Earthquake Early Warning System in Liaoning, China Based on Presto*
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Intraplate Earthquakes in North China
5 Intraplate earthquakes in North China mian liu, hui wang, jiyang ye, and cheng jia Abstract North China, or geologically the North China Block (NCB), is one of the most active intracontinental seismic regions in the world. More than 100 large (M > 6) earthquakes have occurred here since 23 BC, including the 1556 Huax- ian earthquake (M 8.3), the deadliest one in human history with a death toll of 830,000, and the 1976 Tangshan earthquake (M 7.8) which killed 250,000 people. The cause of active crustal deformation and earthquakes in North China remains uncertain. The NCB is part of the Archean Sino-Korean craton; ther- mal rejuvenation of the craton during the Mesozoic and early Cenozoic caused widespread extension and volcanism in the eastern part of the NCB. Today, this region is characterized by a thin lithosphere, low seismic velocity in the upper mantle, and a low and flat topography. The western part of the NCB consists of the Ordos Plateau, a relic of the craton with a thick lithosphere and little inter- nal deformation and seismicity, and the surrounding rift zones of concentrated earthquakes. The spatial pattern of the present-day crustal strain rates based on GPS data is comparable to that of the total seismic moment release over the past 2,000 years, but the comparison breaks down when using shorter time windows for seismic moment release. The Chinese catalog shows long-distance roaming of large earthquakes between widespread fault systems, such that no M ࣙ 7.0 events ruptured twice on the same fault segment during the past 2,000 years. -
Pathways to Earthquake Resilience in China
Report Pathways to earthquake resilience in China October 2015 Overseas Development Institute 203 Blackfriars Road London SE1 8NJ Tel. +44 (0) 20 7922 0300 Fax. +44 (0) 20 7922 0399 E-mail: [email protected] www.odi.org www.odi.org/facebook www.odi.org/twitter Readers are encouraged to reproduce material from ODI Reports for their own publications, as long as they are not being sold commercially. As copyright holder, ODI requests due acknowledgement and a copy of the publication. For online use, we ask readers to link to the original resource on the ODI website. The views presented in this paper are those of the author(s) and do not necessarily represent the views of ODI. © Overseas Development Institute 2015. This work is licensed under a Creative Commons Attribution-NonCommercial Licence (CC BY-NC 3.0). ISSN: 2052-7209 Cover photo: Photo by GDS, Children receiving the GDS disaster risk reduction kit, Shaanxi Province, China Contents Acknowledgements 9 About the authors 9 Glossary of terms 11 Acronyms 11 1. Introduction 13 John Young 2. Earthquake disaster risk reduction policies and programmes in China 16 Cui Ke, Timothy Sim and Lena Dominelli 3. Current knowledge on seismic hazards in Shaanxi Province 23 By Feng Xijie, Richard Walker and Philip England 4. Community-based approaches to disaster risk reduction in China 30 Lena Dominelli, Timothy Sim and Cui Ke 5. Case study: World Vision’s community disaster response plan in Ranjia village 42 William Weizhong Chen, Ning Li and Ling Zhang 6. Case study: Gender Development Solution’s disaster risk reduction in primary education 46 Zhao Bin 7. -
Integrated Model for Earthquake Risk Assessment Using Neural Network and Analytic Hierarchy Process: Aceh Province, Indonesia
Geoscience Frontiers 11 (2020) 613–634 HOSTED BY Contents lists available at ScienceDirect Geoscience Frontiers journal homepage: www.elsevier.com/locate/gsf Research Paper Integrated model for earthquake risk assessment using neural network and analytic hierarchy process: Aceh province, Indonesia Ratiranjan Jena a, Biswajeet Pradhan a,b,*, Ghassan Beydoun a, Nizamuddin c, Ardiansyah c, Hizir Sofyan d, Muzailin Affan c a Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS), School of Information, Systems and Modelling, University of Technology Sydney, NSW, 2007, Australia b Department of Energy and Mineral Resources Engineering, Choongmu-gwan, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, South Korea c Department of Informatics, Syiah Kuala University, Banda Aceh, Indonesia d Department of Statistics, Syiah Kuala University, Banda Aceh, Indonesia ARTICLE INFO ABSTRACT Handling Editor: Masaki Yoshida Catastrophic natural hazards, such as earthquake, pose serious threats to properties and human lives in urban areas. Therefore, earthquake risk assessment (ERA) is indispensable in disaster management. ERA is an inte- Keywords: gration of the extent of probability and vulnerability of assets. This study develops an integrated model by using Earthquake the artificial neural network–analytic hierarchy process (ANN–AHP) model for constructing the ERA map. The Hazard aim of the study is to quantify urban population risk that may be caused by impending earthquakes. The model is Vulnerability applied to the city of Banda Aceh in Indonesia, a seismically active zone of Aceh province frequently affected by Risk GIS devastating earthquakes. ANN is used for probability mapping, whereas AHP is used to assess urban vulnerability ANN–AHP after the hazard map is created with the aid of earthquake intensity variation thematic layering. -
The 1976 Tangshan, China Earthquake
NSF /RA-800554 Earthquake Engineering EE Research Institute B:J: P 13 82-1231 75 THE 1976 TANGSHAN, CHINA EARTHQUAKE Papers Presented at the 2nd U.S. National Conference on Earthquake Engineering Held at Stanford University August 22-24, 1979 March 1980 INFORMATION RESOURCES NATIONAL SCIENCE FOUNDATION Published by The Earthquake Engineering Research Institute. a non-profit corporation for the development and dissemination of knowledge on the problems of destructive earthquakes. THE 1976 TANGSHAN, CHINA EARTHQUAKE Papers Presented at the 2nd U.S. National Conference on Earthquake Engineering Held at Stanford University August 22-24, 1979 Introduction by James M. Gere and Haresh C. Shah March 1980 Any opinions, findings, conclusions or recommendations expressed in this publication are those of the author(s) EE and do not necessarily reflect the views of the National Science Foundation. 1t:J: Earthquake Engineering Research Institute with support from \ -Ov The National Science Foundatic;, 50272 -101 3. Recipient's Accession No. REPORT DOCUMENTATION 11. REPORT NO. 12. PAGE NSF /RA-800554 PB82 1 23 1 7 5 1-4-.-T-itl-e -an-d-S-u-bt~it~le 5. Report Date 1976 Tangshan, China Earthquake (Papers Presented at the 2nd U.S. March 1980 National Conference on Earthquake Engineering Held at Stanford ~~_.ft8-------------~ University, August 22-~4, 1979) _ ______ .'L. IUc99065 7. Author(s) B. Performing Organization Rept. No. J .A. Bl ume 9. Performing Organization Name and Address 10. Project/Task/Work Unit No. Earthquake Engineering Research Institute ----- --~~--~~---~-l 2620 Telegraph Avenue 11. Contract(C) Or Grant(G) No. Berkeley, CA 94704 (C) (G) CEE8019240 12. -
Iaspei International Association of Seismology and Physics of the Earth’S Interior Association Symposia and Workshops
IASPEI INTERNATIONAL ASSOCIATION OF SEISMOLOGY AND PHYSICS OF THE EARTH’S INTERIOR ASSOCIATION SYMPOSIA AND WORKSHOPS Excerpt of “Earth: Our Changing Planet. Proceedings of IUGG XXIV General Assembly Perugia, Italy 2007” Compiled by Lucio Ubertini, Piergiorgio Manciola, Stefano Casadei, Salvatore Grimaldi Published on website: www.iugg2007perugia.it ISBN : 978-88-95852-24-9 Organized by IRPI High Patronage of the President of the Republic of Italy Patronage of Presidenza del Consiglio dei Ministri Ministero degli Affari Esteri Ministero dell’Ambiente e della Tutela del Territorio e del Mare Ministero della Difesa Ministero dell’Università e della Ricerca IUGG XXIV General Assembly July 2-13, 2007 Perugia, Italy SCIENTIFIC PROGRAM COMMITTEE Paola Rizzoli Chairperson Usa President of the Scientific Program Committee Uri Shamir President of International Union of Geodesy and Israel Geophysics, IUGG Jo Ann Joselyn Secretary General of International Union of Usa Geodesy and Geophysics, IUGG Carl Christian Tscherning Secretary-General IAG International Association of Denmark Geodesy Bengt Hultqvist Secretary-General IAGA International Association Sweden of Geomagnetism and Aeronomy Pierre Hubert Secretary-General IAHS International Association France of Hydrological Sciences Roland List Secretary-General IAMAS International Association Canada of Meteorology and Atmospheric Sciences Fred E. Camfield Secretary-General IAPSO International Association Usa for the Physical Sciences of the Oceans Peter Suhadolc Secretary-General IASPEI International -
Faculty Mathematics-Informatics of the University of Osnabrueck
Building change detection using high resolution remotely sensed data and GIS Dipl. Eng. Natalia Sofina Dissertation A thesis submitted to the Faculty Mathematics-Informatics of the University of Osnabrueck In partial fulfillment of the requirements for the degree of Dr. rer. nat. June 2014 Supervisor: Prof. Dr. Eng. Manfred Ehlers Institute of Geoinformatic and Remote Sensing University of Osnabrueck Osnabrueck, Germany Co-Supervisor: Prof. Dr. Eng. Peter Reinartz German Aerospace Center (DLR) Remote Sensing Technology Institute Photogrammetry and Image Analysis Oberpfaffenhofen Wessling, Germany ii Abstract In recent years, natural disasters have had an increasing impact, involving immense economical and human losses. Remote sensing technologies are being more frequently used for the rapid registration and visualization of changes in the affected areas, providing essential information for damage elimination, as well as the planning and coordination of recovery activities. Numerous methods of image processing have been proposed to automate a detection of changes on the Earth's surface, most of which focus on the comparison of remotely sensed images of the same area acquired at different dates. However, atmospheric influences (e.g. clouds covering the objects of interest) often render the observations ineffective in the optical domain. In addition, the accuracy of the change detection analysis decreases if the images are acquired with different acquisition angles. These situations can be common in the case of sudden catastrophes (e.g. earthquakes, landslides or military actions), when there is no time to wait for the perfect conditions to acquire the data. This study presents a GIS-based approach for the detection of destroyed buildings.