Wheat Streak Mosaic Virus Alters the Transcriptome of Its Vector, Wheat Curl Mite (Aceria Tosichella Keifer), to Enhance Mite Development and Population Expansion

Total Page:16

File Type:pdf, Size:1020Kb

Wheat Streak Mosaic Virus Alters the Transcriptome of Its Vector, Wheat Curl Mite (Aceria Tosichella Keifer), to Enhance Mite Development and Population Expansion University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in Plant Pathology Plant Pathology Department 4-24-2019 Wheat streak mosaic virus alters the transcriptome of its vector, wheat curl mite (Aceria tosichella Keifer), to enhance mite development and population expansion Adarsh K. Gupta University of Nebraska-Lincoln, [email protected] Erin D. Scully Center for Grain and Animal Health Research, Stored Product Insect and Entomology Research Unit, [email protected] Nathan A. Palmer Wheat, Sorghum, and Forage Research Unit, USDA-ARS, [email protected] Scott M. Geib Daniel K. Inouye US Pacific Basin Agricultural Research Center, USDA-ARS, [email protected] Gautam Sarath Wheat, Sorghum, and Forage Research Unit, USDA-ARS & University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/plantpathpapers See P nextart of page the forOther additional Plant Sciences authors Commons , Plant Biology Commons, and the Plant Pathology Commons Gupta, Adarsh K.; Scully, Erin D.; Palmer, Nathan A.; Geib, Scott M.; Sarath, Gautam; Hein, Gary L.; and Tatineni, Satyanarayana, "Wheat streak mosaic virus alters the transcriptome of its vector, wheat curl mite (Aceria tosichella Keifer), to enhance mite development and population expansion" (2019). Papers in Plant Pathology. 626. https://digitalcommons.unl.edu/plantpathpapers/626 This Article is brought to you for free and open access by the Plant Pathology Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Plant Pathology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Adarsh K. Gupta, Erin D. Scully, Nathan A. Palmer, Scott M. Geib, Gautam Sarath, Gary L. Hein, and Satyanarayana Tatineni This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ plantpathpapers/626 RESEARCH ARTICLE Gupta et al., Journal of General Virology 2019;100:889–910 DOI 10.1099/jgv.0.001256 Wheat streak mosaic virus alters the transcriptome of its vector, wheat curl mite (Aceria tosichella Keifer), to enhance mite development and population expansion Adarsh K. Gupta,1 Erin D. Scully,2 Nathan A. Palmer,3 Scott M. Geib,4 Gautam Sarath,3,5 Gary L. Hein6 and Satyanarayana Tatineni1,3,* Abstract Wheat streak mosaic virus (WSMV; genus Tritimovirus; family Potyviridae) is an economically important wheat virus that is transmitted by the wheat curl mite (WCM; Aceria tosichella Keifer) in a persistent manner. Virus–vector coevolution may potentially influence vector gene expression to prolong viral association and thus increase virus transmission efficiency and spread. To understand the transcriptomic responses of WCM to WSMV, RNA sequencing was performed to assemble and analyse transcriptomes of WSMV viruliferous and aviruliferous mites. Among 7291 de novo-assembled unigenes, 1020 were differentially expressed between viruliferous and aviruliferous WCMs using edgeR at a false discovery rate 0.05. Differentially expressed unigenes were enriched for 108 gene ontology terms, with the majority of the unigenes showing downregulation in viruliferous mites in comparison to only a few unigenes that were upregulated. Protein family and metabolic pathway enrichment analyses revealed that most downregulated unigenes encoded enzymes and proteins linked to stress response, immunity and development. Mechanistically, these predicted changes in mite physiology induced by viral association could be suggestive of pathways needed for promoting virus–vector interactions. Overall, our data suggest that transcriptional changes in viruliferous mites facilitate prolonged viral association and alter WCM development to expedite population expansion, both of which could enhance viral transmission. INTRODUCTION however, these genotypes vary in their ability to transmit wheat viruses [6–8]. The wheat curl mite (WCM; Aceria tosichella Keifer; family Eriophyidae) causes damage to wheat plants by feeding on Among WCM-transmitted viruses, WSMV is the most eco- leaf sap, which ultimately results in dehydration and the for- nomically important virus in the Great Plains of the USA mation of characteristic leaf curling. Cumulatively, the loss [9, 10]. Although WSMV on average causes 3–5 % annual of sap and leaf surface area due to curling hamper the pho- yield loss in wheat [11], yield losses of as high as 100 % have tosynthetic ability of the plant. However, the most detri- been observed in infected winter wheat [12]. WSMV is the type species of the genus Tritimovirus in the family Potyviri- mental effect of WCM infestation is its ability to transmit dae [13]. The 9384-nucleotide single-stranded, positive- several wheat viruses, including Wheat streak mosaic triti- sense genomic RNA of WSMV is encapsidated in flexuous movirus (WSMV) [1], High Plains wheat mosaic emaravirus filamentous virions of 690–700Â11–15 nm. WSMV geno- [2], Brome streak mosaic rymovirus [3] and Triticum mosaic mic RNA contains a single large open reading frame (ORF) poacevirus [4]. Two distinct genotypes of WCM, type 1 and encoding a polyprotein of ~350 kDa that is processed into at type 2, have been identified in the USA [5]. Both mite geno- least 10 mature proteins by 3 virus-encoded proteinases: P1, types often occur as mixed populations within wheat fields; HC-Pro and NIa-Pro [13]. WCMs efficiently transmit Received 12 December 2018; Accepted 14 March 2019; Published 24 April 2019 Author affiliations: 1Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; 2Center for Grain and Animal Health Research, Stored Product Insect and Entomology Research Unit, United States Department of Agriculture-Agricultural Research Services (USDA- ARS), Manhattan, KS 66502, USA; 3Wheat, Sorghum, and Forage Research Unit, USDA-ARS, Lincoln, NE 68583, USA; 4Daniel K. Inouye US Pacific Basin Agricultural Research Center, USDA-ARS, Hilo, HI 96720, USA; 5Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; 6Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA. *Correspondence: Satyanarayana Tatineni, [email protected] Keywords: Wheat curl mites; Wheat streak mosaic virus; transcriptome; differential gene expression; population expansion; behavioral changes. The NCBI BioProject PRJNA489675 contains all raw reads of wheat curl mite transcriptome data. SRR7796148, SRR7796152 and SRR7796153 contain reads derived from viruliferous mites, and SRR7796149, SRR7796150 and SRR7796151 contain reads derived from aviruliferous control mite samples. Four supplementary tables and one supplementary figure are available with the online version of this article. 001256 889 Gupta et al., Journal of General Virology 2019;100:889–910 WSMV at transmission rates of approximately 50 and higher stress responses in vectors as compared to avirulifer- 100 % with single and 5 to 10 viruliferous mites per test ous insects [32], whereas the acquisition of Pea enation plant, respectively [1, 8]. HC-Pro and coat protein (CP) are mosaic luteovirus was associated with the upregulation of required for WCM transmission of WSMV [14–16]. The genes involved in transcytosis in the vector, Acyrthosiphon mode of WCM transmission of WSMV appears to be persis- pisum (pea aphid) [33]. Additionally, acquisition of Tomato tent and circulative, as virus-like particles and inclusion yellow leaf curl China begamovirus was associated with the bodies have been found in the digestive tracts of viruliferous downregulation of genes linked to immune responses and mites [17, 18]. Juveniles acquire the virus while feeding on autophagy in whiteflies [34]. infected wheat and mites remain viruliferous through The microscopic nature (~200 µm) of WCMs and the lack moulting [17, 19, 20]. of adequate genomic and transcriptomic resources for this The plant cell wall and cuticle offer primary lines of defence important vector have hampered research to discern the against biotic and abiotic factors, including viruses. To cir- impact of virus acquisition on vector physiology and delin- cumvent these physical barriers, many plant viruses have eate the virus–vector dynamics in this economically evolved precise vector-specific interactions with herbivorous important pathosystem. In this study, high-throughput insects [21]. In some cases, viruses are capable of manipu- RNA sequencing and complementary bioinformatic analy- lating vector behaviour and physiology to enable more effi- ses were used to assemble the de novo transcriptome of the cient viral transmission and spread, a phenomenon termed WCM and evaluate the transcriptomic signatures of WCMs ‘adaptive manipulation’ [22]. These behavioural changes upon acquisition of WSMV. can be quite dramatic and include enhanced feeding and increased preference of viruliferous vectors for noninfected METHODS host [22–25]. In addition to behavioural modifications, Preparation of WSMV viruliferous and aviruliferous viruses have evolved mechanisms to facilitate acquisition, control WCMs retention and, occasionally, replication in vectors, often gov- Type 2 mites reared on the WCM-susceptible wheat cultivar erned by signature motifs in the viral proteome. Often, these Settler CL (NH03614 CL) grown in caged pots maintained molecular determinants facilitate specific interactions with at the University of Nebraska-Lincoln [5] were used for this receptors of the vector
Recommended publications
  • A Chymotrypsin from the Digestive Tract of California Spiny Lobster, Panulirus Interruptus: Purification and Biochemical Characterization
    A chymotrypsin from the Digestive Tract of California Spiny Lobster, Panulirus interruptus: Purification and Biochemical Characterization Betsaida Bibo-Verdugo, Liliana Rojo- Arreola, Maria A. Navarrete-del-Toro & Fernando García-Carreño Marine Biotechnology An International Journal Focusing on Marine Genomics, Molecular Biology and Biotechnology ISSN 1436-2228 Volume 17 Number 4 Mar Biotechnol (2015) 17:416-427 DOI 10.1007/s10126-015-9626-z 1 23 Your article is protected by copyright and all rights are held exclusively by Springer Science +Business Media New York. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Mar Biotechnol (2015) 17:416–427 DOI 10.1007/s10126-015-9626-z ORIGINAL ARTICLE A chymotrypsin from the Digestive Tract of California Spiny Lobster, Panulirus interruptus: Purification and Biochemical Characterization Betsaida Bibo-Verdugo1 & Liliana Rojo-Arreola1 & Maria A. Navarrete-del-Toro1 & Fernando García-Carreño1 Received: 13 August 2014 /Accepted: 31 January 2015 /Published online: 16 April 2015 # Springer Science+Business Media New York 2015 Abstract A chymotrypsin was purified from the gastric juice Introduction of California spiny lobster (Panulirus interrutpus), using pre- parative electrophoresis and affinity chromatography on aga- Proteolytic enzymes from the digestive system of crustacean rose-p-aminobenzamidine.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Investigation of RNA-Mediated Pathogenic Pathways in a Drosophila Model of Expanded Repeat Disease
    Investigation of RNA-mediated pathogenic pathways in a Drosophila model of expanded repeat disease A thesis submitted for the degree of Doctor of Philosophy, June 2010 Clare Louise van Eyk, B.Sc. (Hons.) School of Molecular and Biomedical Science, Discipline of Genetics The University of Adelaide II Table of Contents Index of Figures and Tables……………………………………………………………..VII Declaration………………………………………………………………………………......XI Acknowledgements…………………………………………………………………........XIII Abbreviations……………………………………………………………………………....XV Drosophila nomenclature…………………………………………………………….….XV Abstract………………………………………………………………………………........XIX Chapter 1: Introduction ............................................................................................1 1.0 Expanded repeat diseases....................................................................................1 1.1 Translated repeat diseases...................................................................................2 1.1.1 Polyglutamine diseases .............................................................................2 Huntington’s disease...................................................................................3 Spinal bulbar muscular atrophy (SBMA) .....................................................3 Dentatorubral-pallidoluysian atrophy (DRPLA) ...........................................4 The spinal cerebellar ataxias (SCAs)..........................................................4 1.1.2 Pathogenesis and aggregate formation .....................................................7
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2003/0082511 A1 Brown Et Al
    US 20030082511A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2003/0082511 A1 Brown et al. (43) Pub. Date: May 1, 2003 (54) IDENTIFICATION OF MODULATORY Publication Classification MOLECULES USING INDUCIBLE PROMOTERS (51) Int. Cl." ............................... C12O 1/00; C12O 1/68 (52) U.S. Cl. ..................................................... 435/4; 435/6 (76) Inventors: Steven J. Brown, San Diego, CA (US); Damien J. Dunnington, San Diego, CA (US); Imran Clark, San Diego, CA (57) ABSTRACT (US) Correspondence Address: Methods for identifying an ion channel modulator, a target David B. Waller & Associates membrane receptor modulator molecule, and other modula 5677 Oberlin Drive tory molecules are disclosed, as well as cells and vectors for Suit 214 use in those methods. A polynucleotide encoding target is San Diego, CA 92121 (US) provided in a cell under control of an inducible promoter, and candidate modulatory molecules are contacted with the (21) Appl. No.: 09/965,201 cell after induction of the promoter to ascertain whether a change in a measurable physiological parameter occurs as a (22) Filed: Sep. 25, 2001 result of the candidate modulatory molecule. Patent Application Publication May 1, 2003 Sheet 1 of 8 US 2003/0082511 A1 KCNC1 cDNA F.G. 1 Patent Application Publication May 1, 2003 Sheet 2 of 8 US 2003/0082511 A1 49 - -9 G C EH H EH N t R M h so as se W M M MP N FIG.2 Patent Application Publication May 1, 2003 Sheet 3 of 8 US 2003/0082511 A1 FG. 3 Patent Application Publication May 1, 2003 Sheet 4 of 8 US 2003/0082511 A1 KCNC1 ITREXCHO KC 150 mM KC 2000000 so 100 mM induced Uninduced Steady state O 100 200 300 400 500 600 700 Time (seconds) FIG.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0110747 A1 Ramseier Et Al
    US 200601 10747A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0110747 A1 Ramseier et al. (43) Pub. Date: May 25, 2006 (54) PROCESS FOR IMPROVED PROTEIN (60) Provisional application No. 60/591489, filed on Jul. EXPRESSION BY STRAIN ENGINEERING 26, 2004. (75) Inventors: Thomas M. Ramseier, Poway, CA Publication Classification (US); Hongfan Jin, San Diego, CA (51) Int. Cl. (US); Charles H. Squires, Poway, CA CI2O I/68 (2006.01) (US) GOIN 33/53 (2006.01) CI2N 15/74 (2006.01) Correspondence Address: (52) U.S. Cl. ................................ 435/6: 435/7.1; 435/471 KING & SPALDING LLP 118O PEACHTREE STREET (57) ABSTRACT ATLANTA, GA 30309 (US) This invention is a process for improving the production levels of recombinant proteins or peptides or improving the (73) Assignee: Dow Global Technologies Inc., Midland, level of active recombinant proteins or peptides expressed in MI (US) host cells. The invention is a process of comparing two genetic profiles of a cell that expresses a recombinant (21) Appl. No.: 11/189,375 protein and modifying the cell to change the expression of a gene product that is upregulated in response to the recom (22) Filed: Jul. 26, 2005 binant protein expression. The process can improve protein production or can improve protein quality, for example, by Related U.S. Application Data increasing solubility of a recombinant protein. Patent Application Publication May 25, 2006 Sheet 1 of 15 US 2006/0110747 A1 Figure 1 09 010909070£020\,0 10°0 Patent Application Publication May 25, 2006 Sheet 2 of 15 US 2006/0110747 A1 Figure 2 Ester sers Custer || || || || || HH-I-H 1 H4 s a cisiers TT closers | | | | | | Ya S T RXFO 1961.
    [Show full text]
  • Produktinformation
    Produktinformation Diagnostik & molekulare Diagnostik Laborgeräte & Service Zellkultur & Verbrauchsmaterial Forschungsprodukte & Biochemikalien Weitere Information auf den folgenden Seiten! See the following pages for more information! Lieferung & Zahlungsart Lieferung: frei Haus Bestellung auf Rechnung SZABO-SCANDIC Lieferung: € 10,- HandelsgmbH & Co KG Erstbestellung Vorauskassa Quellenstraße 110, A-1100 Wien T. +43(0)1 489 3961-0 Zuschläge F. +43(0)1 489 3961-7 [email protected] • Mindermengenzuschlag www.szabo-scandic.com • Trockeneiszuschlag • Gefahrgutzuschlag linkedin.com/company/szaboscandic • Expressversand facebook.com/szaboscandic SANTA CRUZ BIOTECHNOLOGY, INC. FAM214A siRNA (m): sc-141565 BACKGROUND STORAGE AND RESUSPENSION FAM214A, also known as BC031353 or KIAA1370, is a 1,076 amino acid Store lyophilized siRNA duplex at -20° C with desiccant. Stable for at least protein that is alternatively spliced into two isoforms. The gene encoding one year from the date of shipment. Once resuspended, store at -20° C, KIAA1370 maps to human chromosome 15, which encodes more than avoid contact with RNAses and repeated freeze thaw cycles. 700 genes and comprises about 3% of the human genome. Angelman and Resuspend lyophilized siRNA duplex in 330 µl of the RNAse-free water Prader-Willi syndromes are associated with loss of function or deletion of provided. Resuspension of the siRNA duplex in 330 µl of RNAse-free water genes in the 15q11-q13 region. In Angelman syndrome, this loss is due to makes a 10 µM solution in a 10 µM Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM inactivity of the maternal 15q21.2 encoded UBE3A gene in the brain by EDTA buffered solution. either chromosomal deletion or mutation.
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • PDF Datasheet
    Product Datasheet FAM214A Antibody NBP1-83797 Unit Size: 0.1 ml Store at 4C short term. Aliquot and store at -20C long term. Avoid freeze-thaw cycles. Protocols, Publications, Related Products, Reviews, Research Tools and Images at: www.novusbio.com/NBP1-83797 Updated 9/16/2020 v.20.1 Earn rewards for product reviews and publications. Submit a publication at www.novusbio.com/publications Submit a review at www.novusbio.com/reviews/destination/NBP1-83797 Page 1 of 2 v.20.1 Updated 9/16/2020 NBP1-83797 FAM214A Antibody Product Information Unit Size 0.1 ml Concentration Concentrations vary lot to lot. See vial label for concentration. If unlisted please contact technical services. Storage Store at 4C short term. Aliquot and store at -20C long term. Avoid freeze-thaw cycles. Clonality Polyclonal Preservative 0.02% Sodium Azide Isotype IgG Purity Immunogen affinity purified Buffer PBS (pH 7.2) and 40% Glycerol Product Description Host Rabbit Gene ID 56204 Gene Symbol FAM214A Species Human Specificity/Sensitivity Specificity of human FAM214A antibody verified on a Protein Array containing target protein plus 383 other non-specific proteins. Immunogen This antibody was developed against Recombinant Protein corresponding to amino acids: TNEGKIRLKPETPRSETCISNDFYSHMPVGETNPLIGSLLQERQDVIARIAQHLE HIDPTASHIPRQSFNMHDSSSVASKVFRSSYEDKNLLKKNKDESSVSISHT Product Application Details Applications Immunohistochemistry, Immunohistochemistry-Paraffin Recommended Dilutions Immunohistochemistry 1:20 - 1:50, Immunohistochemistry-Paraffin 1:20 - 1:50 Application Notes For IHC-Paraffin, HIER pH 6 retrieval is recommended. Immunocytochemistry/Immunofluorescence Fixation Permeabilization: Use PFA/Triton X-100. Images Immunohistochemistry-Paraffin: FAM214A Antibody [NBP1-83797] - Staining of human stomach shows strong cytoplasmic and membranous positivity in glandular cells. Novus Biologicals USA Bio-Techne Canada 10730 E.
    [Show full text]
  • PRODUCT SPECIFICATION Prest Antigen FAM214A Product
    PrEST Antigen FAM214A Product Datasheet PrEST Antigen PRODUCT SPECIFICATION Product Name PrEST Antigen FAM214A Product Number APrEST81419 Gene Description family with sequence similarity 214, member A Alternative Gene FLJ10980, KIAA1370 Names Corresponding Anti-FAM214A (HPA040180) Antibodies Description Recombinant protein fragment of Human FAM214A Amino Acid Sequence Recombinant Protein Epitope Signature Tag (PrEST) antigen sequence: EVLRTTLKHSNVWRKHNFHSLDGTSTRAFHPQTGLPLLSSPVPQRKTQSG CFDLDSSLLHLKSFSSRSPRPCLNIEDDPDIHEKPFLSSSAPPI Fusion Tag N-terminal His6ABP (ABP = Albumin Binding Protein derived from Streptococcal Protein G) Expression Host E. coli Purification IMAC purification Predicted MW 28 kDa including tags Usage Suitable as control in WB and preadsorption assays using indicated corresponding antibodies. Purity >80% by SDS-PAGE and Coomassie blue staining Buffer PBS and 1M Urea, pH 7.4. Unit Size 100 µl Concentration Lot dependent Storage Upon delivery store at -20°C. Avoid repeated freeze/thaw cycles. Notes Gently mix before use. Optimal concentrations and conditions for each application should be determined by the user. Product of Sweden. For research use only. Not intended for pharmaceutical development, diagnostic, therapeutic or any in vivo use. No products from Atlas Antibodies may be resold, modified for resale or used to manufacture commercial products without prior written approval from Atlas Antibodies AB. Warranty: The products supplied by Atlas Antibodies are warranted to meet stated product specifications and to conform to label descriptions when used and stored properly. Unless otherwise stated, this warranty is limited to one year from date of sales for products used, handled and stored according to Atlas Antibodies AB's instructions. Atlas Antibodies AB's sole liability is limited to replacement of the product or refund of the purchase price.
    [Show full text]
  • Larval Peritrophic Matrix Yu-Bo Lin1,2†, Jing-Jing Rong1,2†, Xun-Fan Wei3, Zhuo-Xiao Sui3, Jinhua Xiao3 and Da-Wei Huang3*
    Lin et al. Proteome Science (2021) 19:7 https://doi.org/10.1186/s12953-021-00175-x RESEARCH Open Access Proteomics and ultrastructural analysis of Hermetia illucens (Diptera: Stratiomyidae) larval peritrophic matrix Yu-Bo Lin1,2†, Jing-Jing Rong1,2†, Xun-Fan Wei3, Zhuo-Xiao Sui3, Jinhua Xiao3 and Da-Wei Huang3* Abstract Background: The black soldier fly (Hermetia illucens) has significant economic potential. The larvae can be used in financially viable waste management systems, as they are voracious feeders able to efficiently convert low-quality waste into valuable biomass. However, most studies on H. illucens in recent decades have focused on optimizing their breeding and bioconversion conditions, while information on their biology is limited. Methods: About 200 fifth instar well-fed larvae were sacrificed in this work. The liquid chromatography-tandem mass spectrometry and scanning electron microscopy were employed in this study to perform a proteomic and ultrastructural analysis of the peritrophic matrix (PM) of H. illucens larvae. Results: A total of 565 proteins were identified in the PM samples of H. illucen, of which 177 proteins were predicted to contain signal peptides, bioinformatics analysis and manual curation determined 88 proteins may be associated with the PM, with functions in digestion, immunity, PM modulation, and others. The ultrastructure of the H. illucens larval PM observed by scanning electron microscopy shows a unique diamond-shaped chitin grid texture. Conclusions: It is the first and most comprehensive proteomics research about the PM of H. illucens larvae to date. All the proteins identified in this work has been discussed in details, except several unnamed or uncharacterized proteins, which should not be ignored and need further study.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2004/0081648A1 Afeyan Et Al
    US 2004.008 1648A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2004/0081648A1 Afeyan et al. (43) Pub. Date: Apr. 29, 2004 (54) ADZYMES AND USES THEREOF Publication Classification (76) Inventors: Noubar B. Afeyan, Lexington, MA (51) Int. Cl." ............................. A61K 38/48; C12N 9/64 (US); Frank D. Lee, Chestnut Hill, MA (52) U.S. Cl. ......................................... 424/94.63; 435/226 (US); Gordon G. Wong, Brookline, MA (US); Ruchira Das Gupta, Auburndale, MA (US); Brian Baynes, (57) ABSTRACT Somerville, MA (US) Disclosed is a family of novel protein constructs, useful as Correspondence Address: drugs and for other purposes, termed “adzymes, comprising ROPES & GRAY LLP an address moiety and a catalytic domain. In Some types of disclosed adzymes, the address binds with a binding site on ONE INTERNATIONAL PLACE or in functional proximity to a targeted biomolecule, e.g., an BOSTON, MA 02110-2624 (US) extracellular targeted biomolecule, and is disposed adjacent (21) Appl. No.: 10/650,592 the catalytic domain So that its affinity Serves to confer a new Specificity to the catalytic domain by increasing the effective (22) Filed: Aug. 27, 2003 local concentration of the target in the vicinity of the catalytic domain. The present invention also provides phar Related U.S. Application Data maceutical compositions comprising these adzymes, meth ods of making adzymes, DNA's encoding adzymes or parts (60) Provisional application No. 60/406,517, filed on Aug. thereof, and methods of using adzymes, Such as for treating 27, 2002. Provisional application No. 60/423,754, human Subjects Suffering from a disease, Such as a disease filed on Nov.
    [Show full text]