American Chemical Society Division of Cellulose and Renewable Materials ACS Spring 2020 National Meeting G. Larkin, Program Chai

Total Page:16

File Type:pdf, Size:1020Kb

American Chemical Society Division of Cellulose and Renewable Materials ACS Spring 2020 National Meeting G. Larkin, Program Chai American Chemical Society Division of Cellulose and Renewable Materials ACS Spring 2020 National Meeting G. Larkin, Program Chair; W. Thielemans, Program Chair SUNDAY MORNING Renewable Molecules & Materials: Anselme Payen Award Symposium in Honor of Ann- Christine Albertsson K. J. Edgar, Organizer; U. Edlund, Organizer; M. Ek, Organizer; S. Percec, Organizer; V. Percec, Organizer; L. Berglund, Presiding; W. Thielemans, Presiding Papers 1-8 A Century of Cellulose: The Past, Present & Future of Cellulose & Renewable Materials T. Budtova, Organizer; M. Godshall, Organizer; G. M. Larkin, Organizer; S. M. Murphy, Organizer; G. W. Selling, Organizer; G. Selling, Presiding; S. Vignolini, Presiding Papers 9-12 New Horizons: Early Career Researchers in Renewable Materials B. Frka-Petesic, Organizer; S. Vignolini, Organizer; H. Yang, Organizer; B. Frka-Petesic, Presiding Papers 13-21 Lignin as a Renewable Substrate for Polymers: From Molecular Understanding & Isolation to Targeted Applications L. Berglund, Organizer; M. K. Johansson, Organizer; M. Lawoko, Organizer; P. Olsén, Organizer; R. Rojas, Organizer; O. Sevastyanova, Organizer; M. Lawoko, Presiding; O. Sevastyanova, Presiding Papers 22-29 Advances in Methodology for Structural Characterization of Cellulosic & other Polysaccharide-Based Systems S. Kim, Organizer; Y. Ogawa, Organizer; P. Penttilä, Organizer; Y. Ogawa, Presiding; P. Penttilä, Presiding; S. Kim, Presiding Papers 30-37 SUNDAY AFTERNOON A Century of Cellulose: The Past, Present & Future of Cellulose & Renewable Materials T. Budtova, Organizer; M. Godshall, Organizer; G. M. Larkin, Organizer; S. M. Murphy, Organizer; G. W. Selling, Organizer; G. Selling, Presiding; E. D. Cranston, Presiding Papers 38- 40 New Horizons: Early Career Researchers in Renewable Materials B. Frka-Petesic, Organizer; S. Vignolini, Organizer; H. Yang, Organizer; H. Yang, Presiding Papers 41-48 Lignin as a Renewable Substrate for Polymers: From Molecular Understanding & Isolation to Targeted Applications L. Berglund, Organizer; M. K. Johansson, Organizer; M. Lawoko, Organizer; P. Olsén, Organizer; R. Rojas, Organizer; O. Sevastyanova, Organizer; M. Lawoko, Presiding Papers 49- 56 Advances in Methodology for Structural Characterization of Cellulosic & other Polysaccharide-Based Systems S. Kim, Organizer; Y. Ogawa, Organizer; P. Penttilä, Organizer; Y. Ogawa, Presiding Papers 57- 64 Renewable Molecules & Materials: Anselme Payen Award Symposium in Honor of Ann- Christine Albertsson K. J. Edgar, Organizer; U. Edlund, Organizer; M. Ek, Organizer; S. Percec, Organizer; V. Percec, Organizer; T. Iwata, Presiding Papers 199-206 SUNDAY EVENING General Posters G. M. Larkin, Organizer; W. Thielemans, Organizer; Papers 65-150 MONDAY MORNING Renewable Molecules & Materials: Anselme Payen Award Symposium in Honor of Ann- Christine Albertsson K. J. Edgar, Organizer; U. Edlund, Organizer; M. Ek, Organizer; S. Percec, Organizer; V. Percec, Organizer; S. Percec, Presiding; L. Zhang, Presiding Papers 151-158 Functionalization of Nanocelluloses for Electrical, Optical, Magnetic, Barrier & Topochemical Properties H. Jameel, Organizer; L. A. Lucia, Organizer; L. A. Lucia, Organizer; L. Pal, Presiding Papers 159-166 New Horizons: Early Career Researchers in Renewable Materials B. Frka-Petesic, Organizer; S. Vignolini, Organizer; H. Yang, Organizer; S. Vignolini, Presiding Papers 167-174 Lignin as a Renewable Substrate for Polymers: From Molecular Understanding & Isolation to Targeted Applications L. Berglund, Organizer; M. K. Johansson, Organizer; M. Lawoko, Organizer; P. Olsén, Organizer; R. Rojas, Organizer; O. Sevastyanova, Organizer; P. Olsén, Presiding; M. K. Johansson, Presiding Papers 175-182 Advances in Methodology for Structural Characterization of Cellulosic & other Polysaccharide-Based Systems S. Kim, Organizer; Y. Ogawa, Organizer; P. Penttilä, Organizer; Y. Ogawa, Presiding; P. Penttilä, Presiding; S. Kim, Presiding Papers 183-190 MONDAY AFTERNOON Renewable Molecules & Materials: Anselme Payen Award Symposium in Honor of Ann- Christine Albertsson K. J. Edgar, Organizer; U. Edlund, Organizer; M. Ek, Organizer; S. Percec, Organizer; V. Percec, Organizer; U. Edlund, Presiding Papers 191-198 Functionalization of Nanocelluloses for Electrical, Optical, Magnetic, Barrier & Topochemical Properties H. Jameel, Organizer; L. Pal, Organizer; L. Pal, Organizer; L. A. Lucia, Presiding Papers 207- 212 3D Printing of Functional Biomaterials: Think Big! L. A. Lucia, Organizer; L. Pal, Organizer; L. Pal, Presiding Papers 213-217 Lignin as a Renewable Substrate for Polymers: From Molecular Understanding & Isolation to Targeted Applications L. Berglund, Organizer; M. K. Johansson, Organizer; M. Lawoko, Organizer; P. Olsén, Organizer; R. Rojas, Organizer; O. Sevastyanova, Organizer; L. Berglund, Presiding Papers 218- 223 Innovative Lignin Upgrading: Smart Materials & Specialty Chemicals C. Crestini, Organizer; H. Lange, Organizer; M. K. Osterberg, Organizer; M. Sipponen, Organizer; C. Crestini, Presiding; M. K. Osterberg, Presiding Papers 224-229 MONDAY EVENING Sci-Mix W. Thielemans, Organizer; G. M. Larkin, Organizer; Papers 142, 110, 106, 138, 94, 105, 125, 117, 108, 126, 81, 86, 144, 96, 98, 145, 134 TUESDAY MORNING Renewable Molecules & Materials: Anselme Payen Award Symposium in Honor of Ann- Christine Albertsson K. J. Edgar, Organizer; U. Edlund, Organizer; M. Ek, Organizer; S. Percec, Organizer; V. Percec, Organizer; M. K. Ek, Presiding; R. Narayan, Presiding Papers 230-237 Nanocellulose: From Fundamentals to Function T. Abitbol, Organizer; S. Kedzior, Organizer; E. Niinivaara, Organizer; M. Reid, Organizer; T. Abitbol, Presiding; S. Kedzior, Presiding; E. Niinivaara, Presiding; M. Reid, Presiding Papers 238-245 Pitch in Renewable Materials for Early Career Scientists D. Gómez Maldonado, Organizer; M. C. Iglesias, Organizer; M. S. Peresin, Organizer; O. Rojas, Organizer; W. Schlemmer, Organizer; K. Solin, Organizer; S. Spirk, Organizer; M. S. Peresin, Presiding; S. Spirk, Presiding Papers 246-261 Innovative Lignin Upgrading: Smart Materials & Specialty Chemicals C. Crestini, Organizer; H. Lange, Organizer; M. K. Osterberg, Organizer; M. Sipponen, Organizer; M. K. Osterberg, Presiding; H. Lange, Presiding Papers 262-269 Advances in Renewable Materials N. Abidi, Organizer; S. M. Murphy, Organizer; N. Abidi, Presiding; S. M. Murphy, Presiding; M. Johns, Presiding Papers 270-277 TUESDAY AFTERNOON Renewable Molecules & Materials: Anselme Payen Award Symposium in Honor of Ann- Christine Albertsson K. J. Edgar, Organizer; U. Edlund, Organizer; M. Ek, Organizer; S. Percec, Organizer; V. Percec, Organizer; L. Berglund, Presiding Papers 278-284 Historical Perspectives on Cellulose & other Renewable Materials G. M. Larkin, Organizer; G. D. Patterson, Organizer; W. Thielemans, Organizer; N. V. Tsarevsky, Organizer; W. Thielemans, Presiding Papers 285-289 3D Printing of Functional Biomaterials: Think Big! L. A. Lucia, Organizer; L. Pal, Organizer; L. A. Lucia, Presiding Papers 290-294 Innovative Lignin Upgrading: Smart Materials & Specialty Chemicals C. Crestini, Organizer; H. Lange, Organizer; M. K. Osterberg, Organizer; M. Sipponen, Organizer; M. H. Sipponen, Presiding; H. Lange, Presiding Papers 295-300 Cellulose & Renewable Materials for Gas, Air & Water/Liquid Purification U. Edlund, Organizer; A. Mathew, Organizer; A. Mautner, Organizer; T. Tammelin, Organizer; U. Edlund, Presiding; A. Mathew, Presiding Papers 301-306 WEDNESDAY MORNING Colloidal Assembly of Renewable Materials A. Bismarck, Organizer; I. Capron, Organizer; Y. Habibi, Organizer; S. Spirk, Presiding Papers 307-314 Nanocellulose: From Fundamentals to Function T. Abitbol, Organizer; S. Kedzior, Organizer; E. Niinivaara, Organizer; M. Reid, Organizer; T. Abitbol, Presiding; S. Kedzior, Presiding; E. Niinivaara, Presiding; M. Reid, Presiding Papers 315-322 Wood Based Polymers to Tackle Global Challenges K. Heise, Organizer; T. Nypelo, Organizer; S. Spirk, Organizer; K. Heise, Presiding; S. Spirk, Presiding Papers 323-330 Innovative Lignin Upgrading: Smart Materials & Specialty Chemicals C. Crestini, Organizer; H. Lange, Organizer; M. K. Osterberg, Organizer; M. Sipponen, Organizer; H. Lange, Presiding; M. H. Sipponen, Presiding Papers 331-338 Cellulose & Renewable Materials for Gas, Air & Water/Liquid Purification U. Edlund, Organizer; A. Mathew, Organizer; A. Mautner, Organizer; T. Tammelin, Organizer; U. Edlund, Presiding; A. Mathew, Presiding Papers 339-346 WEDNESDAY AFTERNOON Colloidal Assembly of Renewable Materials A. Bismarck, Organizer; I. Capron, Organizer; Y. Habibi, Organizer; G. W. Selling, Presiding Papers 347-354 Nanocellulose: From Fundamentals to Function T. Abitbol, Organizer; S. Kedzior, Organizer; E. Niinivaara, Organizer; M. Reid, Organizer; T. Abitbol, Presiding; S. Kedzior, Presiding; E. Niinivaara, Presiding; M. Reid, Presiding Papers 355-362 Wood Based Polymers to Tackle Global Challenges K. Heise, Organizer; T. Nypelo, Organizer; S. Spirk, Organizer; S. Spirk, Presiding; T. Nypelo, Presiding Papers 363-370 Valorization of Renewable Resources & Residuals into New Materials & Multiphase Systems M. L. Auad, Organizer; J. Campos-Teran, Organizer; O. Rojas, Organizer; M. L. Auad, Presiding Papers 371-378 Cellulose & Renewable Materials for Gas, Air & Water/Liquid Purification U. Edlund, Organizer; A. Mathew, Organizer; A. Mautner, Organizer; T. Tammelin, Organizer; T. Tammelin, Presiding; A. Mautner, Presiding Papers 379-386 THURSDAY MORNING Bio-Based Gels & Porous Materials T. Budtova,
Recommended publications
  • Production of Sugars, Ethanol and Tannin from Spruce Bark and Recovered Fibres
    IENCE SC • VTT SCIENCE • T S E Production of sugars, ethanol and tannin from N C O H I N spruce bark and recovered fibres S O I V Dissertation L • O S G Valorisation of forest industry-related side- and waste streams in a T 76 Y H • R G biorefinery context could help to reduce dependence on fossil I E L S H 76 E G A resources and introduce new value chains and sources of income I R H C for the forest industry. This thesis examined two abundant and H underutilized biomass streams spruce bark and recovered fibres as biorefinery feedstocks for the production of sugars, ethanol and tannin. Hot water extraction of tannins from spruce bark, steam explosion to reduce the recalcitrance of the feedstock towards hydrolytic Production of sugars, ethanol and tannin from spruce... enzymes, enzymatic hydrolysis of bark carbohydrates and fermentation of released sugars to ethanol were demonstrated and the effect of main process parameters studied. Recovered fibres were fractionated from solid recovered fuel, a standardised combustion fuel composed mainly of packaging waste, and the composition and enzymatic digestibility of the material were determined. The effect of pretreatment, solids loading and the use of surfactants on hydrolysis yield was studied. Selected steps for processing spruce bark and recovered fibres were scaled up from laboratory- to small pilot scale.The results of the work carried out in this thesis indicate that the biorefinery concepts presented for spruce bark and recovered fibres have technical potential for industrial application. Production
    [Show full text]
  • Preparation and Physical Properties of the Biocomposite, Cellulose Diacetate/Kenaf Fiber Sized with Poly(Vinyl Alcohol)
    Macromolecular Research, Vol. 18, No. 6, pp 566-570 (2010) www.springer.com/13233 DOI 10.1007/s13233-010-0611-0 Preparation and Physical Properties of the Biocomposite, Cellulose Diacetate/Kenaf Fiber Sized with Poly(vinyl alcohol) Chang-Kyu Lee, Mi Suk Cho, In Hoi Kim, and Youngkwan Lee* Department of Chemical Engineering, Sungkyunkwan University, Suwon 440-746, Korea Jae Do Nam Department of Polymer Engineering, Sungkyunkwan University, Suwon 440-746, Korea Received November 2, 2009; Revised February 5, 2010; Accepted February 9, 2010 Abstract: Cellulose diacetate (CDA)/kenaf fiber biocomposites were prepared using a melting process. In order to increase the fiber density and compatibilize the kenaf fiber with CDA, the fiber was sized with poly(vinyl alco- hol)(PVA). The sized kenaf fiber was compounded with the plasticized CDA using a twin screw extruder, and the opti- mal processing conditions were determined. The incorporated kenaf fiber improved the mechanical and thermal properties of CDA. In the case of the composites containing 30 wt% kenaf fibers, the tensile strength and modulus increased almost 2 and 3 fold, which were 85.6 MPa and 4831 MPa, respectively. The PVA treated kenaf fiber showed better adhesion to the CDA matrix. Keywords: cellulose diacetate, kenaf fiber, PVA, sizing. Introduction CDA, its processability is improved, whereas its unique mechanical properties and thermal stability are deteriorated. Synthetic polymers are widely used in everyday life and In order to increase the physical strength of CDA, the use of are increasingly being used in more diverse areas due to various reinforcing agents were generally accepted.7-9 Natu- their easy processability, permanent stability, low price, and ral fiber is completely biodegraded in the natural environ- antibacterial properties.
    [Show full text]
  • Study on Water Absorption–Dehydration Characteristics for SAP Composite Soil for Rainwater Harvesting
    water Article Study on Water Absorption–Dehydration Characteristics for SAP Composite Soil for Rainwater Harvesting Youwei Qin 1, Tao Yang 1,*, Siyuan Wang 2, Fangling Hou 3, Pengfei Shi 1 and Zhenya Li 1 1 State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Centre for Global Change and Water Cycle, Hohai University, Nanjing 210098, China; [email protected] (Y.Q.); [email protected] (P.S.); [email protected] (Z.L.) 2 Shenzhen Water Planning and Design Institute, Shenzhen 518001, China; [email protected] 3 Nanjing Hydraulic Research Institute, Nanjing 210029, China; fl[email protected] * Correspondence: [email protected] Received: 4 June 2020; Accepted: 21 August 2020; Published: 25 August 2020 Abstract: As a water absorption material, superabsorbent polymer (SAP) has gained its popularity in agriculture and environmental remediations. This study conducted a comparative investigation on saturated water content of cinnamon soil mixed with SAP. Two SAPs, SAP1 and SAP2, with different behaviors were tested, where SAP1 is an organic superabsorbent polymer, and SAP2 is polyacrylic acid sodium salt polymer. The saturated water content of SAP composite cinnamon soil was investigated with the weighing method. The repeated water absorption capacity and dehydration behavior of SAP composite soil under different designed rainfall intensity were investigated with a soil column tester. The results showed that (1) cinnamon soil mixed with SAP increased the saturated soil water content, and SAP1 was more effective than SAP2; (2) SAP held strong water absorption ability and recycling efficiency with eight repeated absorption–dehydration tests; (3) the average dehydration time for SAP composite soil were 626 h and 1214 h under 5-year and 10-year design rainfall intensities.
    [Show full text]
  • Superabsorbent Polymers
    www.scifun.org Superabsorbent Polymers Absorbers and super absorbers If you spill a drink, your first impulse is probably to grab one or more paper napkins or paper towels to soak up, or absorb, the liquid. If the spill is large, several paper towels will be needed. Even a “quicker-picker-upper” can absorb only a small amount of liquid, before it is saturated (has absorbed all it can). What makes materials more or less absorbent in the first place? The answer is in their chemistry. We can harness the chemistry of polymers to build a better absorber: a super absorber. The word “polymer” means “many parts” (from the Greek: poly = many, meros = parts). A chemical polymer is a molecule made of many repeating units, monomers (mono = one, meros = parts), linked together through chemical bonds. It is useful to think of polymers as chains – a good analogy is a chain of paperclips (the monomers), Figure 1. Polymers are very versatile. They can form materials that are rigid like plastic water bottles or materials that are flexible, like plastic grocery bags. Note that polymeric materials are often called “plastics”. Figure 1. A chain of paperclips linked end-to-end like the individual molecules (monomers) that are chemically bonded to form a chemical polymer chain. Some polymers occur naturally. The most common polymer on Earth, cellulose, is a polymer of glucose molecules and is made (as a result of photosynthesis) by essentially every green plant. Cellulose forms part of a plant’s rigid structures, the wood in a tree trunk, for example.
    [Show full text]
  • Development of Slow Release Nano Composite Fertilizer Using
    DEVELOPMENT OF SLOW-RELEASE NANO-COMPOSITE FERTILIZER USING BIODEGRADABLE SUPERABSORBENT POLYMER By Benard Kiplangat Rop I80/50014/2015 Department of Chemistry, University of Nairobi A Thesis Submitted in Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Chemistry of the University of Nairobi November, 2019 1 DECLARATION I declare that this thesis is my original work and has not been submitted elsewhere for examination, award of degree or publication. Where other people’s work or my own has been used, this property has been acknowledged and referenced in accordance with the University of Nairobi’s requirements. Signature____________________ Date__________________________ Benard Kiplangat Rop I80/50014/2015 Department of Chemistry, School of Physical Sciences, University of Nairobi This thesis has been submitted for examination with our approval as research supervisors. 1. Dr. Damaris Mbui Signature________________ Date______________ Department of Chemistry, University of Nairobi 2. Dr. George N. Karuku Signature________________ Date______________ Department of Land Resources & Agricultural Technology, University of Nairobi 3. Dr. Njagi Njomo Signature________________ Date______________ Department of Chemistry, University of Nairobi 4. Dr. Immaculate Michira Signature________________ Date______________ Department of Chemistry, University of Nairobi i DEDICATION My wife Gladys for her constant love, support and encouragement throughout this journey; I couldn’t have done it without you. My sons, Brian, Ian and Allan ii ACKNOWLEDGMENT I would like to sincerely and gratefully thank my supervisors, Dr. Damaris Mbui, Dr. George N. Karuku, Dr. Njagi Njomo and Dr. Immaculate Michira, all from the University of Nairobi for their support, guidance, understanding and friendship during my studies. They gave me an opportunity to work independently with their guidance.
    [Show full text]
  • Sodium Polyacrylate Superabsorbent Polymers SCIENTIFIC
    Sodium Polyacrylate Superabsorbent Polymers SCIENTIFIC Introduction Water from one cup is poured into an “empty” cup (actually containing sodium polyacrylate) and the water “disappears!” Concepts • Polymers • Osmosis • Superabsorbents • Industrial chemistry Materials Sodium polyacrylate, 0.5 g Styrofoam® cups or other opaque containers, 2 Distilled or deionized water, 100 mL Safety Precautions Sodium polyacrylate is nontoxic. However, it is irritating to the eyes and also to nasal membranes if inhaled. Wear chemical splash goggles whenever working with chemicals, heat or glassware. Sodium polyacrylate is an obvious choice for student pranks. Be careful students do not have access to sodium polyacrylate outside of chemistry class. Please review current Material Safety Data Sheets for additional safety, handling, and disposal information. Pre-Lab Preparation Before the students come into the room, place 0.5 g of sodium polyacrylate in one of the Styrofoam cups. Procedure 1. Add approximately 100 mL of distilled or deionized water to the second Styrofoam cup. 2. Tell the students that the water will “disappear” when poured into the other cup. (You can tip the cup forward some- what to show that it is “empty”; it will be difficult to see the 0.5 g of sodium polyacrylate against the white Styrofoam cup.) 3. Slowly pour the water into the cup containing sodium polyacrylate. Swirl the cup a bit (give the sodium polyacrylate time to absorb the water). 4. Tip the cup downward slightly to show the students that the water has “disappeared”! (Don’t turn the cup upside down, or you may dump the jelly-like mass on the floor!) Disposal Please consult your current Flinn Scientific Catalog/Reference Manual for general guidelines and specific procedures, and review all federal, state and local regulations that may apply, before proceeding.
    [Show full text]
  • Commodity Master List
    Commodity Master List 005 ABRASIVES 010 ACOUSTICAL TILE, INSULATING MATERIALS, AND SUPPLIES 015 ADDRESSING, COPYING, MIMEOGRAPH, AND SPIRIT DUPLICATING MACHINE SUPPLIES: CHEMICALS, INKS, PAPER, ETC. 019 AGRICULTURAL CROPS AND GRAINS INCLUDING FRUITS, MELONS, NUTS, AND VEGETABLES 020 AGRICULTURAL EQUIPMENT, IMPLEMENTS, AND ACCESSORIES (SEE CLASS 022 FOR PARTS) 022 AGRICULTURAL IMPLEMENT AND ACCESSORY PARTS 025 AIR COMPRESSORS AND ACCESSORIES 031 AIR CONDITIONING, HEATING, AND VENTILATING: EQUIPMENT, PARTS AND ACCESSORIES (SEE RELATED ITEMS IN CLASS 740) 035 AIRCRAFT AND AIRPORT, EQUIPMENT, PARTS, AND SUPPLIES 037 AMUSEMENT, DECORATIONS, ENTERTAINMENT, TOYS, ETC. 040 ANIMALS, BIRDS, MARINE LIFE, AND POULTRY, INCLUDING ACCESSORY ITEMS (LIVE) 045 APPLIANCES AND EQUIPMENT, HOUSEHOLD TYPE 050 ART EQUIPMENT AND SUPPLIES 052 ART OBJECTS 055 AUTOMOTIVE ACCESSORIES FOR AUTOMOBILES, BUSES, TRUCKS, ETC. 060 AUTOMOTIVE MAINTENANCE ITEMS AND REPAIR/REPLACEMENT PARTS 065 AUTOMOTIVE BODIES, ACCESSORIES, AND PARTS 070 AUTOMOTIVE VEHICLES AND RELATED TRANSPORTATION EQUIPMENT 075 AUTOMOTIVE SHOP EQUIPMENT AND SUPPLIES 080 BADGES, EMBLEMS, NAME TAGS AND PLATES, JEWELRY, ETC. 085 BAGS, BAGGING, TIES, AND EROSION CONTROL EQUIPMENT 090 BAKERY EQUIPMENT, COMMERCIAL 095 BARBER AND BEAUTY SHOP EQUIPMENT AND SUPPLIES 100 BARRELS, DRUMS, KEGS, AND CONTAINERS 105 BEARINGS (EXCEPT WHEEL BEARINGS AND SEALS -SEE CLASS 060) 110 BELTS AND BELTING: AUTOMOTIVE AND INDUSTRIAL 115 BIOCHEMICALS, RESEARCH 120 BOATS, MOTORS, AND MARINE AND WILDLIFE SUPPLIES 125 BOOKBINDING SUPPLIES
    [Show full text]
  • Production of Cellulosic Polymers from Agricultural Wastes
    ISSN: 0973-4945; CODEN ECJHAO E-Journal of Chemistry http://www.e-journals.net Vol. 5, No. 1, pp. 81-85, January 2008 Production of Cellulosic Polymers from Agricultural Wastes A.U. ISRAEL, I.B. OBOT *, S. A. UMOREN, V. MKPENIE and J.E. ASUQUO Department of Chemistry,Faculty of Science, University of Uyo, P.M.B. 1017, Uyo, Nigeria. [email protected] Received 12 May 2007; Accepted 10 July 2007 Abstract: Cellulosic polymers namely cellulose, di-and triacetate were produced from fourteen agricultural wastes; Branch and fiber after oil extraction from oil palm ( Elais guineensis ), raffia, piassava, bamboo pulp, bamboo bark from raphia palm ( Raphia hookeri ), stem and cob of maize plant (Zea mays ), fruit fiber from coconut fruit ( Cocos nucifera ), sawdusts from cotton tree ( Cossypium hirsutum ), pear wood ( Manilkara obovata ), stem of Southern gamba green (Andropogon tectorus), sugarcane baggase ( Saccharium officinarum ) and plantain stem (Musa paradisiaca). They were subjected to soda pulping and hypochlorite bleaching system. Results obtained show that pulp yield from these materials were: 70.00, 39.59, 55.40, 86.00, 84.60, 80.00, 40.84, 81.67, 35.70, 69.11, 4.54, 47.19, 31.70 and 52.44% respectively. The pulps were acetylated with acetic anhydride in ethanoic acid catalyzed by conc. H 2SO 4 to obtain cellulose derivatives (Cellulose diacetate and triacetate). The cellulose diacetate yields were 41.20, 17.85, 23.13, 20.80, 20.23, 20.00, 39.00, 44.00, 18.80, 20.75, 20.03, 41.20, 44.00, and 39.00% respectively while the results obtained as average of four determinations for cellulose triacetate yields were: 52.00, 51.00, 43.10, 46.60, 49.00, 35.00, 40.60, 54.00, 57.50, 62.52, 35.70.
    [Show full text]
  • Benefits of APTA: Case of Cambodia
    03_Study on APTA benefits for Cambodia_August 2009.doc DRAFT Benefits of APTA: Case of Cambodia BY RAJAN SUDESH RATNA1 PROFESSOR CENTRE FOR WTO STUDIES INDIAN INSTITUTE OF FOREIGN TRADE NEW DELHI [email protected] [email protected] 1 The views expressed by author are purely personal and does not reflect the views of the Institute where he is currently working. 1 03_Study on APTA benefits for Cambodia_August 2009.doc DRAFT Benefits of joining APTA: Case of Cambodia Introduction The Asia-Pacific Trade Agreement (APTA), previously known as the Bangkok Agreement (BA), was signed in 1975. It is the oldest preferential trade agreement between developing countries in the Asia-Pacific region that aims at promoting economic development through a continuous process of trade expansion and furthering international economic cooperation through the adoption of mutually beneficial trade liberalization measures. Current members include Bangladesh, China, India, Lao PDR, Republic of Korea and Sri Lanka. ESCAP Secretariat provides secretarial support to APTA. The text of the agreement was revised during the Third Round of negotiations and the list of items on which tariff concessions were exchanged expanded to more than 4,000 items. The Members also adopted common rules of origin with minimum local value content requirement of 45 per cent f.o.b. (35 per cent for LDCs) for availing the tariff concessions. The rules are simple and easy to operate. APTA allows any developing member country of UNESCAP to become a member. This agreement links three major economies of Asia namely China, India & Republic of Korea and thus provides preferential market access to one of the largest market in the world.
    [Show full text]
  • Performance Analysis of Blended Membranes of Cellulose Acetate with Variable Degree of Acetylation for CO2/CH4 Separation
    membranes Article Performance Analysis of Blended Membranes of Cellulose Acetate with Variable Degree of Acetylation for CO2/CH4 Separation Ayesha Raza 1,*, Sarah Farrukh 1, Arshad Hussain 1, Imranullah Khan 1, Mohd Hafiz Dzarfan Othman 2 and Muhammad Ahsan 1 1 Department of Chemical Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan; [email protected] (S.F.); [email protected] (A.H.); [email protected] (I.K.); [email protected] (M.A.) 2 Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, University of Technology Malaysia, Skudai 81310, Malaysia; hafi[email protected] * Correspondence: [email protected] Abstract: The separation and capture of CO2 have become an urgent and important agenda because of the CO2-induced global warming and the requirement of industrial products. Membrane-based technologies have proven to be a promising alternative for CO2 separations. To make the gas- separation membrane process more competitive, productive membrane with high gas permeability and high selectivity is crucial. Herein, we developed new cellulose triacetate (CTA) and cellulose diacetate (CDA) blended membranes for CO2 separations. The CTA and CDA blends were chosen because they have similar chemical structures, good separation performance, and its economical Citation: Raza, A.; Farrukh, S.; and green nature. The best position in Robeson’s upper bound curve at 5 bar was obtained with Hussain, A.; Khan, I.; Othman, M.H.D.; Ahsan, M. Performance the membrane containing 80 wt.% CTA and 20 wt.% CDA, which shows the CO2 permeability Analysis of Blended Membranes of of 17.32 barrer and CO2/CH4 selectivity of 18.55.
    [Show full text]
  • United States Patent Office Patented Feb
    2,780,511 United States Patent Office Patented Feb. 5, 1957 2 advantageous when applied to the viscose staple rayon 2,780,511 having a permanent structural crimp. This crimp, in con trast to the mechanically applied crimp of the thermo oD of MAKING CELLULOSE ACETATE plastic fibers, originates in the fine inner structure of the XTILE FIBERS BY ACETYLIZATION OF fibers and is permanent through spinning, weaving, Wash GENERATED CELLULOSE FIBERs ing, ironing and other similar fabric treatments, which Takagi, Tokyo, Japan, assignor to Toho Rayon makes such viscose fiber particularly valuable. The per Co., Ltd., Tokyo, Japan, a corporation of Japan manent structural crimp of such viscose staple rayon is No Drawing. Application May 14, 1953, retained throughout the acetylation process of the present ... " . Serial No. 355,150 10 invention. - The invention may be applied to continuous cellulosic 3 Claims. (CI. 8-121) fibers which may be lightly twisted together to form a yarn or rope prior to acetylation, or it may be applied to a This invention relates to the preparation of cellulose mass of loose staple fibers which may be conveyed through acetate fiber having an acetic acid content of at least 40% 5 the several steps of the process on a suitable belt or wire by vapor phase acetylation of cellulosic fibers while re mesh conveyor, or the like. If desired, the cellulosic taining the fiber structure. fibers, either continuous or staple, may be loosely woven It has previously been proposed to acetylate cellulosic or knitted to form a fabric which may then be subjected fibers while retaining their fiber structure by carrying out to the acetylation process of the present invention.
    [Show full text]
  • SUPER ABSORBENT POLYMERS: a DIMINUTIVE REVIEW Madhuja Manoj Katkar Institute of Chemical Technology, Mumbai, India
    Journal of Textile and Clothing Science ISSN: 2581-561X (Online) http://www.jtcsonline.com REVIEW SUPER ABSORBENT POLYMERS: A DIMINUTIVE REVIEW Madhuja Manoj Katkar Institute of Chemical Technology, Mumbai, India A R T I C L E I N F O A B S T R A C T Article history: Super absorbency is superior swelling abilities originate to Received 02 February 2019 absorb and retain large amounts of aqueous solutions. Super- Received in revised form 23 absorbent polymers are cross-linked networks of hydrophilic February 2019 polymer chains. With today’s demand for one-click solution, the Accepted 15 March 2019 development of superabsorbent technology has been largely 28/03/2019-Mar Keywords: directed by the needs of disposable hygiene segment, agriculture Absorbent, Agriculture, industry etc. Over the years, starch-grafted superabsorbent Industrial, Medical, Polymer, polymer turned into cross-linked acrylic homopolymers. This Water paper discusses concept, mechanism and major application areas of superabsorbent. 1. Introduction dissolving in water [2]. water uptake potential A Polymer is a large molecule composed of these materials goes as high as 100,000% of of several repeating units. 3-D crosslinked its own weight in a short period of time [3]. network of polymer molecules forms polymer The maximum volume of superabsorbent gels. Superabsorbent polymer (SAP) is polymers covers the synthetic or chemically or physically cross-linked polymer petrochemical source and mostly acrylic acid gels. When water meets one of these chains, it and its sodium or potassium salts, and is drawn into the molecule by osmosis. Water acrylamide is used in the industrial rapidly migrates into the interior of the production of superabsorbent polymers.
    [Show full text]