Raul Martinez-Zaguilan surface), will be tested in this study. To study pH gradients, cells will be intracellularly loaded with Professor SNARF-1, a pH fluorescent indicator. Then, the pH gradients will be monitored by confocal/spectral Department of Physiology imaging microscopy. These approaches will allow Mr. Franks to study pH regulation in discrete Texas Tech University Health subplasmalemmal regions at the single cell level. Pharmacological approaches should allow us to Sciences Center evaluate the interaction between these pumps. Thus, Mr. Franks will be exposed to two state-of-the-art techniques used to monitor ions with high spatial, temporal and spectral resolution. Because of his background in chemistry and physics, Mr. Franks is well suited for this study. Mr. Franks will further benefit because he will learn about working with living cells.

Gary Fortenberry Detection of Airborne Mycotoxins Produced by Fungi in “Sick Buildings” Biology and Chemistry teacher Monterey High School Research in our laboratory has examined the role of microbial contaminants in buildings reported to have Lubbock indoor air quality (IAQ) problems. We have shown that in over 95 percent of “sick” buildings, fungi growing on wetted building surfaces have been the principal source of the problem. Most notably, David C. Straus Penicillium, Aspergillus and Stachybotrys species have been found growing in heating, ventilation and Professor air-conditioning systems and on building surfaces. These fungal species produce a number of potent Department of Microbiology mycotoxins. In order to better understand the role of mycotoxins in sick building syndrome, we propose and Immunology the following objectives that Mr. Fortenberry will be involved in: 1.) He will learn how to grow fungi on Texas Tech University Health various building products. 2.) He will learn how to characterize and isolate said mycotoxins. 3.) He will Sciences Center learn how to assay for these mycotoxins employing various chemical and biological assays.

Thaddeus E. Hughes Thrust and Exhaust Diagnostics for the Variable Specific Impulse Magnetoplasma Rocket Physics teacher Memorial Senior High School Mr. Hughes worked with us last summer. He participated in the design of the RPA array that we have Houston constructed for installation in the VASIMR rocket at NASA/JSC. He spent much of his time learning to use the software required to carry out his tasks. This year, we propose to take advantage of the skills Edgar A. Bering, III and knowledge developed last year to conduct an investigation into the spatial structure of the VASIMR Professor exhaust plume and to compare that with model predictions. This activity will involve taking and Physics Department interpreting data from the operation of the VASIMR taken with the instrument he helped design last University of Houston summer.

13 Teachers and Professors Teacher activity as described by grantee

Powder Compaction Mechanisms in Manufacturing of Pharmaceutical Solid Products Emily Gresham

Electronics and Physics teacher A series of experiments are being conducted at the Materials Laboratory of the University of Houston. Memorial High School The purpose of the experiments is to determine the constitutive relations of pharmaceutical powders. Houston This information is important for developing analytic models of compaction processes. Ms. Gresham will

be participating in these experiments, including making the specimens from powders, designing and Yi-Chao Chen conducting the compaction tests, taking measurements, and collecting and analyzing the data. Professor Department of Mechanical Engineering University of Houston

Belinda Stanley Chemoprevention of Skin Cancers by Novel Derivatives of Tempol in Mice and Cultures Biology and Chemistry teacher St. Thomas’ Episcopal School There will be two types of experiments that Ms. Stanley will perform with the support of this grant. The Houston first set of experiments involves the use of cultured cancer cell lines, and the second one employs a hairless mouse model. Both culture and mouse models will be subjected to UV irradiation to induce Diana Chow cellular damages. The damages in culture cells will be evaluated by MTT cell survival assay. The Professor treatment of BE-TOPS with various doses and durations, before and after the irradiation will be Department of Pharmacological and assessed for its chemopreventive and therapeutic potentials against the damages, respectively. Pharmaceutical Sciences University of Houston The study with mice will include short-term and long-term UV irradiations on the animal, followed by sacrificing the mice and harvesting skin samples. The UV-induced changes in the expression of tumor suppression gene, p53, with and without the BE-TOPS treatment will be evaluated using an established immunohistochemical kit.

Tricia N. Aguas Thin Film Optical Detector for Retinal Implantations: a “Bionic Eye.” Biology teacher John H. Reagan High School Ms. Aguas will participate in fabrication process of the detector in the Bionic Eye project as follows: Houston 1. Photolithography – Activities in this process include spinning time, pre-baking of the photoresist, uv exposure and development. Alex Ignatiev Professor 2. Transferring to a polymer carries – Activities include wet etching of the fabricated device for Space Vacuum Epitaxy Center transferring them from the original substrate to a Polymer film. University of Houston

14 Teachers and Professors Teacher activity as described by grantee

Amanda M. Moranville Dielectric Resonator Antenna Applications in Wireless Communications Algebra teacher Samuel Clemens High School Ms. Moranville will assist the Principal Investigator and the graduate assistants involved in the research Schertz in several key tasks. She will learn to use the electromagnetics software package, HFSS, to simulate various dielectric resonator antenna geometries in the vicinity of other conducting bodies. The results of Stuart A. Long these simulations will then be correlated and graphed using Excel. In addition, Ms. Moranville will assist Professor the group with literature searches, both at the library and on the web, and will participate in the Department of Electrical and preparation of journal articles and outside proposals for future funding. Computer Engineering University of Houston

W. Peyton Schuller Integrated Multifunctional Fluorescence Sensors for Real Time Environmental Effluents and Physics teacher Water Analysis John H. Reagan High School Houston Mr. Schuller will perform a market feasibility study for the sensors developed during the project. Mr. Schuller will also participate in the fabrication process and testing of the prototype devices developed Nasr-Eddine Medelci during the project. This testing will include electrical and spectral characterization. Professor Space Vacuum Epitaxy Center University of Houston

Clyde Alan Price Self-Aligned Multi-Color Photodetectors Based on III-Nitrades for Advanced Flame/Fire Detection Chemistry teacher John H Reagan High School During his previous work at the University of Houston, Mr. Price has shown excellent hands-on Houston experience and skills. On this project, Mr. Price will work on the development and fabrication of small equipment parts for the processing and characterization of the Nitride based flame/fire detector David Starikov prototype. Professor Space Vacuum Epitaxy Center University of Houston

15 Teachers and Professors Teacher activity as described by grantee

Gary W. Himmler Scale-Up of Ceramic Composite Components for Advanced Mining and Aerospace Applications Math, Physics, Chemistry and Computer Science teacher Mr. Himmler will continue to support our scale-up efforts through completion of the following projects: Lutheran South Academy 1) Develop reliability models for the 80% Si3 N4 material developed for optimum properties in large Houston thickness 2) Work with undergraduate students to collect necessary mechanical property data to validate Kenneth W. White model. Professor Department of Mechanical I expect this work to be his own effort and result in a publication. Engineering University of Houston

JoAnn S. Yannazzo Function and Regulation of Polycystin-2 in C. Elegans – A Model for Polycystic Kidney Disease Anatomy/Physiology, Chemistry and Microbiology teacher Research will include testing chemicals on the nematode Caenorhabditis Elegans to observe their effect North Side High School – High on intracellular calcium ion channels. Fluorescent techniques will be used to quantitate the amount of School of Medical Professions calcium ions inside the cells. Fort Worth

Peter Koulen Professor Department of Pharmacology and Neuroscience University of North Texas Health Science Center at Fort Worth

16 Teachers and Professors Teacher activity as described by grantee

Judi Maddox Neural and Biochemical Mechanisms Associated with the Affective/Motivational Determinant of Biology teacher Pain Midlothian High School Midlothian It is expected that Judi Maddox will become actively involved in all of the methodological components that are listed in the procedure sections outlined in the current Advanced Research Program funded Perry Fuchs research proposal. More specifically, experiments that address specific aim 2 will be completed during Professor the summer months. Specific aim 2 is designed to explore the role of the cingulated cortex on Department of Psychology mechanical hyperalgesia and place avoidance behavior. The methodology requires the induction of The University of Texas at Arlington hyperalgesia using tight ligation of the L5 spinal nerve, behavioral measurements of mechanical hyperalgesia and escape/avoidance behavior, chronic stereotaxic implant of stimulating electrode and guide cannula within the region of the anterior cingulated cortex, and focal brain stimulation and intracerebral microinjection techniques. In most cases, it takes about 3-6 months of training in all the techniques that are listed. However, I do not expect Ms. Maddox to master all of the techniques, but will be directly involved in either performing the majority of the techniques, or at least assisting graduate students and the principal investigator. Ms. Maddox will also be exposed to data entry, data analysis and writing of final projects as part of normal daily ongoing research activities.

Jennifer Stimpson Nonlinear Optical Devices Fabricated by Ionic Self-Assembled Monolayer Techniques Chemistry teacher Yvonne A. Ewell Townview Magnet Ms. Stimpson will be involved in our interdisciplinary research on nonlinear optical devices fabricated by Center the ionic self-assembled monolayer technique. She will do laboratory work on the preparation of cationic Dallas organic polymers and will be involved in the self-assembly of these materials onto substrates such as glass. The alternating layers of the cationic polymer and an anionic polymer, which can be built up to Martin Pomerantz several hundred bilayers and which provides the nonlinear optical properties, will be prepared using our Professor robotic system. Department of Chemistry and Biochemistry Since this is an interdisciplinary project, Ms. Stimpson will work closely with electrical engineers and The University of Texas at Arlington physicists who will study the optical properties of the systems and devices she prepares and who will make additional devices from her materials. She will present her work at our group meetings and will also learn about the other aspects of the project from the talks by the students and postdoctoral associates working on the project. Not only will Ms. Stimpson learn considerable new chemistry but she will learn some engineering and physics and how interdisciplinary research is carried out, all of which will help her in her teaching. Involvement in this interdisciplinary state-of-the-art research program will also help to keep her enthusiastic about teaching chemistry. We also plan on discussing how we might get involved in the education of high school students to try and pique their interest in chemistry and physics, and in science and engineering in general.

17 Teachers and Professors Teacher activity as described by grantee

Jay B. Atman Newly Discovered Radiation Detector: Nanometer-Size Liquid Crystal Droplets Dispersed in Physics teacher Polymer James Martin High School Arlington Mr. Atman is a highly-regarded physics teacher at Martin High School in Arlington. This grant will provide him with an excellent opportunity to experience modern techniques of optical characterization of Suresh C. Sharma materials. He will gain invaluable hands-on experience with laser spectroscopy and radiation detectors. Professor I am sure that he will pass his experience, enthusiasm, and knowledge to his students. Department of Physics The University of Texas at Arlington

Rodney M. Bond Mathematical Analysis of Fluid Fingering Problems in Porous Media Physics, Algebra, and Computer Science teacher Mr. Bond will continue his summer research project on fluid fingering after his successful work last Lamar High School summer. He has accomplished the analytic study of short-term and long-term behavior of Hele-Shaw Arlington flow. This summer, Mr. Bond will undertake the following activities: (1) Finish the coding part of new numerical scheme; (2) Computer simulation of Hele-Shaw flow under various boundary conditions; (3) Jianzhong, Su Compare the fingerings in Hele-Shaw flow and Reaction flow; and (4) Incorporate the moving grid Professor technique in computer simulation of fluid fingering. Department of Mathematics The University of Texas at Arlington Mr. Bond will participate in department weekly seminars and meet with the Principal Investigator regularly to discuss progress of the research projects. Also, Mr. Bond will be provided with an office and access to computational facilities in the department to assist his research activities. In all, Mr. Bond will bring his expertise and contributions to this project. Meanwhile, his experience in this summer project will also help to bring him closer to the frontier of applied mathematics research which in turn benefits the high school students that Mr. Bond teaches during the regular school year.

18 Teachers and Professors Teacher activity as described by grantee

Brian Cummings Application of Cell Recognition Technology to Environmental Studies of Harmful Algal Blooms Physics and Chemistry teacher Port Aransas High School The purpose of the Advanced Technology Program grant is to test a new technology, the FlowCam, for Port Aransas recognition of red tide cells in natural plankton samples. Red tides in Texas are caused by a toxic dinoflagellate Karenia brevis, which contains a potent neurotoxin and causes extensive fish kills along Edward J. Buskey the coast of Texas. The FlowCam combines the capabilities of a flow cytometer (laser excitation of cells Professor to measure size and chlorophyll content) with digital image capture of each cell and image analysis to Marine Science Institute identify cells in a plankton sample based on size and shape characteristics. The University of Texas at Austin We will just be beginning this project in the summer of 2002, so Mr. Cummings would be involved in initial trials of the FlowCam. Mr. Cummings would be involved in both field and laboratory studies. In the laboratory Mr. Cummings would learn phytoplankton and zooplankton culture methods. Red tide cultures would be grown, and studies of zooplankton feeding rates on red tide would be carried out using the FlowCam to count red tide cells. Mr. Cummings would also participate in field sampling of plankton populations so that these samples could be screened for red tide cells. This would provide Mr. Cummings with an excellent opportunity to experience both laboratory and field studies of marine science.

Dr. Charlotte May Speedy Delivery – A new Approach for VLSI and Broadband Packaging Interconnect Design Calculus and Algebra teacher Bowie High School The goal of this summer project is to investigate new applications for Speedy Delivery Technology. Thus Austin far, the focus of the research effort during the past two years has been the development of applications related to electrical energy pulse propagation in one-dimensional transmission lines. One example is in Robert Flake Testing Technology for locating and the evaluation of impairments in telephone lines used for Broadband Professor DSL data transmission. Analogous test methodologies are found in geophysical exploration involving Department of Electrical and acoustical energy signals. There are more examples in other fields. Many of these potential Computer Engineering applications of Speedy Delivery Technology involve signal propagation in two or three spatial The University of Texas at Austin propagation. The preliminary investigation of Speedy Delivery pulse propagation behavior in higher dimensions and in various media will be carried out using spreadsheet data analyses and associated graphical visualization tools. Dr. May has prior experience with spreadsheet tools and is proficient in their use. Her assistance in these preliminary studies this summer would be a valuable contribution to the research effort.

19 Teachers and Professors Teacher activity as described by grantee

Sarah F. Griffin Reliability in Electronics Packaging: A New Design-Testing Paradigm Algebra and Geometry teacher Westwood High School The project objectives are to develop new design and testing paradigms to increase the reliability of Austin solder joints connecting electronic integrated circuits (IC) to printed wiring boards (PWB). Modeling and experimental efforts have been underway for two years. Experimental efforts include thermal cycling Glenn Y. Masada electronic assemblies (ICs soldered to PWBs) for the past two years. Assemblies are periodically Professor removed from cycling and destructively tested to determine the evolution of cracks and material changes Department of Mechanical in the solder. Engineering The University of Texas at Austin Ms. Griffin will be responsible for developing a teaching module on electronics packaging that would be an appropriate resource for high school students. The web-based module would include background material on electronics packaging (types, geometries, material properties), critical issues (reliability, size and heat constraints), and future trends. Appropriate links and text will be developed. Ms. Griffin will also help in gathering and analyzing the data and determine trends based upon the data – take optical microscope pictures of the solder joints, measure the shape, size and orientation of crack areas, and apply image processing and statistical programs to determine the correlations between joint locations, number of cycles, types of solders, crack area, and crack orientation.

Heather K. Pedraza Towards Early Cancer Detection: A Novel Functionally-Integrated Cytoskeleton Model Physics and Chemistry teacher Stephen F. Austin High School The project objective is to determine if pre-cancerous cervical cells demonstrate detectable changes in Austin their cytoskeletal elasticity which are reliable precursors of cancer. The project will develop a quantitative modeling and experimental framework to study the cytoskeleton, its elastic response and the Tess J. Moon in vivo contributions of actin filament and microtubules. The experimental part of the study will Professor characterize cytoskeletal elasticity with a series of in vivo whole cell elasticity measurements from an Department of Mechanical optical stretcher and an atomic-force-microscope on normal and malignantly transformed cell lines. Ms. Engineering Pedraza will be responsible for developing a teaching module on cell structures that would be an The University of Texas at Austin appropriate resource for high school students. The web-based module would include background material on cell structures (types, geometries, material properties) and how these properties change in diseased cells. Appropriate links and text will be developed. Ms. Pedraza will also aid in the model development, carry out experiments, and participate in the data reduction analysis.

20 Teachers and Professors Teacher activity as described by grantee

Donna Slaughter Dying Stars, Living Planets Biology. Chemistry, Physics and Astronomy teacher Ms. Slaughter will carry out observations of white dwarf stars at The University of Texas’ McDonald Stony Point High School Observatory using the recently completed Argos CCD prime-focus, high-speed photometer. She will Round Rock assist in the reduction, analysis and interpretation of the data. The goal is to discover new pulsating white dwarf stars and use variations of the pulse arrival times to search for reflex orbital motion as a Don Winget signature of extrasolar planets. This is the first search sensitive enough to detect planetary systems Professor dynamically similar to our own. Ms. Slaughter will be a co-author on publications of the research we Department of Astronomy carry out this summer. She will participate in the full spectrum of scientific research from planning to The University of Texas at Austin publication, and co-author the scientific papers we submit based on our research.

Lee R. Silva MT Contrast Agents: A New Paradigm in Molecular Imaging Biology teacher Clark High School The goal of this research is to develop a new type of MRI contrast agent that “responds” to various Plano biological events inside the human body. We have recently discovered a new class of lanthanide complexes wherein a Ln3+-bound water molecule is in slow exchange with bulk water. The goal of this A. Dean Sherry summer project is to synthesize a series of tetra-amide ligands with four appended peptide side chains Professor that form a secondary structure above a Ln3+-bound water molecule. The peptide will be synthesized on Department of Chemistry a peptide synthesizer using standard Fmoc solid phase peptide synthesis protocols. Purification will be The University of Texas at Dallas carried out using reverse phase HPLC. Circular dichroism will be used to characterize the secondary structure and folding properties of the purified peptides. We will then test the hypothesis that water exchange with bulk solvent can be altered by enzymatic cleavage of those peptide chains thereby exposing the bound water to bulk solvent. This will be detected using magnetization transfer NMR techniques.

21 Teachers and Professors Teacher activity as described by grantee

Miguel Torres A Fuzzy-Based Human Reliability System for Web-Based ACLS Training and Performance Algebra and Geometry teacher McAllen High School Miguel Torres will work on: McAllen • Basic evaluation and analysis of the fuzzy-based human reliability model for the ACLS web- Miguel A. Gonzalez based program. Professor • Assisting the Principal Investigator on the research and evaluation of the web-based ACLS Engineering Department training. The University of Texas-Pan • Aid in the improvement and application of the web-based ACLS program by gathering crucial American data from end-users from the medical field.

Jessica Zenker Polyethyleneimine-Gene Therapy Given by Aerosol: An Effective Treatment for Pulmonary Biology teacher Metastases YES College Preparatory School Houston Ms. Zenker will play an important role in our Advanced Technology Program/Technology Development Technology (ATP/TDT) projects aimed at developing an aerosol gene therapy technology for treatment Eugenie S. Kleinerman, M.D. of lung cancer and other pulmonary diseases in human patients. This technology uses a therapeutic Professor gene complexed with a cationic polymer which appears to be highly effective in transfecting lung tissue Division of Pediatrics in vivo while exhibiting little or no toxicity. Ms. Zenker will work in our labs at M.D. Anderson and in the The University of Texas M. D. labs of our ATP/TDT collaborator at Baylor College of Medicine on several aspects of this important Anderson Cancer Center project. She will conduct tissue culture studies to screen new modifications of our polymer-gene formulations in an effort to further optimize the antitumor responses that we have already reported in several animal models. She will learn PCR technology needed to study the biodistribution and clearance of these formulations after they are delivered to the lungs by fine particle aerosol. Ms. Zenker will also assist in histological studies to determine which cell types in the lungs exhibit the highest degree of uptake of the aerosol-delivered complexes and which regions subsequently exhibit the highest degree of gene expression. These studies should enable Ms. Zenker to transfer her research experience to the classroom.

22

Summary of 2002 Supplemental Grants Awards and Participants

Supplemental Grants to High School Science and Math Teachers B Summer 2002

Awards by Program and Year of Original Award

1999 Projects 2001 Projects Totals Number of Dollars Number of Dollars Number of Dollars Program Awards Awarded Awards Awarded Awards Awarded

ARP 6 $ 45,900 12 $ 85,500 18 $131,400 ATP 9 $ 66,600 15 $111,600 24 $178,200 TDT 1 $ 8,100 4 $ 29,700 5 $ 37,800

Totals 16 $120,600 31 $226,800 47 $347,400

Projects selected in the 1999 and 2001 Advanced Research Program and Advanced Technology Program (ARP/ATP) grants competitions were eligible to receive Supplemental Grants to High School Teachers for summer 2002. Technology Development and Transfer (TDT) grants are made in the ATP to commercialize research discoveries.

One of the teachers participating in this summer research program has a doctoral degree, 20 have master=s degrees (including 10 Master of Science degrees), and 26 have bachelor=s degrees (including 18 Bachelor of Science degrees). The doctoral degree was awarded in math education. The master=s and bachelor=s degrees were awarded in various areas of science, math, education, and engineering.

23

Supplemental Grants to High School Science and Math Teachers – Summer 2002

Gender of Participants by Program

Teachers Investigators Program Male Female Total Male Female Total

ARP 6 12 18 16 2 18

ATP 10 14 24 21 3 24

TDT 1 4 5 4 1 5

Totals 17 30 47 41 6 47

Technology Development and Transfer (TDT) grants are made in the ATP to commercialize research discoveries.

Most of the participating teachers are female, while most of the investigators are male.

Twenty of the teachers also participated in the 2001 supplemental grants program. Six of the teachers participated in both the 2000 and 2001 programs and one participated in all four years of the program. Twelve of the teachers will be working with the professor who supervised their research during the summer of 2001. One teacher has worked with the same professor for all four summers. Seventeen of the professors with 2002 supplemental grants also received 2001 grants. Two of the professors have participated in all four summers.

24

Name Index

Aguas, Tricia N...... 14 Himmler, Gary W...... 16 Pedraza, Heather K...... 20 Ardoin, Bonnie J...... 1 Hockman, Daniel J...... 7 Pomerantz, Prof. Martin ...... 17 Atman, Jay B...... 18 Holmes, Matt ...... 3 Price, Clyde Alan ...... 15 Bartsch, Prof. Richard A...... 11 Hughes, Thaddeus E...... 13 Quitevas, Prof. Edward L ...... 12 Bering, Prof. Edgar A., III ...... 13 Ignatiev, Prof. Alex...... 14 Rush, Prof. Charlie...... 10 Bond, Rodney M...... 18 Kleinerman, Prof. Eugenie S...... 22 Schuller, W. Peyton ...... 15 Bonner, Prof. James S...... 7 Koke, Prof. Joseph R...... 4 Schwarz, Prof. John R...... 7 Bowen, Ken...... 3 Koke, Judith A ...... 5 Sharma, Prof. Suresh C...... 18 Buskey, Prof. Edward J...... 19 Koulen, Prof. Peter ...... 16 Sharrock, Pamela ...... 11 Cassidy, Prof. Patrick...... 2 Lack, Janice ...... 2 Sherry, Prof. A. Dean...... 21 Causey, Amy...... 5 Lalor, Janice Marie ...... 8 Silva, Lee R...... 21 Chen, Prof. Daniel H...... 1 Lee, Kathreen...... 1 Slaughter, Donna ...... 21 Chen, Prof. Yi-Chao...... 14 Long, Prof. Stuart A...... 15 Stanley, Belinda ...... 14 Chow, Prof. Diana...... 14 Lutherer, Prof. Lorenz O...... 12 Starikov, Prof. David...... 15 Conner, Jasson Brock...... 9 Lyle, Mary Boothe...... 8 Sternes, Prof. Keith L...... 5 Crowell, Sonja...... 11 Maddox, Judi ...... 17 Stewart, Prof. Randolph H ...... 11 Cummings, Brian ...... 19 Martinez-Zaguilan, Prof. Raul...... 13 Stimpson, Jennifer...... 17 Densmore, Prof. Charles L ...... 1 Masada, Prof. Glenn Y...... 20 Straus, Prof. David C ...... 13 Doramus, Sharon...... 7 Matis, Prof. James...... 6 Su, Prof. Jianzhong...... 18 Dunne, Prof. Patrick...... 8 May, Charlotte, Ph.D...... 19 Taylor, Judy...... 9 Fang, Prof. Xing...... 2 McMillan, Tobi...... 12 Taylor, Teresa A...... 4 Flake, Prof. Robert...... 19 McNamara, Carol ...... 6 Torres, Miguel ...... 22 Fortenberry, Gary...... 13 Medelci, Prof. Nasr-Eddine...... 15 Watkins, Prof. Linette M...... 5 Franks, Richard Lee...... 13 Michaud, Steve...... 2 White, Prof. Kenneth W ...... 16 Fuchs, Prof. Perry ...... 17 Miller, Prof. Edward G...... 8 Winget, Prof. Don...... 21 Gabor, Prof. Caitlin ...... 3 Moon, Prof. Tess J...... 20 Wuthrich, Cerise ...... 2 Galloway, Prof. Heather...... 3 Moranville, Amanda M...... 15 Yannazzo, JoAnn S ...... 16 Gonzalez, Prof. Miguel A ...... 22 Muir, Prof. James P...... 9 Zenker, Jessica...... 22 Greene, Prof. L. W ...... 9 Muttiah, Prof. Ranjan S ...... 10 Gresham, Emily ...... 14 Nation, Prof. Jack R...... 6 Griffin, Sarah F...... 20 Nitsche, David ...... 10 Griffing, Rubeth...... 12 Overfelt, Glenda ...... 10 Hassan, Janet ...... 6 Passos, Prof. Nelson Luiz ...... 2

Related documents available from the Division of Finance, Campus Planning and Research:

Research Experiences for High School Science Teachers, Summer 2001

Follow-Up Report on the Summer 1999 Supplemental Program to Provide Research Experiences for High For further information about this program, contact: School Science and Math Teachers, June 2000 Dr. Linda Domelsmith Advanced Research Program/Advanced Technology Texas Higher Education Coordinating Board Program Fiscal Year 1999 Progress Report with a Division of Finance, Campus Planning and Research Special Report on Texas-Mexico Border Research P.O. Box 12788 1998 – 2000 Austin, Texas 78711 (512) 427-6150 Advanced Research Program/Advanced Technology Program, 2001 Program Announcements E-mail: [email protected]

Advanced Research Program/Advanced Technology Program, Report of Awards, May 2002

Information is also available on our website: http://www.arpatp.com

The Texas Higher Education Coordinating Board does not discriminate on the basis of race, color, national origin, gender, religion, age or disability in employment or the provision of services.

v Printed on Recycled Paper