Swiss Prospective Study on Spider Bites

Total Page:16

File Type:pdf, Size:1020Kb

Swiss Prospective Study on Spider Bites Original article | Published 4 September 2013, doi:10.4414/smw.2013.13877 Cite this as: Swiss Med Wkly. 2013;143:w13877 Swiss prospective study on spider bites Markus Gnädingera, Wolfgang Nentwigb, Joan Fuchsc, Alessandro Ceschic,d a Department of General Practice, University Hospital, Zurich, Switzerland b Institute of Ecology and Evolution, University of Bern, Switzerland c Swiss Toxicological Information Centre, Associated Institute of the University of Zurich, Switzerland d Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Switzerland Summary per year for acute spider bites, with a peak in the summer season with approximately 5–6 enquiries per month. This Knowledge of spider bites in Central Europe derives compares to about 90 annual enquiries for hymenopteran mainly from anecdotal case presentations; therefore we stings. aimed to collect cases systematically. From June 2011 to The few and only anecdotal publications about spider bites November 2012 we prospectively collected 17 cases of al- in Europe have been reviewed by Maretic & Lebez (1979) leged spider bites, and together with two spontaneous no- [2]. Since then only scattered information on spider bites tifications later on, our database totaled 19 cases. Among has appeared [3, 4] so this situation prompted us to collect them, eight cases could be verified. The causative species cases systematically for Switzerland. were: Cheiracanthium punctorium (3), Zoropsis spinimana (2), Amaurobius ferox, Tegenaria atrica and Malthonica Aim of the study ferruginea (1 each). Clinical presentation was generally mild, with the exception of Cheiracanthium punctorium, Main objective: To systematically document the clinical and patients recovered fully without sequelae. course of spider bites in Switzerland. In Switzerland, spider bites generally have a benign clinical Secondary objectives: To collect information on causative course, which is characterised by minor effects, with rapid species, time of day, seasonal distribution, and circum- and complete recovery. Since only verified spider bites can stances. be regarded as spider bites, in the case of clinically import- ant arachnidism, the spider should be sent to an expert for Methods identification. Our study may help to diminish spider fear and reassure people who have experienced a bite. In a prospective, observational study, patients were in- The study was registered at ClinicalTrials.gov cluded who had suspected spider bites and consulted a (NCT01355744). Swiss physician. The study was planned to take place between 1 June and 30 November 2011, but was then pro- Key words: insect bites; spider bites; humans; longed until 30 November 2012 to include more cases in Switzerland; Middle Europe; case reports our study set. In order to inform both Swiss physicians and the Swiss population, the study kick-off was accompanied Introduction by a media campaign. The reporting forms were sent by fax to the Swiss Toxic- In Switzerland, the number of spider species theoretically ological Information Centre and the following items were able to bite humans amounts to a few dozen among the registered about the people who had allegedly been bitten: nearly 1,000 species found in this country [1]. Despite year of birth, gender and health situation, time, place (in- mostly minor clinical symptoms, the general population cluding altitude) and circumstances of the bite, the body may frequently overestimate the danger of spider bites. Ad- part involved, symptoms, signs, clinical course (incl. photo ditionally, primary care physicians’ knowledge of spider documentation) and treatment. The spider had to be caught bites is limited, because cases of spider bite consultations and sent to the Institute of Ecology and Evolution at the are quite rare. There are no useful data for estimating the University of Bern for identification by an expert arachno- incidence of spider bites in Switzerland or for providing logist (WN). The specimens had to be sent alive or in 70% helpful information about their clinical course. This in- ethanol vials. In case of ambiguity or incomplete record- formation is also lacking for other central European coun- ings, MG contacted the reporting physician. Every physi- tries. cian who participated received CHF 100.–. Between 2000 and 2010, the Swiss Toxicological Inform- ation Centre (STIC) received approximately 30 enquiries Swiss Medical Weekly · PDF of the online version · www.smw.ch Page 1 of 12 Original article Swiss Med Wkly. 2013;143:w13877 According to international standards [5] spider bites can Results only be classified as verified when three circumstances have been fulfilled: (1) The spider bite has been observed, During the study period, seventeen cases of alleged spider (2) the spider is caught during or immediately after the bite bites were reported. Together with two cases fulfilling the and sent for identification, and (3) the case presentation inclusion criteria, which occurred shortly after the end of matches the clinical course of a bite by a spider through the study period and which were spontaneously reported by symptoms such as pain or discomfort. a physician and therefore included in the study, we received Data were entered into a standardised Excel spreadsheet 19 notifications. Only eight cases fulfilled the criteria men- (Microsoft Corporation, Redmond, WA) and descriptive tioned above to be regarded as verified spider bites, and are statistics were calculated. If not stated otherwise, data are therefore described in detail in this publication. Detailed presented as median (interquartile range, IQR). data on the other 11 cases of assumed spider bites can be Written informed consent was obtained. requested from MG. All ethics committees of Switzerland and the Principality Demographic data of the patients and a general description of Liechtenstein approved the study. of their clinical course are summarised in table 1. Figure 1 shows the leg of case one shortly after the bite, notably the reddening and the central haemorrhage. Six cases were allocated to the study by calls to the Swiss Toxicological Information Centre (cases 1, 6, 9, 11, 14 and 17); the victims in two cases (7, 19) contacted our study board on their own. The initial physician contacts were a family physician (1), a duty physician (1), and hospital (3) or other (2) physicians (one case had missing information); study notifications were sent to us from a family physician (1), hospital physicians (4) or others (3). Five patients re- ported that they had seen the spider while being bitten. In- terestingly, no tropical spider owners were included in this study. Two patients reported previous knowledge about the possibility of spider bites in Switzerland, while five did not (one answer is missing). All patients said that it was the first time they had been bitten by a spider. Two of them re- cognised spider cocoons at the place where they had been bitten, while five did not (one missing answer). One out of eight suffered from systemic symptoms. This concerned a female patient who had to undergo hospital surveillance for approximately 12 hours (case 6). The re- ported systemic symptoms were hypotension, vomiting, and generalised itching. The patient was treated with ibuprofen, acetaminophen, tramadol, morphine, and meto- clopramide. Figure 1 Pain quality reports were burning (4), piercing (2), itching Leg of patient 1, two hours after bite by Amaurobius ferox. (1) or dull (1). No necrosis at the bite site was reported. One case of a small (3 mm) haemorrhage at the site of the Table 1: Characteristics of patients and their clinical presentation. bite was registered. Bite marks were observed in three out Numbers denote median value (interquartile range) or frequencies. of seven patients (one missing report). As treatment meas- Gender (female/male) 5/3 Age (years) 41 (32) Area of spider bite – upper extremity 6 – lower extremity 1 – torso 1 Diameter (mm) of maximum – swelling 20 (56) – reddening 20 (30) Pain – severity (0 to 10) 4 (7) – time until maximum (minutes) 0 (1) – duration (hours) 1 (7) – comparison with bee sting (less / equal / more 4 / 1 / 2 / 1 / missing) Time until – first consultation (hours) 2 (1) Figure 2 – complete healing (days) 3 (5) Amaurobius ferox, male (source: Fritz Geller-Grimm, Wikimedia Presence of systemic symptoms (no / yes / 6 / 1 / 1 Commons). missing) Swiss Medical Weekly · PDF of the online version · www.smw.ch Page 2 of 12 Original article Swiss Med Wkly. 2013;143:w13877 ures, we registered analgesics (1), a tetanus vaccine (1), Discussion and other symptomatic measures (3). Two of the patients stated that they would have contacted a The outdoor bites occurred mainly in the summertime; physician because of the severity of their complaints even bites by adult Zoropsis spinimana occurred also in Novem- without the study, while for five this was not the case (one ber and December. There are no obvious detectable pat- missing report). terns with respect to the time of the day, part of the country, Table 2 shows the temporal and geographical distribution or elevation, i.e., spider bites can occur everywhere. The of the bites. Table 3 lists the causative spider species. Fig- spider bites described in our study were, however, restric- ures 2 to 6 depict spider species caught in our study. ted to buildings and their surroundings, where people get To approach the question whether bites by Cheiracanthium into unintentional contact with spiders during all kind of punctorium display a more severe course, we compared activities such as sleeping, working or leisure. In our study, these three cases with the other five: average pain severity transportation of the spider in the hand was the reason for 9 vs 3 points (on a scale from 0 to 10), swelling 30 mm vs 6 three bites, in two occasions putting on clothes in which mm, reddening 30 mm vs 10 mm, healing duration 4 days vs 1 day. Because of the small sample, no inferential stat- istics were performed. Eleven of the 19 patients included in our study were classi- fied into the group in which a spider bite could not be veri- fied.
Recommended publications
  • Comparative Functional Morphology of Attachment Devices in Arachnida
    Comparative functional morphology of attachment devices in Arachnida Vergleichende Funktionsmorphologie der Haftstrukturen bei Spinnentieren (Arthropoda: Arachnida) DISSERTATION zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) an der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von Jonas Otto Wolff geboren am 20. September 1986 in Bergen auf Rügen Kiel, den 2. Juni 2015 Erster Gutachter: Prof. Stanislav N. Gorb _ Zweiter Gutachter: Dr. Dirk Brandis _ Tag der mündlichen Prüfung: 17. Juli 2015 _ Zum Druck genehmigt: 17. Juli 2015 _ gez. Prof. Dr. Wolfgang J. Duschl, Dekan Acknowledgements I owe Prof. Stanislav Gorb a great debt of gratitude. He taught me all skills to get a researcher and gave me all freedom to follow my ideas. I am very thankful for the opportunity to work in an active, fruitful and friendly research environment, with an interdisciplinary team and excellent laboratory equipment. I like to express my gratitude to Esther Appel, Joachim Oesert and Dr. Jan Michels for their kind and enthusiastic support on microscopy techniques. I thank Dr. Thomas Kleinteich and Dr. Jana Willkommen for their guidance on the µCt. For the fruitful discussions and numerous information on physical questions I like to thank Dr. Lars Heepe. I thank Dr. Clemens Schaber for his collaboration and great ideas on how to measure the adhesive forces of the tiny glue droplets of harvestmen. I thank Angela Veenendaal and Bettina Sattler for their kind help on administration issues. Especially I thank my students Ingo Grawe, Fabienne Frost, Marina Wirth and André Karstedt for their commitment and input of ideas.
    [Show full text]
  • Opiliones, Cyphophthalmi, Pettalidae) from Sri Lanka with a Discussion on the Evolution of Eyes in Cyphophthalmi
    2006. The Journal of Arachnology 34:331–341 A NEW PETTALUS SPECIES (OPILIONES, CYPHOPHTHALMI, PETTALIDAE) FROM SRI LANKA WITH A DISCUSSION ON THE EVOLUTION OF EYES IN CYPHOPHTHALMI Prashant Sharma and Gonzalo Giribet1: Department of Organismic & Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts 02138, USA ABSTRACT. A new species of Cyphophthalmi (Opiliones) belonging to the Sri Lankan genus Pettalus is described and illustrated. Characterization of male and female genitalia and SEM illustrations are in- cluded, representing the first such analysis for the genus. This constitutes the first species of Pettalus to be described since 1897, although information on other morphospecies recently collected in Sri Lanka indicates that the number of species on the island is much higher than previously thought. The presence of eyes in pettalids is illustrated for the first time and the implications of the presence of eyes outside of Stylocellidae are discussed. Keywords: Gondwana, Pettalus lampetides, Sri Lanka A dearth of collections and plentitude of during redescription. Study of the specimens mysteries have long been the hallmarks of the of P. brevicauda was not resumed until two cyphophthalmid fauna of Sri Lanka, arguably recent cladistic analyses of the cyphophthal- the most enigmatic among this suborder of mid genera (Giribet & Boyer 2002) [these Opiliones. Only two species—the first one specimens are referred to, erroneously, as P. originally assigned to the genus Cyphophthal- cimiciformis in this publication, following re- mus—have been formally recognized, both description by Hansen & Sørensen (1904)] over two centuries ago: Pettalus cimiciformis and specifically of the family Pettalidae (Gi- (O.
    [Show full text]
  • North American Spiders of the Genera Cybaeus and Cybaeina
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by The University of Utah: J. Willard Marriott Digital... BULLETIN OF THE UNIVERSITY OF UTAH Volume 23 December, 1932 No. 2 North American Spiders of the Genera Cybaeus and Cybaeina BY RALPH V. CHAMBERLIN and WILTON IVIE BIOLOGICAL SERIES, Vol. II, No. / - PUBLISHED BY THE UNIVERSITY OF UTAH SALT LAKE CITY THE UNIVERSITY PRESS UNIVERSITY OF UTAH SALT LAKE CITY A Review of the North American Spider of the Genera Cybaeus and Cybaeina By R a l p h V. C h a m b e r l i n a n d W i l t o n I v i e The frequency with which members of the Agelenid genus Cybaeus appeared in collections made by the authors in the mountainous and timbered sections of the Pacific coast region and the representations therein of various apparently undescribed species led to the preparation of this review of the known North American forms. One species hereto­ fore placed in Cybaeus is made the type of a new genus Cybaeina. Most of our species occur in the western states; and it is probable that fur­ ther collecting in this region will bring to light a considerable number of additional forms. The drawings accompanying the paper were made from specimens direct excepting in a few cases where material was not available. In these cases the drawings were copied from the figures published by the authors of the species concerned, as indicated hereafter in each such case, but these drawings were somewhat revised to conform with the general scheme of the other figures in order to facilitate comparison.
    [Show full text]
  • Swiss Prospective Study on Spider Bites
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Bern Open Repository and Information System (BORIS) Original article | Published 4 September 2013, doi:10.4414/smw.2013.13877 Cite this as: Swiss Med Wkly. 2013;143:w13877 Swiss prospective study on spider bites Markus Gnädingera, Wolfgang Nentwigb, Joan Fuchsc, Alessandro Ceschic,d a Department of General Practice, University Hospital, Zurich, Switzerland b Institute of Ecology and Evolution, University of Bern, Switzerland c Swiss Toxicological Information Centre, Associated Institute of the University of Zurich, Switzerland d Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Switzerland Summary per year for acute spider bites, with a peak in the summer season with approximately 5–6 enquiries per month. This Knowledge of spider bites in Central Europe derives compares to about 90 annual enquiries for hymenopteran mainly from anecdotal case presentations; therefore we stings. aimed to collect cases systematically. From June 2011 to The few and only anecdotal publications about spider bites November 2012 we prospectively collected 17 cases of al- in Europe have been reviewed by Maretic & Lebez (1979) leged spider bites, and together with two spontaneous no- [2]. Since then only scattered information on spider bites tifications later on, our database totaled 19 cases. Among has appeared [3, 4] so this situation prompted us to collect them, eight cases could be verified. The causative species cases systematically for Switzerland. were: Cheiracanthium punctorium (3), Zoropsis spinimana (2), Amaurobius ferox, Tegenaria atrica and Malthonica Aim of the study ferruginea (1 each). Clinical presentation was generally mild, with the exception of Cheiracanthium punctorium, Main objective: To systematically document the clinical and patients recovered fully without sequelae.
    [Show full text]
  • Research Article ISSN 2336-9744 (Online) | ISSN 2337-0173 (Print) the Journal Is Available on Line At
    Research Article ISSN 2336-9744 (online) | ISSN 2337-0173 (print) The journal is available on line at www.biotaxa.org/em New faunistic data on the cave-dwelling spiders in the Balkan Peninsula (Araneae) MARIA V. NAUMOVA1, STOYAN P. LAZAROV2, BOYAN P. PETROV2, CHRISTO D. DELTSHEV2 1Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1, Tsar Osvoboditel Blvd., 1000 Sofia, Bulgaria, E-mail: [email protected] 2National Museum of Natural History, Bulgarian Academy of Sciences, 1, Tsar Osvoboditel Blvd., 1000 Sofia, Bulgaria, E-mail: [email protected], [email protected], [email protected] Corresponding author: Christo Deltshev Received 15 October 2016 │ Accepted 7 November 2016 │ Published online 9 November 2016. Abstract The contribution summarizes previously unpublished data and adds records of newly collected cave-dwelling spiders from the Balkan Peninsula. New data on the distribution of 91 species from 16 families, found in 157 (27 newly established) underground sites (caves and artificial galleries) are reported due to 337 original records. Twelve species are new to the spider fauna of the caves of the Balkan Peninsula. The species Histopona palaeolithica (Brignoli, 1971) and Hoplopholcus longipes (Spassky, 1934) are reported for the first time for the territory of Balkan Peninsula, Centromerus cavernarum (L. Koch, 1872), Diplocephalus foraminifer (O.P.-Cambridge, 1875) and Lepthyphantes notabilis Kulczyński, 1887 are new for the fauna of Bosnia and Herzegovina, Cataleptoneta detriticola Deltshev & Li, 2013 is new for the fauna of Greece, Asthenargus bracianus Miller, 1938 and Centromerus europaeus (Simon, 1911) are new for the fauna of Montenegro and Syedra gracilis (Menge, 1869) is new for the fauna of Turkey.
    [Show full text]
  • First Record of Genus Eratigena (Araneae: Agelenidae) from China, with Description of a New Species
    PREPRINT Author-formatted, not peer-reviewed document posted on 20/05/2021 DOI: https://doi.org/10.3897/arphapreprints.e68917 First record of genus Eratigena (Araneae: Agelenidae) from China, with description of a new species Zijian Shi, Luyu Wang, Zhisheng Zhang Disclaimer on biological nomenclature and use of preprints The preprints are preliminary versions of works accessible electronically in advance of publication of the final version. They are not issued for purposes of botanical, mycological or zoological nomenclature andare not effectively/validly published in the meaning of the Codes. Therefore, nomenclatural novelties (new names) or other nomenclatural acts (designations of type, choices of priority between names, choices between orthographic variants, or choices of gender of names)should NOT be posted in preprints. The following provisions in the Codes of Nomenclature define their status: International Code of Nomenclature for algae, fungi, and plants (ICNafp) Article 30.2: “An electronic publication is not effectively published if there is evidence within or associated with the publication that its content is merely preliminary and was, or is to be, replaced by content that the publisher considers final, in which case only the version with that final content is effectively published.” In order to be validly published, a nomenclatural novelty must be effectively published (Art. 32.1(a)); in order to take effect, other nomenclatural acts must be effectively published (Art. 7.10, 11.5, 53.5, 61.3, and 62.3). International Code of Zoological Nomenclature (ICZN) Article: 21.8.3: "Some works are accessible online in preliminary versions before the publication date of the final version.
    [Show full text]
  • First Cytogenetic Analysis of Eratigena Agrestris (Araneae: Agelenidae) from Turkey
    Journal of Insect Science, (2019) 19(5): 7; 1–4 doi: 10.1093/jisesa/iez086 Research First Cytogenetic Analysis of Eratigena agrestris (Araneae: Agelenidae) From Turkey Z. Kumbıçak Department of Molecular Biology and Genetics, Faculty of Art and Science, Nevşehir Hacı Bektaş Veli University, 50300 Nevşehir, Turkey ([email protected]) Downloaded from https://academic.oup.com/jinsectscience/article/19/5/7/5581989 by guest on 10 June 2021 Subject Editor: Yael Lubin Received 29 May 2019; Editorial decision 7 August 2019 Abstract In this study, chromosomal characteristics of Eratigena agrestris (Agelenidae) were investigated for the first time. Karyotype features including diploid chromosome number, sex chromosome system, chromosome morphology, and meiotic behavior were obtained from specimens collected in two localities of Mediterranean region. A spreading method including dissection, hypotonization, fixation, and staining was used to prepare the chromosome slides. In a total, 10 adult males were used due to having high numbers of dividing cells. Cytogenetical results showed that the diploid chromosome number and sex chromosome system was 2n♂ = 42 (X1X20). The sex chromosomes were identified tentatively. All chromosomes were telocentric. Relative chromosome lengths of autosomal pairs ranged between 5.65 and 3.32%, and relative chromosome lengths of X1 and X2 were 5.33 and 4.19%, respectively. In the first meiotic division stages, bivalents usually had one chiasma, but some had two chiasmata. At the end of the meiosis, two kinds of nuclei, with or without sex chromosomes, have occurred. These results contribute to a better characterization of the Agelenidae cytogenetic. Key words: karyotype, chromosome, meiosis The order Araneae is a diverse group of arachnids that are widely Most spider species have a multiple X chromosome system called distributed all over the world.
    [Show full text]
  • Revision of the Histopona Italica Group (Araneae: Agelenidae), with the Description of Two New Species
    TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. Zootaxa 3640 (1): 023–041 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3640.1.2 http://zoobank.org/urn:lsid:zoobank.org:pub:2865EE2A-01A9-45D9-B299-AAF6E118D5C4 Revision of the Histopona italica group (Araneae: Agelenidae), with the description of two new species ANGELO BOLZERN1,2, PAOLO PANTINI3 & MARCO ISAIA4,5 1Naturhistorisches Museum Basel, Augustinergasse 2, CH-4001 Basel, Switzerland 2American Museum of Natural History, Invertebrate Zoology, Central Park West at 79th Street, New York, NY 10024-5192, United States. E-mail: [email protected] 3Museo Civico di Scienze Naturali “E. Caffi”, Piazza Cittadella, 10. I-24129 Bergamo, Italy. E-mail: [email protected] 4Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Accademia Albertina, 13. I-10123 Torino, Italy. E-mail: [email protected] 5Corresponding author Abstract During a large survey of agelenid spiders from different private and museum collections, a closer examination of material from all over Italy (including type material and fresh material) previously identified as Histopona italica Brignoli 1977, disclosed two new species for science, both belonging to the italica group. Based on the results of the present work, we describe Histopona leonardoi sp. n. and H. fioni sp. n. and revise the distribution pattern of H. italica group in Italy and Switzerland.
    [Show full text]
  • SA Spider Checklist
    REVIEW ZOOS' PRINT JOURNAL 22(2): 2551-2597 CHECKLIST OF SPIDERS (ARACHNIDA: ARANEAE) OF SOUTH ASIA INCLUDING THE 2006 UPDATE OF INDIAN SPIDER CHECKLIST Manju Siliwal 1 and Sanjay Molur 2,3 1,2 Wildlife Information & Liaison Development (WILD) Society, 3 Zoo Outreach Organisation (ZOO) 29-1, Bharathi Colony, Peelamedu, Coimbatore, Tamil Nadu 641004, India Email: 1 [email protected]; 3 [email protected] ABSTRACT Thesaurus, (Vol. 1) in 1734 (Smith, 2001). Most of the spiders After one year since publication of the Indian Checklist, this is described during the British period from South Asia were by an attempt to provide a comprehensive checklist of spiders of foreigners based on the specimens deposited in different South Asia with eight countries - Afghanistan, Bangladesh, Bhutan, India, Maldives, Nepal, Pakistan and Sri Lanka. The European Museums. Indian checklist is also updated for 2006. The South Asian While the Indian checklist (Siliwal et al., 2005) is more spider list is also compiled following The World Spider Catalog accurate, the South Asian spider checklist is not critically by Platnick and other peer-reviewed publications since the last scrutinized due to lack of complete literature, but it gives an update. In total, 2299 species of spiders in 67 families have overview of species found in various South Asian countries, been reported from South Asia. There are 39 species included in this regions checklist that are not listed in the World Catalog gives the endemism of species and forms a basis for careful of Spiders. Taxonomic verification is recommended for 51 species. and participatory work by arachnologists in the region.
    [Show full text]
  • Taxonomic Notes on Amaurobius (Araneae: Amaurobiidae), Including the Description of a New Species
    Zootaxa 4718 (1): 047–056 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4718.1.3 http://zoobank.org/urn:lsid:zoobank.org:pub:5F484F4E-28C2-44E4-B646-58CBF375C4C9 Taxonomic notes on Amaurobius (Araneae: Amaurobiidae), including the description of a new species YURI M. MARUSIK1,2, S. OTTO3 & G. JAPOSHVILI4,5 1Institute for Biological Problems of the North RAS, Portovaya Str. 18, Magadan, Russia. E-mail: [email protected] 2Department of Zoology & Entomology, University of the Free State, Bloemfontein 9300, South Africa 3GutsMuthsstr. 42, 04177 Leipzig, Germany. 4Institute of Entomology, Agricultural University of Georgia, Agmashenebeli Alley 13 km, 0159 Tbilisi, Georgia 5Invertebrate Research Center, Tetrtsklebi, Telavi municipality 2200, Georgia 6Corresponding author. E-mail: [email protected] Abstract A new species, Amaurobius caucasicus sp. n., is described based on the holotype male and two male paratypes from Eastern Georgia. A similar species, A. hercegovinensis Kulczyński, 1915, known only from the original description is redescribed. The taxonomic status of Amaurobius species considered as nomina dubia and species described outside the Holarctic are also assessed. Amaurobius koponeni Marusik, Ballarin & Omelko, 2012, syn. n. described from northern India is a junior synonym of A. jugorum L. Koch, 1868 and Amaurobius yanoianus Nakatsudi, 1943, syn. n. described from Micronesia is synonymised with the titanoecid species Pandava laminata (Thorell, 1878) a species known from Eastern Africa to Polynesia. Considerable size variation in A. antipovae Marusik et Kovblyuk, 2004 is briefly discussed. Key words: Aranei, Asia, Caucasus, Georgia, Kakheti, misplaced, new synonym, nomen dubium, redescription Introduction Amaurobius C.L.
    [Show full text]
  • Segmentation and Tagmosis in Chelicerata
    Arthropod Structure & Development 46 (2017) 395e418 Contents lists available at ScienceDirect Arthropod Structure & Development journal homepage: www.elsevier.com/locate/asd Segmentation and tagmosis in Chelicerata * Jason A. Dunlop a, , James C. Lamsdell b a Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, D-10115 Berlin, Germany b American Museum of Natural History, Division of Paleontology, Central Park West at 79th St, New York, NY 10024, USA article info abstract Article history: Patterns of segmentation and tagmosis are reviewed for Chelicerata. Depending on the outgroup, che- Received 4 April 2016 licerate origins are either among taxa with an anterior tagma of six somites, or taxa in which the ap- Accepted 18 May 2016 pendages of somite I became increasingly raptorial. All Chelicerata have appendage I as a chelate or Available online 21 June 2016 clasp-knife chelicera. The basic trend has obviously been to consolidate food-gathering and walking limbs as a prosoma and respiratory appendages on the opisthosoma. However, the boundary of the Keywords: prosoma is debatable in that some taxa have functionally incorporated somite VII and/or its appendages Arthropoda into the prosoma. Euchelicerata can be defined on having plate-like opisthosomal appendages, further Chelicerata fi Tagmosis modi ed within Arachnida. Total somite counts for Chelicerata range from a maximum of nineteen in Prosoma groups like Scorpiones and the extinct Eurypterida down to seven in modern Pycnogonida. Mites may Opisthosoma also show reduced somite counts, but reconstructing segmentation in these animals remains chal- lenging. Several innovations relating to tagmosis or the appendages borne on particular somites are summarised here as putative apomorphies of individual higher taxa.
    [Show full text]
  • A Cladistic Analysis of Zoropsidae (Araneae), with the Description of a New Genus
    Belg. J. Zool., 132 (2): 141-154 July 2002 A cladistic analysis of Zoropsidae (Araneae), with the description of a new genus Jan Bosselaers “Dochterland”, R. novarumlaan 2, B-2340 Beerse, Belgium ABSTRACT. A cladistic analysis of the spider family Zoropsidae has been performed. The ingroup of the analysis consisted of eight species traditionally classified in Zoropsidae, including Zoropsis cyprogenia Bosselaers, 1997, of which the hitherto unknown male has been recently discovered, and Takeoa nishimurai (Yaginuma, 1963). The outgroup contained four species, belonging to the genera Ctenus Walckenaer, 1805, Acanthoctenus Keyserling, 1876 and Griswoldia Dippenaar-Schoeman & Jocqué, 1997. Three different weighting schemes allowed selection of one preferred, most parsimonious tree. This tree implies that Zoropsis cyprogenia has to be placed in a new genus within Zoropsidae. A description of Akamasia n. gen. is given, as well as a redescription of Acanthoctenus gaujoni Simon, 1906. KEY WORDS: Araneae, Zoropsidae, Ctenidae, Zoropsis, Takeoa, Akamasia, Acanthoctenus, cladistics, parsi- mony, weighting. INTRODUCTION 1876, Centroctenus Mello-Leitão, 1929, Enoploctenus Simon, 1896, Gephyroctenus Mello-Leitão, 1936, According to SIMON (1892: 227-230), the spider family Leptoctenus Koch, 1878, Nothroctenus Badcock, 1932, Zoropsidae Bertkau, 1882, consisted of two subfamilies: Phymatoctenus Simon, 1896, Trujillina Bryant, 1948, and Acanthocteninae, with only one genus, Acanthoctenus Viracucha Lehtinen, 1967. Keyserling, 1876, and Zoropsinae, composed of three Several authors (WUNDERLICH, 1986; LEVY, 1990; genera: Raecius Simon, 1892, Zorocrates Simon, 1888, CODDINGTON & LEVI, 1991; GRISWOLD, 1993; GRISWOLD and Zoropsis Simon, 1878. SIMON (1903: 974-975) later et al., 1999) have since revalidated the family Zoropsidae, added Uduba Simon, 1880 to Zoropsinae. PETRUN- because the eye arrangement and the presence of scopulae KEVITCH (1923: 170; 1928: 146) raised Simon’s in Zoropsis does not fit well in Lehtinen’s Zoridae.
    [Show full text]