<<

Elasticity of ferropericlase through the pressure-induced high- to low-spin transition J.MichaelBrownUniversityofWashington EarthandSpaceSciences,Seattle,WA,981951310 (206)6166058 [email protected] JonathanCrowhurstLawrenceLivermoreNationalLaboratory L350,Livermore,CA94551 [email protected] AlexGoncharovGeophysicalLaboratory 5251BroadBranchRd.,N.W.,Washington,D.C.200151305 [email protected] StevenJacobsenNorthwesternUniversity DepartmentofGeologicalSciences,Evanston,IL,60208 [email protected] We determined the pressure dependence of the single crystal elastic constants of ferropericlase(Mg 0.944 Fe 0.056 O)toastaticpressureof60GPa.Thevelocitiesofthequasi longitudinalandinterfacialelasticwaveweremeasuredinthe(100)crystalplaneusing impulsivestimulatedlightscattering.Weobservedanomaliesinmeasuredvelocitiesover thepressurerangeof40to60GPaandassociatedthemwiththehighspintolowspin

(HSLS) transition in the Fe cations of ferropericlase. We find that all three elastic elements( c11 , c12 , c44 )smoothlypassthroughminimawithrespecttoanextrapolationof thepurehighspinstate.Thisbehaviorisconsistentwithamacroscopicthermodynamic descriptionfortheHSLStransitionthatpredictsnosharpchangesinspinfractionsand dependent physical properties. The associated enthalpy and volume changes scale correctlybetweenthesedataandliteraturecompressiondataobtainedonasamplewith higher concentration. A significant geophysical consequence of the observed

1 behavioristhatinthespintransitionpressureregime,normaltemperaturederivativesof elasticityarereduced.WithinEarth,aminimuminthetemperaturederivativescausedby theHSLStransitionispredictedtooccuratadepthof1500km.Thiscorrelateswellwith thedepthwhereseismictomographicresultsshowminimumstructureandmodelpower.

Thus,theHSLStransitionmayservetomaskvelocityanomaliesassociatedwithlateral temperaturedifferences.

2 A Bound on Heat Flow Below a Double Crossing of the -Postperovskite Phase Transition BruceA.Buffett,DepartmentofGeophysicalSciences,UniversityofChicago, 5734SEllisAvenue,Chicago,IL60637([email protected]) Adoublecrossingoftheperovskitepostperovskitephasetransitionin(Mg,Fe)SiO 3has beenproposedtoexplainseismicreflectionsfromstructuresnearthebaseofthemantle. Estimatesoftemperatureinferredfromthephasetransitionscanbeextrapolatedtothe coremantle boundary (CMB) using a simple model for the thermal boundary layer. However,acomplicationariseswhenflowisdrivenbythe(negative)buoyancyofthe postperovskitephase.Bothlatentheateffectsandadvective heat transport increase the temperature gradient and heat flow below the region of postperovskite. We obtain a minimumboundonthetemperaturegradientattheCMBbynotingthatthetemperature gradientatthebaseofthepostperovskiteregionmustbeatleastassteepasthetransition temperaturewithdepth.Aminimumboundonthelocalheatflowis160mWm 2,given theseismicallyinferredgeometryofthepostperovskiteregionandathermalconductivity ofk=7WK 1m 1.Suchsteeptemperaturegradientsbelowapostperovskiteregionmay yield an unrealistically high temperature at the top of the core unless restrictions are imposedonthevaluesofthemodelparameters.

3

Imaging of structure at and near the core-mantle boundary M.V.deHoop,R.D.vanderHilst,P.Wang,L.Tenorio andP.Ma WediscusshowimagingoftheCMBandD''canbeaccomplishedusingprecursorsand coda waves associated with ScS and SKKS. The use of these waves combined significantlyimprovestheilluminationofD'', while interfaces with a wavespeed drop beneath interfaces with a wavespeed increase will be better resolved. Moreover, we expectthatajointinversionofbroadband(transversecomponent)ScSand(radial component)SKKSwavefieldsandtheirprecursorsandcodawillprovidefurtherinsight intheanisotropyinthelowermantle.

4 THE EFFECT OF HYDROGEN ON THE IONIC DIFFUSION IN MANTLE MINERALS

SYLVIEDEMOUCHY–LUNARANDPLANETARYINST./USRAandUMN 3600BAYAREABLVD,HOUSTON,TX77058 6126260572 [email protected] DAVIDL.KOHLSTEDT–UNIVERSITYOFMINNESOTA 310PILLSBURYDRIVESE,MINNEAPOLIS,MN55455 6126261544 [email protected] HydrogensubstantiallymodifiesmanyphysicalpropertiesofmineralsinEarth’s mantle.Recently,ithasbeendemonstratedthationicselfdiffusionandinterdiffusionin olivine as well as in ferropericlase are significantly faster in the presence of hydrogen thanintheabsenceofhydrogen.Wedetailheretheresultsofexperimentalinvestigations ofMgFeinterdiffusionunderhydrousconditionsinolivine,themostabundantmineral oftheuppermantleandinferropericlasethesecondmostabundantmineralinthelower mantle.Annealing experimentsunderhydrous conditions were performed using a gas mediumpressurevesselataconfiningpressureof300MPaoveratemperaturerangeof 1000oto1250oC.Thediffusioncouplesconsistedoftwoorientedsinglecrystalplatesof differentcompositions.EachdiffusioncouplewasplacedinaNican,whichcontrolsthe oxygen fugacityatNiNiO,together withamixtureofMgOandbrucitepowders.The presence of hydrogen in the sample was confirmed using Fouriertransform infrared spectroscopy. The Mg and Fe diffusion profiles were obtained with an microprobe.TheinterdiffusioncoefficientwascalculatedfromtheFeconcentrationasa function of position in the sample using the BoltzmannMatano analysis. Our results indicate that FeMg interdiffusivities are in both cases enhanced under hydrous conditionsrelativetounderanhydrousconditionsforsimilarcompositioninFe. These enhanced rates of interdiffusion are attributed to the increased concentrationofmetalvacanciesresultingfromtheincorporationofhydrogenimpurities aspointdefectsintothecrystallattice.

5 Boundary Layers in the Mantle AdamM.Dziewonski DepartmentofEarthandPlanetarySciences HarvardUniversity This year marks the 30 th anniversary of publication of the first global tomographic study and 25 th anniversaryofthediscoveryofalargedegree2signalinthetransitionzone.Inthesubsequentyears,there hasbeengreatprogressinimagingoftheEarth’sinteriorbothontheregionalandlocalscale.However,most ofthetomographicstudiesemployeddatasetsthathadsatisfactoryresolutioneitherinalimitedradial or horizontalextent.Forexample,thestudiesusingteleseismictraveltimesdonothaveresolutionintheupper mantle,eventhoughusingmatrixconditioningmethodsitispossibletoderivea“model”oftheuppermantle. Similarly,somestudiesusingsurfacewavespresenteddetailed“models”atdepthsfarexceedingresolutionof thedataused. Adatasetthatfillsinthegapcreatedbythelimitationsofthesurfacewavedispersionandteleseismic traveltimesdataconsistsofthehighermodes.Theycanbeusedeitherasawaveforminversionofbody waves(sincetheyrepresentasuperpositionofhighermodes)or,afterthedecompositionofthebodywave waveforms(vanHeijstandWoodhouse,1997),thelaterallyvaryinglocaleigenfrequenciesofthefirstfew overtones.Theresolutionincreasethroughtheintroductionofthistypeofdataisparticularlyimportantinthe vicinityofthetransitionzone. Onlythreemodelinggroupsusethecombinationofalldatatypesand,therefore,canresolvethestructure withasufficientradialresolutiontoidentifythepropertiesjustabove,withinandjustbelowthetransition zone.ThesethreegroupsareBerkeley(nonlinearasymptoticcouplingtheory;LiandRomanowicz,1996) with the most recent model by Panning and Romanowicz (2006), Harvard (path average approximation; Woodhouse and Dziewonski, 1984) with the most recent model by Kustowski et al. (2006) and Caltech/Oxford (separation of overtones; van Heist and Woodhouse, 1997) as represented by a model of Ritsema et al. (1999).These global models have a nominal horizontal resolution of about 1,000 km and variableradialresolution,fromabout50kmbelowtheMoho,100150kmintheasthenosphereandtransition zone,andabout250kminthemiddleandlowermostmantle. These models show that there are three boundary layers in the mantle. The one near the surface is dominatedbysphericalharmonicsuptodegree8,withthepeakatdegree5.Itendsbetween200and250km depth,afterwhichthepowerspectrumislowandtendstobewhite.Thesecondboundarylayerisinthe transitionzone,whereoverallpowerincreasesandisclearlydominatedbydegree2.Thespectrumchanges abruptlyatthetopoflowermantle,whereitdecreasesinamplitudeandbecomeswhite;thischaracterofthe spectrum continues to about 2000 km depth. The third boundary layer hasthe maximum power near the CMB,itisdominatedbydegrees2and3.Thesegreatwavelengthvelocityanomaliesarenotlimitedtothe lowermostmantle,butextendtoabout1000kmabovetheCMBand,perhaps,withasignificantlydiminished amplitudeallthewaytothetransitionzone.Becauseofthislargeradialextentitcannotbeassociatedwith phenomenasuchastheperovskitetopostperovskitetransition. Thetrulynewinformationisthedistinctterminationofthesurfaceboundarylayeratabout225kmdepth andthedistinctcharacterofthetransitionzone,whichprecludescontinuousflowofthematerialacrossthe upperlower mantle boundary. It does not exclude an episodic (avalanches) or localized transport of the material. Indeed, there are three localized highvelocity anomalies under Indonesia, FijiTonga and Chile Argentina.

6 Workflows, Visualization, Web Service Generation GordonErlebacher–FloridaStateUniversity 489DiracScienceLibrary,Tallahassee,FL32306 Tel.(850)6440186/FAX:(850)6440098 [email protected] EvanBollig–FloridaStateUniversity 489DiracScienceLibrary,Tallahassee,FL32306 Tel:(850)6441010/FAX:(850)6440098 [email protected] ThevisionofVLabistomakeavailableaframeworkthatallowsscientiststoperform theirworkinacollaborativemanner,interactingthroughoneormorewebportals,and providingthemwithawiderangeoftoolstohelpthemsubmit,track,analyze,visualize, andsharetheirresults.Inthistalk,wepresentanoverviewofthreetopics. First,wedescribeaworkflowvisualizer.Asafirststeptotrackingthejobsubmissions andcomplexworkflowsinherentinthedevelopmentandanalysisofmaterials,wehave developed a workflow visualizer, which allows users to view previously executed workflows and workflows in progress. Features include querying, interactive manipulation,andmetadataviewing. Second,wepresentanewtooldevelopedtoplotthedataoutputfromthephononcode thatisapartoftheEspressopackage.CodedinJava and implemented as a WebStart application,usersoftheVLabportalcanquerydatageneratedbythiscodeandexamine itsresultsgraphically. Third,wepresentanewwebservicegeneratorcapableoftranslatingTclscriptsintoweb services.TheWATT(WebAutomationandTranslationToolkit)compilergeneratesC++ code, linked with gSoap stubs. Each Tcl procedures has a corresponding WebService procedure, callable from the client. We apply Watt to the task of representing three dimensionalchargedensityplots.

7 Incorporating seemingly disparate high resolution seismic findings in the context of deep mantle dynamics and chemistry EdwardJ.Garnero SchoolofEarthandSpaceExploration ArizonaStateUniversity Tempe,AZ852871404 Email: [email protected] Web: http://garnero.asu.edu Theterm“highresolutionseismology”appliedtoEarth’slowermantletypicallyrefersto regional analyses aimed at resolution of elastic structure at short lateral scale lengths, suchas100’sofkmorless.Thistypeofinformation supplements the much longer wavelength patterns (e.g., 3000+ km) seen in global heterogeneity maps derived from tomographicinversions.Asincreasinglylargerhighqualitydatasetsbecomeavailable, e.g., the NSFfunded EarthScope’s USArray, method development and refinement for more confidently characterizing the seismic wavefieldatshortwavelengthshavecome within grasp. These include a number of data organization, stacking and migration algorithmsthatwerenotpossiblewiththesparserdatasetsofadecadeago.Asaresult, inthelastfewyears,anumberofdetailedstructuralphenomenahavebeenputforthfrom highresolutionseismicstudies. Seismicfindingsinclude:afirstorderdiscontinuousshearvelocityincreasesome200 300kmabovethecoremantleboundary(CMB),thesocalledD”discontinuity,which containssignificanttopography.BeneaththeCocosplate/CentralAmericaregion,an apparent100kmstepinthediscontinuityhasbeenimaged.Amoresubtleincreasehas beenimagedinthecentralPacific,withinthelargelowshearvelocityprovince(LLSVP). Thisincreasehasbeen attributedtothephasetransition from perovskite ( Pv ) to post perovskite( pPv ).Anexitfromthe pPv phasebackto Pv isexpectedatgreaterdepth,and advocated in some studies, though significant ambiguities may be present. A growing number of studies have found evidence for a sharp boundary between the LLSVPs beneaththePacificandAfrica,andthesurroundingmantle.ChemicallydistinctLLSVPs appeartobethemostparsimoniousexplanationforverticalboundariesor“edges”.A numberofstudieshavenowdocumentedthinultralowvelocityzone(ULVZ)layering, some10’sofkmthick,rightattheCMB.TheglobaldistributionofULVZs,however,is poorlyresolvedatpresent.Wherebestresolved,ULVZpropertiesareconsistentwithan originofpartialmelt,whichmayrelatetoplumegenesis.Dynamicalstudiessuggestthe hottestCMBregionsmaybenear(andwithin)chemicallydistinctLLSVPboundaries, and hence the most significant ULVZ structures may be found there. Seismic wave speedanisotropyhasbeendetectedinanumberofdeepmantleregions,andmayrelateto convectiveflow. Importantuncertaintiesexistinstudiesoftheseandotherphenomena(e.g.,D”scattering, attenuation,CMBtopography,etc.).Insomecases,informationfromgeodynamicsand mineralphysicshelpstonarrowtheoftenlargeuncertaintiesinsolutionmodelspace.In

8 thispresentationIwillreviewtheseismicinformation,whichofteninvolvesextremely detailed information in isolated regions, and incorporate it in a global lower mantle framework.Forexample,theseismicfindingsincreasinglysupportthenotionofwhole mantleconvectionwithchemicallydistinctLLSVPsatthebase,whereplumesoriginate near LLSVP edges. Strong lateral temperature and chemistry variations can result in depthandstrengthperturbationsofthe Pv topPv boundarythatareconsistentwiththose assignedtotheseismicallyobservedD”discontinuity.Wherepossible,thisframework will be tied to global deep mantle long wavelength structure, as well as relevant phenomenaimagedatmidmantledepths.

9 Numerical modelling of shell tectonics during terrestrial planetary accretion

T.V.Gerya(1),J.R.Lin(2,1),P.J.Tackley(1),A.D.Yuen(3)

(1)GeophysicalFluidDynamicsGroup,InstituteofGeophysics,Departmentof Geosciences,ETHZurich,Switzerland([email protected])

(1)InstituteofOceanography,NationalTaiwanUniversity,Taiwan([email protected])

(3)UniversityofMinnesotaSupercomputingInstituteandDepartmentofGeologyand Geophysics,UniversityofMinnesota,Minneapolis,USA

Theearlystagesofterrestrialplanetaryaccretionanddifferentiationarelargelyenigmatic and require extensive realistic numerical modelling efforts especially in 2D and 3D geometries. One of the hypothesised processes is destabilization of the cold undifferentiatedcorethatbuildsupduring"cold"accretion,byasurroundingliquidiron layerthatbuildsupthroughironsegregationinamagmaocean,orbytheaccumulation of ’blobs’ sinking from local magma ponds. This destabilization breaks the spherical symmetry of the planet and, therefore, can not be addressed properly in existing 1D models of accretion. We have developed a 2D thermomechanical numerical model of primordial core destabilization including selfgravity, viscoelastoplastic rheology of materials,afreeplanetarysurfaceandfeedbackfromshearheating.Byvaryingthesize oftheplanetandmetal/silicateratiowetestedvariouscasescorrespondingtoearlystages ofterrestrialplanetgrowth.Primordialcoredestabilisationcausesrapidplanetaryscale reshaping that we call "shell tectonics" as the units involved in rearrangements are planetary shells. The gravitational redistribution process lasts for less then 1 Myr (depending on the effective rheology), being fully dominated by shear heating and thermal advection. Internal gravitational redistribution processes result in planetary shapechanging revealing significant transient aspherical deviations from the original perfectlysphericalgeometry.Duringthisstagetheprimordialcorecanbecomeexposed at the planetary surface making possible its reworking during ongoing accretion processes.Mostoftheenormousamountofheatisproducedduringthisveryshorttime span associated with the coreformation and is then chaotically distributed throughout both the core and the mantle. Gravitational energy dissipation along the localized deformation zones dramatically increases rates of rearrangement and can potentially result in thermal runaway processes and sudden primordial core fragmentation. The magnitude of thermal perturbations can reach several thousand degrees, which cataclysmicallyraisestheeffectiveRayleighnumberfortheplanetarymantletoavery largenumberfavouringonsetofpowerfulmantleconvectionandpossiblyresultsinthe formationofamagmaoceanwiththemoltenmantlerocksrisingfromthedeepplanetary interior.Infuturework,suchinstabilitieswillbeconsideredinthecontextofongoing planetaryaccretionin2Dor3Dratherthanstartingfromtheendstateofa1Daccretion model.

10 Molecular Dynamics Studies of MgSiO 3 Liquid to 150 GPa: Thermodynamics and Transport Properties MarkS.Ghiorso OFMResearch–West,733624thAveNE,Seattle,WA.98115 DeanNevins,FrankJ.Spera DepartmentofEarthScience,UCSantaBarbara,CA.93106 EquilibriumMolecularDynamics(MD)simulationsareappliedtomoltenMgSiO 3using aCoulombBornMayervanderWaalspairpotentialformandparametersfromOganov (2000)andMatsui(1994)tocomputethethermodynamicandtransportpropertiesofthis archetypicalmantlesilicateliquid.Experimentswereperformedusing8000atomsanda 1fstimestep,withsimulationdurationsof50psforEOSdevelopmentandanalysisof atomiccoordinationstatisticsand10nsforcalculationofshearviscosity.Statepoints alongisochoreswerecomputedevery500Koveratemperaturerangeof2500–5000K to yield a grid of simulations spanning the pressure range 0 150 GPa. Atomic coordinationstatisticsaredeterminedbycountingnearestneighborconfigurationsuptoa cutoffdistancedefinedbythefirstminimaofthepaircorrelationfunction.Theaverage coordinationnumber(CN)ofOaboutSiincreasesfromIVatzeropressuretoaboutVII inthehighestpressuresimulations,whilethatofMgincreasesoverthesamerangefrom IVtoVIII.Si[V]achievesmaximalabundanceatabout10GPa.TheCNofOaboutO variescongruentlywiththecoordinationenvironmentofthecationsuptopressureson theorderof70GPaatwhichpointtheaverageOOCNchangesfromXVtoXIovera narrow pressuretemperature interval. The CNs of the Mg and Si vary smoothly and systematically over this interval and do not mimic the OO nearest neighbor reconfiguration. Computed values of the internal energy and density are utilized to derive a thermodynamic model, following the method of SaikaVoivod et al. (2000), employingtheequationsofRosenfeldandTarazona(1998)andVineteral.(1986).The results of the Voivodanalysis indicate a liquidliquid phase transition in the deeply supercooled region with a critical temperature close to 1050 K and critical pressure of about1.5GPa.TracerdiffusivityofMg,SiandOhavebeenfittoArrhenianformswith pressuredependantactivationvolumesreflectingprofoundchangesinshortrangeorder asafunctionofpressure.Thevariationofshearviscositywithpressurealongamantle adiabathasbeencalculated.

11 Structural and spin transitions in Fe 2O3 DiptaBhanuGhosh DEMOCRITOSNationalSimulationCenter ViaBeirut24;Trieste34014,Italy Phone:+390403787477 Fax:+390403787528 Email:[email protected] StefanodeGironcoli SISSAScuolaInternazionaleSuperiorediStudiAvanzati &DEMOCRITOSNationalSimulationCenter ViaBeirut24;Trieste34014,Italy Phone:+390403787433 Fax:+390403787528 Email: [email protected] Fe 2O3isafascinatingmaterialdisplayinganumberofstructuralphasetransitions alongwithhighspintolowspintransitions.Thefewtheoreticalstudiesreportedsofar shedlightmainlyontheFe 2O3(corundumstructure)phasewhichisthelowpressure phase. The experimentally found high pressure phases and the high spin to low spin transition are yet to be addressed theoretically. Inordertoaddressand understandthe underlying physics of these issues we have performed detailed calculations of the different possible candidate structures that might be stable at the relevant conditions. ResultsattheGGAlevelshedlightonthesequenceofthestructuralphasetransitions. However,GGAisnotsufficienttodescribetheotherintricaciesofFe 2O3.TheGGA+U treatmentisessentialtoproperlydescribetheisostructuralspintransition,morerealistic valenceedgealongwithasizablefundamentalbandgap.

12

THERMAL CONDUCTIVITY OF LOWER MANTLE MINERALS ALEXANDERF.GONCHAROV,PIERREBECK,BENJAMIND.HAUGEN*, VIKTORV.STRUZHKIN,BURKHARDMILITZER GeophysicalLaboratory,CarnegieInstitutionofWashington , 5251BroadBranchRd.,N.W.,Washington,D.C.200151305,USA 2024788900/8901,[email protected] *) DepartmentofGeologicalSciences,UniversityofColorado , Boulder,Colorado80302,USA([email protected]) STEVEND.JACOBSEN, DepartmentofEarthandPlanetarySciences,NorthwesternUniversity, Evanston,Illinois60208,USA([email protected]) Opticalabsorptionspectrahavebeenmeasuredatpressuresupto133GPaforthelower mantleoxide,(Mg,Fe)Oandironbearingmagnesiumsilicateperovskite,

(Mg,Fe)SiO 3.Unlike(Mg,Fe)O,whichshowsastrongpressuredependenceofabsorption belowanduponthehighspin(HS)tolowspin(LS)transitionofFe 2+ ( Goncharovetal.,

2006 ),thepressuredependenceofopticalabsorptionin(Mg,Fe)SiO 3isrelativelyweak.

We observe a slight overall increase of the absorption coefficient in (Mg,Fe)SiO 3 in visible and infrared spectral range due to an increased and lowerenergy shifted absorption in ultraviolet. Concomitantly, the crystalfield transitions of Fe 2+ become weaker with pressure and disappear above 50 GPa as a result of the HSLS transformationin(Mg,Fe)SiO 3,whiletheintervalencechargetransfertransitionshiftsto higherenergies.Theestimatedtotalpressuredependentradiativeconductivityislower than expected from the pressure extrapolation of the ambient and lowpressure data (Hofmeister,2000 ).Preliminarymeasurementsof(Mg,Fe)Oathigh P,T conditionsto65 GPa and 800 K show a very weak temperature dependence of the optical absorption . Measurements of the thermal diffusivity of the mantle materials using timeresolved radiometrycombinedwithapulsedIRsource( Becketal.submitted )areinprogress. Goncharov, A. F., Struzhkin, V.V., and Jacobsen, S. D. (2006): Reduced radiative conductivityoflowspin(Mg,Fe)Ointhelowermantle. Science, 312,12051208. Hofmeister,A.M.(2000):MantleValuesofThermalConductivityandtheGeotherm fromPhononLifetimes. Science, 283,16991706. Beck, P., A. F. Goncharov, V. Struzhkin, B. Militzer, H.K. Mao, and R. J. Hemley (submitted): Flash heating highpressure measurement of thermal diffusivity of materialsincells.

13 PREDICTING A GLOBAL PEROVSKITE AND POST-PEROVSKITE PHASE BOUNDARY 1 1 2 3 Don Helmberger , Daoyuan Sun Xiaodong Song , and Stephen P. Grand 1 Seismological Laboratory, California Institute of Technology 2 Department of Geology, University of Illinois at Urbana-Champaign 3 Department of Geological Sciences, University of Texas at Austin

Abstract AlowermantleSwavetriplicationwithaS branchoccurringbetweenSandScShasbeen cd recognized for many years with a variety of explanations. It is particularly strong when samplingregionsbeneaththecircumPacificlowermantlefastvelocitybeltseeninglobal tomographicmodelswhereithasbeenmodeledwitha23%jumpinSvelocity.General propertiesare;(1)ittendstoarriveearlierbeneaththefastestanomaliesand(2)itsrapid changesinstrengthandtimingrelativetoS.TherecentlydiscoveredPerovskite(Pv)toPost perovskite(PPv)phasetransition[ Murakamietal. ,2004]isexpectedtoshowthischangein timing assuming a positive Clapeyron slope (γ) between 3 to 9 MPa/K, however, the predictedvelocityjumpisabouthalfoftheabove1Dmodelingresults.Here,wemodelthe phaseboundaryheightbymappingSwavetomographyintotemperatureassuminguniform chemistry, or a MonoPhaseTransition (MPT), and a more complex mapping procedure involving possible changes in Chemistry (CPT). A few adjustable parameters involving referencephaseboundaryheightandvelocityjumparedeterminedfromcomparingsynthetic seismogrampredictionswithdenselysampledobservations.ParticularlystrongS dataare cd explainedbyfocusingeffectscausedbysmallzonesofenhancedvelocities(slabbuckling) seeninsometomographicmodels.ThesesharpfeaturesinSwavetomographyareconfirmed bythebehaviorofdifferentialPKP(ABDF)whichshows4schangesoveradistanceof300 kmcorrelatingwellwiththecorrespondingSwavemodelsbeneathCentralAmerica.

14 Hydrous partial melting of the upper mantle as judged from mineral/melt partition coefficients. Marc.M.Hirschmann,CyrilAbaud,TonyWithersDept.ofGeologyandGeophysics, UniversityofMinnesota,Minneapolis,MN Ithasbeenknownformorethan10yearsthatnominallyanhydrousmineralsmayincite small amounts of melting in Earth’s mantle. In recent years, there has been a great increase in experimental data on the H 2O storage capacity of nominally anhydrous minerals.Yet,disagreementamongmodelsforthelocusofdehydrationmeltinginthe uppermantleisgrowingratherthannarrowing.Modelsspanthegamutfromrequiring small amounts of hydrous melt throughout the upper mantle, to hydrous melting in a globallowvelocityzonelayeratdepthsof~80200km,tomeltingonlybeneathridges and oceanic island in a restricted interval a few 10s of km beneath the locus of dry melting.Thesedisagreementspersistbecausedirectexperimentalinvestigationsofthe influenceofsmallamountsofH 2Oonmantlemeltingarenotfeasible,andconsequently understandingcomesfromparameterizationofindirectexperimentalconstraints. Onekeyconstraintonthepossiblelocusofhydrousmeltingintheuppermantleisthe rangeoffeasibleconcentrationsofH 2Oinnearsolidushydrousmelts.Foramantlewith C mantle afixedamountofH 2O, H2O ,themaximumH 2Oconcentrationofanincipientpartial C mantle / D peridotite/melt D peridotite/melt meltisgivenby H2O H2O ,where H2O istheequilibriumbulkpartition coefficient between the peridotite mineral residue and the partial melt. Experimental D mineral/melt determinationsof H2O foruppermantlemineralshavebeenmadefeasiblebynew Dolivine/melt lowblankionprobemeasurements.Althoughthermodynamiccalculationsof H2O predictthatitshoulddependonbothpressureandH 2Oconcentration,suchdependences D garnet/melt arenotapparentintheexperimentaldata.Valuesfor H2O spanawiderange,and areapparentlycontrolledbytheconcentrationofminorelementsingarnet,notablyTiO 2. D pyroxene/melt Finally,valuesfor H2O dependstronglyontheconcentrationofAlinpyroxene, andinparticularontheabundanceoftetrahedralAlinpyroxene. D peridotite/melt Combining experimental constraints on H2O with the modal proportions and compositionsofmineralsneartheperidotitesolidus,itispossibletoestimatetheH 2O concentrationofincipientpartialmelts.Formantlewith100ppmH 2O,suchpartialmelts have1.2wt.%H 2Oat3GPaand2.3wt.%at7GPa.SuchmodestconcentrationsofH 2O provide only small stabilization of melt relative to a dry peridotite system, thereby supporting the inference that dehydration partial melting of normal mantle is feasible onlynearwherethedryperidotitesolidusisapproached,meaningimmediatelybelowthe locusofdrymeltingbeneathridgesandmantleplumes.

15 Measurements and Models of Thermal Transport Properties

AnneM.Hofmeister–Dept.EPSc,WashingtonUniversity 1BrookingsDr.,St.Louis,MO63130USA 3149357440,fax9357361 [email protected] Thisreportdiscussesnewmeasurementsandtheoryforvariousmechanismsof heattransportinthemantle.Misconceptionsconnectedwithdecadesofproblematicdata andhistoricaldevelopmentarediscussed.Keyparameterscontrollingheatflowinthe Earthareemphasizedanddirectionsneededforeffectiveprogressarepointedout. Thevibrationalcomponentofheattransportinminerals is difficult to measure because they are transparent to nearIR light and are hard. Technology transfer of accurate( ±2%),contactfree,laserflashanalysis(LFA)formeasuringthermaldiffusivity (D)frommaterialsscienceandengineeringtoEarthsciencehasrevealedthatprevious geomaterialsmeasurementsof Dcontainsubstantialandsystematicerrors,andlikewise forthermalconductivity( k=CPD).At298K, Disunderestimatedonaverageby10% perthermalcontact(e.g.,samplewiththermocouples).Thiserrorisoffsetastemperature (T)increasestospurious,directradiativetransfer.InLFA,usingcoatingsandMehlinget al’s.(1998)modelremovesunwantedradiativetransfer.Theseopposingerrorssumto provideerraticvaluesincontactmethods,butingeneral Disunderestimatedat298Kby upto50%andoverestimatedby800K.Incorrectingcontactdata,formulafordiffusive radiation were misapplied, adding prejudice. These problems exist in high pressure experiments,andarecompoundedbydeformationandcompressionofporespace.Also, anisotropyisunderestimatedduetouseoflongcylindersinmanycontactmeasurements. Truevaluesof Dand kfromLFAdataonminerals,glassesandmeltsshowthattheseare effective conductors of heat. Theory has been benchmarked against bad data and the misconception that this anharmonic process can be represented by thermodynamic properties,whicharemostlyharmonic.Progresshasbeenimpededbycalculationof k, which involves convolution with CP, rather than the simpler, more direct measure of transport, D,andbyunsupportedemphasisofacousticmodes,traceabletoDebye. Diffusiveradiativetransport( krad,dif ),asoccursinthemantle,isnotconstrainedby laboratory experiments, and is therefore calculated from spectroscopy. All models of diffusionbyradiationarephenomenologicalbecausephysicalscatteringlimitsthemean freepathofthephotons,i.e, krad,dif isnotabulkmaterialproperty.Themostcommonly 3 appliedformula krad,dif ~ T isinvalidforthemantleasitasitrequirespartialanduniform transparency over frequencies from 0 to ∞ (i.e., like graphite) and neglects physical scattering. The latest model accounts for scattering, back reflection, grainsize, and emissivityon.Spectraldataofmantlematerialsneededformodelinputareinadequate, soresultsforolivinearegeneralizedtoothermantlephasesattheexpenseofaccuracy. For all phases, krad,dif depends nonlinearly on T, grainsize, and Fe content. Different regimesexist:forexampleradiativetransferislowforsmallgrainsizeandlowforlarge Fecontents. .

16 Determination of the hyperfine parameters of iron in aluminous (Mg,Fe)SiO 3 perovskite JenniferM.JacksonCaltech 1200E.CaliforniaBlvd.,M/C25221 6263956780 [email protected] Knowledge of iron valences and spin states in silicate perovskite is relevant to our understanding of the physical and chemical properties ofEarth's lower mantle such as transport properties, mechanical behavior, and element partitioning. We will discuss recent experimental results on the hyperfine parameters of the iron component of an aluminousFebearingsilicateperovskitesampleusingsynchrotronMoessbauer spectroscopy and laser heated diamond anvil cells at beamline 3ID of the Advanced Photon Source. Evaluation of the spectra provide the isomer shift and the quadrupole splittingoftheironcomponentinsilicateperovskite,whichgivesinformationonvalence andspinstatesunderlowermantleconditions.

17 Thermoelastic Properties of Magnesiowüstite at Earth’s Lower Mantle Conditions C.R.S.daSilva (1) ,J.F.Justo (1 ,2) ,Z.Wu (2) ,T.Tsuchiya (3) ,andR.M.Wentzcovitch (1 ,2) (1)MinnesotaSupercomputingInstitute,UniversityofMinnesota,Minneapolis,MN 55455 (2) DepartmentofChemicalEngineeringandMaterialsScience,Universityof Minnesota,Minneapolis,MN55455 (3) GeodynamicsResearchCenter,EhimeUniversity,Matsuyama,Ehime,7908577, Japan Abstract Thethermoelasticpropertiesofmagnesiowüstite(Mg1−xFe x)O(x=0.19),acrosstheiron hightolowspintransition,havebeeninvestigatedbyfirstprinciplescalculationsatthe Earth’slowermantleconditions.Thespintransitionleadstodramaticeffectsonbulkand shear moduli. However, such transition occurs smoothly along a typical geotherm, spreadingacrossmostofthelowermantle.Additionally,thetransitioncausesimportant variationsintheseismicparameters,theratiosofbulkvelocity(R φ/s)anddensity(R ρ/ s) anomalies.Theresultssuggestthatthespintransitioninmagnesiowüstite,andpossiblyin ferrosilicate perovskite, can explain the anticorrelation between bulk and shear wave velocitiesinthemiddleofthelowermantle.

18 GEODYNAMIC SIGNIFICANCE OF SEISMIC ANISOTROPY OF THE UPPER MANTLE: NEW INSIGHTS FROM LABORATORY STUDIES SHUNICHIROKARATO–YALEUNIVERSITY DEPARTMENTOFGEOLOGY&GEOPHYSICS,NEWHAVEN,CT06520 2034323147(PHONE),2034323134(FAX) shun[email protected] Seismic anisotropy is caused mainly by the latticepreferred orientation of anisotropicminerals.Majorbreakthroughshaveoccurredinthestudyoflatticepreferred orientation (LPO) in olivine during the last ~10 years through largestrain, shear deformation experiments at high pressures. The role of water as well as stress, temperature,pressureandpartialmeltinghasbeenaddressed.Afterreviewingpublished results, I conclude that the intrinsic effect of pressure on olivine LPO has not been demonstrated,soistheintrinsiceffectofpartialmelting.However,theinfluenceofwater is well established: It is large and new results require major modifications to the geodynamic interpretation of seismic anisotropy in tectonically active regions such as subduction zones, asthenosphere and plumes. The main effect of partial melting on deformation fabrics is through the redistribution of water, not through any change in deformation geometry. A combination of new experimental results with seismological observationsprovidesnewinsightsintothedistributionofwaterassociatedwithplume asthenosphereinteraction,formationofoceaniclithosphereandsubduction.Inparticular, anomalously strong V SH /V SV anisotropy together with the anomalously low electrical conductivityinthecentralPacificsuggeststhattheasthenosphereinthisregioncontains unusuallylowwatercontent.Aplausibleexplanationisthathotand wet plumesupply dry materialstotheasthenosphereduetodeepmelting.

19 A Visualization Framework for Earth Materials Studies BijayaBKarki–LouisianaStateUniversity DepartmentofComputerScience,DepartmentofGeologyandGeophysics 2255783197/2255781465 [email protected] Everlargeramountsofdatarelatedtothestructural,electronicandmechanicalproperties ofEarthmaterials(intheirsolidandliquidphases)areroutinelyproducedbymassively parallelcomputersimulations.Suchsimulationsare based on approaches ranging from the empirical molecular dynamics (MD) methods to the sophisticated firstprinciples molecular dynamics (FPMD) methods based on density functional theory (DFT). The simulateddata,whicharetimedependentandthreedimensional in the nature, are not illuminatingbythemselves;gaininginsightintothemis,however,anontrivialtask.In order to take advantage of maximal information contained in various data related to modeling of materials including those of direct geophysical relevance, we have been developingascalableandadaptivevisualizationframework.Ourapproachaimstofulfill domainspecific needs thereby justifying the effectiveness of visualization for fundamental interdisciplinary science. The current activities include: 1) Interactive atomistic visualization at spacetime multiresolution with onthefly extraction and rendering of a variety of data needed for a complex analysis. 2) Multiple datasets visualization (simultaneous rendering of more than one datasets to examine cross correlations among them) based on isosurface extraction and hardwareassisted texture mapping/clipping methods. 3) Remote visualization with online reposition of multivariate elasticity data within the clientserver paradigm. These visualization techniquesarebeingintegratedwithintheVLabcomputationalframework.

20 Refactoring Finite Element Codes MatthewG.KnepleyArgonneNationalLaboratory 9700SCassAve.,Chicago,IL60439 6302521870 [email protected] Historically,finiteelementcodesweremonolithic,singleauthorapplicationswhichwere slowlyadaptedovertime.However,thispreventedexperimentationwithnovelelements, aswellascomparisonoftheperformanceofdifferentelements,sinceeachnewelement hadtobeessentiallywrittenfromscratch.Thediscretizationcouldnotbedisentangled from mesh handling, and sometimes even the algebraic solver. This resembles the situationwithKrylovsolversinthelate1980s.Eventually, a linear algebraic interface wasadopted,independentoftheunderlyingdatastructures,anddifferentKrylovmethods became interchangeable. We will present an interface inspired by the theory of fiber bundlesonmanifoldswhichallowsfiniteelementmethodstobeusedinterchangeably. AninitialimplementationisavailableaspartofthePETSclibrariesfromANL.

21 SEISMOLOGICAL TESTS OF POST-PEROVSKITE PRESENCE THORNELAY–UCSANTACRUZ EARTHANDPLANETARYSCIENCESDEPARTMENT 8314593164/3074(FAX) [email protected] Thediscoveryofpostperovskite(pPv),thehighpressurepolymorphof(Mg x,Fe 1x)SiO 3 perovskite (Pv), may have profound implications for the thermal, chemical and dynamicalstructureofthedeepEarth, if itcanbedemonstratedthatpPvcurrentlyexists in the lower mantle. The requisite basis for such a demonstration is seismological observationofelasticvelocityanddensitystructuresdiagnosticoforatleastcompatible withtheexpectedpropertiesofpPvoccurrenceinarealisticlowermantlechemicaland thermal environment. A critical assessment of seismological observations versus predictionsforalowermantlemodelwithpPvisundertaken, with the limitations and robustattributesoftheseismologicaldatabeingsummarized.Theexistenceofaseismic velocity discontinuity several hundred kilometers above the coremantle boundary is a primary line of evidence for the presence of a PvpPv phase change. However, some attributes of the discontinuity, such as localized P wave reflections from a large P velocity increase and the sharpness of observed P and S velocity increases, reveal inconsistencieswithexpectedpropertiesofaPvpPvphasetransition.Lateralvariations in temperature can produce complex phase boundary structure that explains variable S wave observations, but such elastic heterogeneity intrinsically complicates testing the pPvhypothesis.Thecombinationofrapidlyexpandingseismologicaldatasetsandnew highresolutiondataanalysisproceduresrevealmultipleseismicdiscontinuitiesnearthe baseofthemantle;insomecasesthesemaybeconsistentwithforwardandreversePv pPvtransformations,boundingapPvlayerorlensinD”abovetheCMB.Otherphase changesorcompositionalcontrastscouldalsobeinvolved.Atpresent,existenceofpPv in the deep Earth is quite plausible, but not yet conclusively demonstrated. Future seismologicalandmineralphysicsresearchdirectionsforfurthertestingthehypothesis thatpPvispresentinthelowermantlearesuggested.

22 Constraints on Mantle Composition from 1D Earth Models

BaoshengLi StonyBrookUniversity Comparison of seismic 1D velocitydepth profiles with plausible compositional

modelscanplaceconstraintsonthemineralogicalcompositionoftheEarth’smantle.

Intheuppermantleandtransitions,oneofteninfersolivinecontentisbymatching

thesizeandamplitudeof410and660kmdiscontinuitiesobservedinregionalor

globally averaged seismic data (e.g., PREM, or AK135).Withtheadvancementof

acoustictechniquesathighpressureandhightemperature(e.g.,Brillouinscattering

and ultrasonic interferometry), bulk and shear properties at conditions relevant to

upper mantle and transitionzone have become available for many mantle phases,

including olivine and its polymorphs, pyroxenes (orthopyroxen and highP

clinopyroxene),majoriticgarnet,CaSiO3perovskite,magnesiowustiteandMgSiO3

perovskiteWiththesenewdata,wehavecomparedthevelocityanddensityprofiles

fortwomantlecompositionalmodels,pyroliteandpiclogite.WefindthatPandS

wave velocities for pyrolite model along 1600K adiabatic geotherm provide an

adequateexplanationofthediscontinuitiesandgradient,whilepiclogiteprovidesa

poormatchat400500kmdepth.Basedonthecomparisonsinthecurrentstudy,a

whole mantle convection model is favored than layered convection with chemical

boundariesat660kmdepth.

23 Geophysical Implications of the Spin Transition in the Earth’s Lower Mantle JungFuLin–LawrenceLivermoreNationalLaboratory 7000EastAvenue,Livermore,CA94550 Tel:(925)4244157 Fax:(925)4226594 [email protected] Electronic spinpairing transitions of iron and associated effects on the physical propertiesofhostphaseshavebeenrecentlyreportedinlowermantlemineralsincluding ferropericlase, silicate perovskite, and possibly in postperovskite at lowermantle pressures. Geophysical relevance of the electronic spin transition is its effects on the physicalandchemicalpropertiesofthelowermantlephases.HereIwillevaluatecurrent understanding of the spin and valence states of iron in the lowermantle phases, emphasizing the effects of the spin transitions on the density, sound velocities, and transport properties of the lowermantle phases, mainly in ferropericlase. The spin transitionofironresultsinenhanceddensity,incompressibility,andsoundvelocities,and reduced radiative thermal conductivity in the lowspin ferropericlase, which should be consideredinfuturegeophysicalandgeodynamicmodelingoftheEarth’slowermantle. Evaluation of the experimental and theoretical pressurevolume results shows that the spintransitionofironresultsinafewpercentincreaseindensityinferropericlase,thus allowing direct comparison to pressure, temperature, and compositional effects in the lowermantle.Alongthelowermantlegeotherm,thespincrossoverinferropericlaseand perhaps in perovskite would lead to an increasingly steeper than normal density and soundvelocitygradientsascomparedtothatwithoutthespincrossover.Theemerging pictureoftheEarth'sdeepermantleindicatesthatpreviousmodelsoflowermantlefrom mineralphysicsdatausinghighspinferropericlaseandsilicateperovskiteareinsufficient to correctly model the geophysical behavior in the lower mantle. This work was performed under the auspices of the U.S. DOEby UC\LLNLunderContractW7405 Eng48.UCRLABS224133

24 IRON-RICH POST-PEROVSKITE SILICATE AT THE CORE-MANTLE BOUNDARY WENDYMAOSTANFORDUNIVERSITY 450SERRAMALL,BRAUNHALLBLDG320,STANFORD,CA94305 2023202025 [email protected] TheEarth’sD”layer,thelowermost130to300kmofthesilicatemantle,isa regionwithacomplexseismicsignature.Oneparticularlyenigmaticfeatureareareasof ultralowseismicvelocitiesthathavebeenobservedatthebaseofD”wherethisboundary layercomesincontactwiththeliquid,ironrichouter core. In a series of laserheated diamondanvilcellexperimentssimulatingtheultrahighpressuretemperatureconditions ofthecoremantleboundary,weobservedthatalargeamountofironcanbeincorporated into the recently discovered postperovskite (ppv) silicate phase, and that this significantly changes its properties relative to the pure MgSiO 3 endmember. We determined the aggregate compressional and shear wave velocities of this ironrich silicateathighpressureandfoundthatppvwithupto40mol%FeSiO 3maybeableto explainthepropertiesseismicallyobservedinultralowvelocityzones.

25 Singlecrystalelasticityofhydrouswadsleyiteandimplicationfor theEarth’stransitionzone ZhuMao 1,StevenD.Jacobsen 2,FumingJiang 1,JosephR.Smyth 3,ChristopherM.Holl 3, DanielJ.Frost 4,ThomasS.Duffy 1 1PrincetonUniversity,DepartmentofGeosciences,Princeton,NJ,08540 2NorthwesternUniversity,DepartmentofGeologicalSciences,Evanston,IL60208 3UniversityofColorado,DepartmentofGeologicalSciences,Boulder,CO80309 4BayerischesGeoinstitut,UniversitätBayreuth,95440Bayreuth,Germany As a highpressurepolymorph of olivine,Wadsleyite (βMg 2SiO 4)isexpectedtobea dominantmineralinthetransitionzonefrom410kmto520kmdepth inthemantle. Previousstudiesshowwadsleyitecanincorporatevariableamountsofwateruptogreater than3wt%ofwater(Kohlstedtetal.1996;Inoueetal.1995;Smythetal.1987,1994). Small amounts of water could strongly influence a number of physical properties of wadsleyite. The effects of water on the elasticity of wadsleyitearepoorlyknown.We measuredthesinglecrystalelasticconstantsofwadsleyiteswith0.37wt%,0.84wt%and 1.66 wt% H 2O at ambient conditions by Brillouin spectroscopy. By computing the aggregate elastic properties, we find that the bulk (K S0 ) and shear modulus (G 0) of hydrous wadsleyite decrease linearly with water content according to the following relations: K S0 =170.312.4X W; G=111.87.9X W; where X W is the water H 2O weight percent.Comparedwithanhydrouswadsleyite,1wt%ofwaterwillleadto7.3%decrease inbulkmodulus,7.1%decreaseinshearmodulus.Water has a greater or comparable effectontheelasticmoduliofwadsleyiteasthatofolivineorringwoodite.Toquantify the effect of pressure on the elasticity of hydrous wadsleyite, we also carried out Brillouin measurements for samples containing 0.84 wt% H 2O to 12 GPa. Pressure derivativesofbulkandshearmoduliofhydrouswadsleyitearesimilartotheanhydrous phase:K S’=4.2(1),G’=1.4(1).ToevaluatetheeffectofH 2Oonthe410kmdiscontinuity, wecalculatethevelocitycontrastat13.7GPaalonga1400 oCadiabatic.10mol%ironis assumed. We assume the pressure and temperature derivatives of aggregate elastic moduliofhydrousolivinearethesameasanhydrousphase.TheH 2Opartitioncoefficient betweenolivineandwadsleyiteistakentobe2(FrostandDolejš2007).Comparedwith adrytransitionzone,0.9wt%H 2Oinwadsleyitedecreasesthevelocitycontrastbetween wadsleyiteandolivinefrom10.4%to8.5%forPwavevelocityandfrom11.9%to9.3% for S wave velocity. Thus, 0.9 wt% H 2O in wadsleyite could decrease the velocity contrastby~20%.Forapyroliteuppermantle(60vol%olivine),1.3wt%(or1.5wt% determinedbySwave)H 2Oinwadsleyiteisrequiredtomatchthevelocitycontrastgiven byseismicmodelAK135.Ontheotherhand,ifthetransitionzoneisconsideredtobe watersaturatedwhichcorrespondsto0.9wt%H 2Oinwadsleyite,4549vol%olivineis neededtoexplainthemagnitudeofthe410kmdiscontinuity.

26 INTERMEDIATE-SPIN FERROUS IRON IN LOWER MANTLE PEROVSKITE C.McCAMMON,I.KANTOR,O.NARYGINA,J.ROUQUETTE,L.DUBROVINSKY BAYERISCHESGEOINSTTUT UNIVERSITAETBAYREUTH,D95440BAYREUTH,GERMANY TEL:+49(0)921553709;FAX:+49(0)921553769 catherine.mccammon@unibayreuth.de U.PONKRATZ,I.SERGUEEV,M.MEZOUAR EUROPEANSYNCHROTRONRADIATIONFACILITY BP220,F38043GRENOBLECEDEX,FRANCE V.PRAKAPENKA CENTERFORADVANCEDRADIATIONSOURCES UNIVERSITYOFCHICAGO,CHICAGO,IL60637,USA Thelowermantleisdominatedbyironcontainingmagnesiumsilicateperovskite,where theabilityofirontoadoptmultiplevalenceandspinstatescanaffectabroadspectrumof physicalandchemicalproperties.Conflictingresultshavebeenreportedofironspin transitionsinsilicateperovskite,butnointerpretationhasbeenfoundthatisconsistent withallofthedata.Wehaveconducted insitu highpressurehightemperature Mössbauerandnuclearforwardscattering(NFS)studiesofMg 0.88 Fe 0.12 SiO 3and Mg 0.86 Fe 0.14 Si 0.98 Al0.02 O3perovskitecombinedwithhighresolutionXraydiffraction experimentsthatreconcilethecontroversyandshowallexistingdatatobeconsistent withahightointermediatespintransitionofFe 2+ startingatapproximately30GPa. Hightemperaturedatashowthatelevatedtemperaturesstabilisetheintermediatespin state;henceFe 2+ insilicateperovskiteisinferredtobepredominantlyintheintermediate spinstatethroughoutmostofthelowermantle.

27 Topology of the Post-Perovskite Phase Transition and Mantle Dynamics MarcMonnereau–UniversityofToulouse OMP,14avenueE.Belin,31400Toulouse,France +33561332968/+33561332900 [email protected]mip.fr DaveA.Yuen–UniversityofMinnesota DepartmentofGeologyandGeophysics,UMN,Minneapolis,MN554550219,USA [email protected] TheD"layerisaseismicstructurewhosecomplexityhasremainedpuzzlingforalong time. Interpreted in terms of postperovskite boundary undulations, it would offer the chancetoprovideanabsoluteconstraintonthetemperaturewithinthethermalboundary layerofthemantle.Thiswouldhavegreatimpactonourunderstandingofthedynamical stateandthermalhistoryoftheearth.Concertedefforts recently have been devoted to sharpeningtheseismicimagingofD",butresultsremaininterpretedintheframeworkof 1Dthermalmodels.Forinstance,therecentseismologicaldiscoveryofapossibledouble crossingisastrongindicationthatthecoremantleboundary(CMB)temperaturewould be higher than the temperature intercept T int , which is the temperature of the post perovskitephasechangeattheCMBpressure.Thisdoublecrossinghasalsobeenusedto constrain the temperature gradient at thebase of the mantle, but numerical models of mantle convection show that the thickness of a thermal boundary layer greatly varies from one place, so that various different geotherms can account for this seismic observation. Thepurposeofthisstudyistoinvestigatethroughsimple3Dsphericalexperimentof mantleconvectionhowitispossibletodrawanyconstraintonthethermalstateofthe deepmantle,asthecoreheatflux,fromthetopologyofthepostperovskite.Wehave found a great sensitivity of the shape of the ppv surface from variations of different parameters such as the amount of internal heating, the Clapeyron slope, but also the temperature intercept. Threedimensionnal spherical models of mantle convection that can satisfy the seismological constraints depend on the Clapeyron slope. At moderate value,8MPa/K,thebestfitisfoundwithacoreheatflowamounting40%ofthetotal heatbudget(~15TW),whereasfor10MPa/Ktheagreementisforalowercoreheatflow (20%~7.5TW). In all cases these solutions correspond to temperature intercept 200K lowerthanthecoremantleboundarytemperature.Thesemodelshaveholesofperovskite adjacenttopostperovskiteinregionsofhotupwellings.

28 First-Principles Study of Fe Spin Crossover in the Lower Mantle DaneMorganUniversityofWisconsin,Madison 244MSE,1509UniversityAve,Madison,WI53706 6082655879, [email protected] AmeliaBengtsonUniversityofWisconsin,Madison 137MSE,1509UniversityAve,Madison,WI53706 6088900968,[email protected] ThelowermantlemakesupapproximatelyhalfthevolumeoftheEarthanditsmaterial propertiesplayafundamentalroleinplanetarydynamics.Thelowermantleisknownto becomposedprimarilyof(Mg,Fe,Al)(Si,Al)O 3perovskiteand(Mg,Fe)Oferropericlase. The properties of these phases, particularly the Fe partitioning between them, may be strongly affected by recent discovery of a crossover from high to lowspin Fe under lowermantleconditions.Weusefirstprinciplesmethodstostudythespincrossoverasa functionofFecompositioninthesetwophases.Wefindasignificantreductioninthe effectivevolumeofFeuponthespintransitionandthatthisplaysadominantroleinthe crossover.Wealsofindastrongdependenceofthespincrossoveroncompositionand structure, including opposite compositional trends for perovskite compared to ferropericlase.

29 Deep Earth Viscosity: A New Test Based Upon the Impact of Variations in Earth’s Rotational State Upon Holocene Relative Sea Level Histories

W.RichardPeltier,DepartmentofPhysics,UniversityofToronto,Canada

AnalysesoftheEarth’srotationalresponsetotheglaciationanddeglaciationprocessof the Late Pleistocene iceage have demonstrated that both the nontidal acceleration of rotation and true polar wander components of this response are well explained as consequencesofthisiceageinfluence.Whathasremainedunclearuntilveryrecentlyis thefactthatthelatteroftheseimpactsuponEarth rotation has a significant influence uponrelativesealevelhistory.Theformofthisfeedback is characterized by a spatial pattern defined by a spherical harmonic of degree 2andorder1.AsIwillshow,this providesuswithameansoftestingwhetherornotthesameradialviscositystructurethat is required to fit the rotational observables themselves is able to properly predict the anomaliesinrelativesealevelhistoryrecordedonradiocarbondatedrelativesealevel historiesthatareassociatedwiththeinfluenceof“rotationalfeedback”.Asithappens the available data base of such measurements that has been assembled in Toronto containsasufficientnumberofdistincttimeseriesfromwithineachoftheextremaofthe degree2andorder1patternastomakepossibleanunambiguousidentificationofthis influence.Thefactthatthereexistsnosignificanterrorinthepredictionsofthemodel thatincludesthisfeedback,acrossthe4extremaofthispattern,providesdirectevidence thatthelateralheterogeneityofviscosityonsuchlargespatialscalesisnegligible.

30 Open grid computing environments collaboration MarlonPierce CommunityGridsLaboratory IndianaUniversity TheVLABportalisbasedontheportletcomponentmodel that has been adopted by manyscientificportaldevelopers,includingmanyparticipants in the TeraGrid Science Gatewayprogram.Oneoftheshortcomingsofthismodelisthatportlets,whilereusable andsharablebetweendevelopmentgroups,provideacoarsecomponentmodelthatlimits reusability. Wethusneedtocomplementthis model with a finer grained component modelthatwillenableustobuildportletsoutofreusableparts.Toaddressthisissue,we presentourworkdevelopingGridTagLibrariesandBeans(GTLaB),asetofsoftware libraries that encapsulate common Grid client operations as XML tags. These are designedtoenableportletdeveloperstomorerapidlydevelopportletsandstandalone webapplications.Wedescribeourworkandprovideacasestudyexampleofwrappinga simplescienceapplicationworkflowthatcanbeencodedasadirectedacyclicgraph.

31 The transition zone and mid-mantle in regions of subduction JustinRevenaughUniversityofMinnesota GeologyandGeophysics 310PillsburyDr.SE. Minneapolis,MN55455 6126247553 [email protected] AnnaCourtierUniversityofMinnesota GeologyandGeophysics 310PillsburyDr.SE. Minneapolis,MN55455 6126247553 [email protected] We examine multiple ScS reverberation records of reflections from the transition zone and midmantle in three regions of active or recent subduction. In addition to the ubiquitous410and660kmdiscontinuities,wefind occasional evidence of a reflector near 520 km depth, a moderatethickness lowvelocity layer atop the 410km discontinuityandaconsistentsetofmidmantlereflectors.Thelatterappearrestrictedto subductionaffectedregions,andhaveestimatedimpedanceincreasesontheorderof2to 8percentandmediandepthsof~900and~1150km.Mantlewateroffersaconsistent framework to interpret many of our observations, including coupled variability in the reflectivityofthe410and520kmdiscontinuities,possiblemeltjustabovethetransition zone, and midmantle reflectors perhaps produced by lowermantle slab dewatering accompanying the breakdown of superhydrous B and phase D. If the last inference is correct,slabsmaydeliveranontrivialamountofwatertotheuppermostlowermantle.

32 Enabling Science with Grid Technology JAMIEM.RINTELMAN–STFCDARESBURYLABORATORY KECKWICKLANE,DARESUBURY,WARRINGTONWA44ADGREATBRITAIN +44(0)1925603102 [email protected] KerstinKleese–VanDamSTFCDARESBURYLABORATORY KECKWICKLANE,DARESUBURY,WARRINGTONWA44ADGREATBRITAIN +44(0)1925603832 k.kleesevan[email protected] AsGridtechnologymaturesitbecomesmoreandmoreeasytoadoptandmoreusefulto awiderrangeofscientificapplications.Thistalkwilldescribesomeoftheapproachesto jobsubmissionanddatamanagementdevelopedattheScienceandTechnologyFacilities CouncileScienceCentre.Particularemphasiswillbeplacedonthescientificprojects thathavebeenperformedwiththeaideofthistechnology.Theseincludecomputational chemistrystudyofcatalystdesign,bandtheorystudiesofhighT cmaterials,andseveral applicationsofcomputationalmaterialsscience.

33 Monte Carlo Simulations of Water Speciation in Hydrated Silica

J.IljaSiepmannUniversityofMinnesota Depts.ofChemistryandofChem.Eng.&Mats.Sci.,Minneapolis,MN554550431 Phone:+16126241844 [email protected] KellyE.AndersonandLornaC.GrauvilardellUniversityofMinnesota Depts.ofChemistryandofChem.Eng.&Mats.Sci.,Minneapolis,MN554550431 Phone:+16126247666 [email protected] and[email protected] MarcM.Hirschmann–UniversityofMinnesota Dept.ofGeologyandGeophysics Phone:+16126256698 [email protected] Understandingthephasebehaviorandpropertiesofhydratedliquidsilicaunderextreme conditions is of interest for gaining insight into Earth materials. The high melting temperatureofsilica,though,makesitdifficulttostudythisphase,particularlyathigh pressure. Using Monte Carlo simulations and reactive potentials, we determine an equation of state for hydrated silica (with water mole fractions up to 0.4) at extreme conditions(upto9000Kand10GPa)andexaminethestructureandchemicalspeciation inthissystem.

34 Correlation and Scaling of P and S Anomalies in D" Beneath Central America XiaodongSong–UniversityofIllinoisatUrbanaChampaign DepartmentofGeology,UniversityofIllinois,Urbana,IL61801 Phone:2173331841,email:[email protected] Globalseismictomographyhasproducedconsistentimagesofverylargescaledseismic structure of Earth's mantle over the last decade. However, details of smallerscaled structure,suchasslabsandplumes,differ.Moststudiesofthelowermostmantleregion have focused on shearwave structure, with the availabilityofdifferentialSphases(S, ScS,andSKS).Becauseofdifferentsensitivityofbulkandshearmodulitotemperature andchemicalcomposition,understandingtherelativebehaviorofPandSvelocitiesin the mantle is important to infer mantle properties in the lowermost mantle. We have recently examined a large collection of PKP data from earthquakes in S. America recordedatnewbroadbanddigitalstationsinChina.Thedataprovidedensesamplesof thelowermostmantleregionbeneaththeCentralAmerica, where S structure has been intensivelyinvestigatedoverthedecades,offeringarareopportunitytoexaminePandS anomalies of the lowermost mantle simultaneously. Observed PKP anomalies vary rapidly (by 24 s) over a narrow azimuthal range sampling the Central America. The general trends of PKP residuals correlate well with the predictions for Grand's S tomographicmodel.Thegoodcorrelationmakesitpossibletousethe3Dtomographic modelasareferencemodeltomapfurtherfinerstructures.Ourmodelingrevealsasharp lateralboundaryseparatingbroadslowandfastanomalies.Theresultsuggestsevidence ofsubductedslabsreachingthedeepestmantle.Theslowanomaliesmaybetheresultof thermalchemicalupwellinginducedbythesubductedslabsorthemanifestationofthe Pacificsuperplumeatitsedge.ToobtainthescalingofPandSanomalies,wecompare ourPKPdatawithStomographicpredictionsaswellasdenserawSdatadirectly.The ratioR=dlnVs/dlnVpisestimatedabout1.9.Thisvalueisnotanomalous,comparableto valuesformidmantleandsignificantlylessthanestimatedglobalaverageof2.5orlarger forthelowermostmantle.

35 INVESTIGATING WATER IN THE DEEP EARTH BY DENSITY FUNCTIONAL THEORY LARSSTIXRUDE–UNIVERSITYOFMICHIGAN DepartmentofGeologicalSciences,AnnArbor,MI48104 7346479071 [email protected] TheamountofwatercontainedinEarth’smantleandcoremaysubstantiallyexceedthat in the surface oceans as suggested by observations of natural mantle samples, raising fundamental questions regarding the origin and evolution of Earth’s hydrosphere. A crucial question is where deep water might be stored. Possible sites include hydrous phases, such as phyllosilicates and dense hydrous magnesian silicates, nominally anhydrous phases, such as olivine and its highpressure polymorphs that can accommodate ~0.1 % H 2O by mass, and silicate melts. We have explored via first principlescalculationsallofthesepotentialstoragesites.Examplestobediscussed includestishovite,inwhichSimaybereplacedbyAl+H up to several weight percent H2O,MgSiO 3:Al+Hperovskite,inwhichwatersolubilityappearstobeseverelylimited, the10Åphase,ahydrousphyllosilicate,whichfillsacrucialgapinpressuretemperature spaceallowingwatertobetransportedinsubductingslabstogreaterdepths,andhydrous silicatemelt,whichmaybeneutrallybuoyantatthebaseoftheuppermantleandthebase ofthelowermantle.

36 ELECTRONIC STRUCTURE AND TRANSPORT PROPERTIES IN IRON COMPOUNDS: SPIN-CROSSOVER EFFECTS. VIKTORV.STRUZHKIN GeophysicalLaboratory,CarnegieInstitutionofWashington , 5251BroadBranchRd.,N.W.,Washington,D.C.200151305,USA 2024788900/8901, [email protected] Theactivetopicofcurrentresearchinsystemswithstrongelectroncorrelationsis highpressureinduced insulatormetal transition (IM), which is accompanied by the collapseofthemagneticmoments.Theoxidesoftransitionmetalspresentaverylarge class of materials, which are important for both fundamental science and practical applications.Inthesematerials,thestrongelectroncorrelationsplayacrucialroleinthe formation of a variety of electronic and magnetic properties of the transition metal oxides.AqualitativepictureoftheelectronicstructureinseveralFe 2+ andFe 3+ materials at the spincrossover transition will be presented, with the emphasis on novel physics emerging close to the insulatormetal transition regime. With all the progress in the experimentalandtheoreticaldevelopments,one ofthe simplest oxides, iron monoxide (FeO)remainsoneoftheleastunderstoodmaterials.ThehighpressurebehaviorofFeO has been probed with advanced synchrotron techniques combined with fourprobe transport measurements up to 200 GPa in a diamond anvil cells. The results of synchrotron Mössbauer spectroscopy (nuclear forward scattering NFS), and electro resistivity measurements suggest a complicated scenario of magnetic interactions governedbybandbroadeningeffects.

37 PHONON DENSITY OF STATES AT THE SPIN CROSSOVER IN (Mg 0.75 Fe 0.25 )O FERROPERICLASE WOLFGANGSTURHAHNARGONNENATIONLABORATORY 9700SOUTHCASSAVE,ARGONNE,IL60439,USA PHONE:(630)2520163 EMAIL:[email protected] Ironbearing minerals of the Earth's lower mantle like ferropericlase and silicate perovskite have recently been studied to evaluate the presence of pressuredependent crossoversbetweenthehighspinandthelowspinstate of iron. Such a crossover was clearlyobservedinferropericlaseusingxrayemissionspectroscopy[1,2],conventional Mössbauerspectroscopy[3],andsynchrotronMössbauerspectroscopy[4].Inthecaseof silicateperovskite,theelectronicstateoftheironhasbeenstudiedwithxrayemission spectroscopy[5,6]andsynchrotronMössbauerspectroscopy[7]butthesituationremains unclear. Weappliednuclearresonantinelasticxrayscatteringtodeterminethevibrationaldensity ofstates(VDOS)ofFein(Mg 0.75 Fe 0.25 )Oferropericlaseupto110GPaandobserveda significanteffectofthespincrossoveronitselasticityandsoundvelocitiesthatcanbe derivedfromthevibrationaldensityofstates[8].HerewereportGrüneisenparameters thatarederivedfromthevolumedependenceoftheVDOSandshowadramaticchange whencrossingoverintothelowspinregion. ThisworkissupportedbytheU.S.DepartmentofEnergy,OfficeofScience,Officeof BasicEnergySciences,underContractNo.DEAC0206CH11357andbyNSFthrough COMPRES. [1]BadroJ.etal.(2003)Science300,789 [2]LinJ.F.etal.(2005)Nature436,377 [3]SpezialeS.etal.(2005)PNAS102,17918 [4]LinJ.F.etal.(2006)Phys.Rev.B73,113107 [5]LiJ.etal.(2004)PNAS101,14027 [6]BadroJ.etal.(2004)Science305,383 [7]JacksonJ.M.etal.(2005)AmericanMineral.90,199 [8]LinJ.F.etal.(2006)Geophys.Res.Lett.32,L22304

38 Infrared Reflectance of Ferropericlase (Mg 1-xFe xO): Experiment and Theory TaoSunSUNYatStonyBrook Dept.ofPhysics&Astronomy,StonyBrook,NY,11794 6316324071 [email protected] PhilipB.Allen–SUNYatStonyBrook Dept.ofPhysics&Astronomy,StonyBrook,NY,11794 DavidG.Stahnke–UCSanDiego Dept.ofPhysics,LaJolla,CA92093 StevenD.Jacobsen–NorthwesternUniversity Dept.ofEarthandPlanetarySciences,Evanston,IL,60208 ChristopherC.Homes–BrookhavenNationalLaboratory CondensedMatterPhysics&MaterialsScienceDepartment,Upton,NY,11973 Thetemperaturedependenceofthereflectancespectraofmagnesiumoxide(MgO)and ferropericlase(Mg 1−xFe xO,forx=0.06andx=0.27)havebeenmeasuredoverawide frequencyrange(≈50to32000cm −1)at295and6K.Thecomplexdielectricfunction hasbeendeterminedfromaKramersKroniganalysisofthereflectance.Thespectraof thedopedmaterialsresemblepureMgOintheinfraredregion,butwithmuchbroader resonances. We use a shell model to calculate the dielectric function of ferropericlase, including both anharmonic phononphonon interactions and disorder scattering. These data are relevant to understanding the heat conductivity of ferropericlase in the earth’s lowermantle.

39 DYNAMICAL IMPLICATIONS OF THE POST-PEROVSKITE PHASE TRANSITION PAULJ.TACKLEYETHZÜRICH INSTITUTEFORGEOPHYSICS,ETHHÖNGGERBERGHPPL13,8093ZÜRICH, SWITZERLAND +41446332758 [email protected] TAKASHINAKAGAWAKYUSHUUNIVERSITY DEPARTMENTOFEARTHANDPLANETARYSCIENCES,KYUSHU UNIVERSITY,FUKUOKA,JAPAN TEL:+81926422313;FAX:+81926422684 [email protected]U.AC.JP Since the discovery of the postperovskite (PPV) phase transition, several researchers have investigated its possible implications for dynamics in the CMB region and its influence on the mantle above. The first thermal convection models to include it (NakagawaandTackley,GRL2004;MatyskaandYuen,EPSL2005)indicatedasmall dynamical effect in slightly destabilizing the lower thermal boundary layer, thereby increasingplumevigorandslightlyincreasingmantletemperature.Asithaslongbeen thoughtthatseismicheterogeneitiesintheD"regionmightbecausedpartlybychemical variations,dynamicalissuesassociatedwithamixed thermalchemicalphase boundary layer are reviewed here. If recent mineral physics data on the density of MORB are correct, a significant fraction of subducted MORB segregates into a layer above the CMB. A layer formed in this way is very heterogeneous and lacks a sharp, clean boundary,unlikelayersinsertedaprioriintocalculations.Alayermaybeglobalorinthe formofintermittent'piles'andhasalargeeffectonboththemeanvalueandthelateral variationofcoreheatflux.Thepostperovskitetransition has a destabilizing influence duetoitspositiveClapeyronslope,althoughthisispartlyoffsetbylatentheateffects. Postperovskitemayoccurinlocalizedpatches,orinaglobal,stronglyundulatinglayer, depending on whether the CMB temperature is hot enough to be in the perovskite stability field. Postperovskite regions may have nearvertical sharp edges, perhaps accountingforsomeseismicobservations.Lateralvariationsintheoccurrenceofpost perovskitecancauseseismicvelocityvariationslargerthanthosecausedbythermalor chemicalvariations.Ifthephasetransitionpressureisindependentofcomposition,then regions containing a thick layer of postperovskite are anticorrelated with regions containingthickaccumulationsofchemicallydense material,butifthe PPVtransition occursatlowerpressuresinthedensematerialthenitcanalsooccurin‘piles’.Heatflux acrosstheCMB,aswellaslateralvariationsinthisheatflux,arestronglyinfluencedby the presence of global or local chemical layering, butonlymildlyinfluencedbypost perovskite,andcanbeconstrainedbyseismologicalobservationsofthepostperovskite boundary. Coupled models of coremantle evolution taking into account these effects predictthatradioactivepotassiumisneededinthecore,inordertosimultaneouslyallow theextractionofenoughheattodrivethegeodynamowhilenotgrowingtheinnercoreto largerthanitsobservedsize.

40 Spin transition in Ferrous iron in MgSiO 3 Perovskite under Pressure KoichiroUmemoto–MinnesotaSupercomputingInstituteandDepartmentofChemical EngineeringandMaterialsScience ,UniversityofMinnesota 421WashingtonAveSE,Minneapolis,MN55455,USA [email protected] Wepresentadensityfunctionalstudyofthepressureinducedspintransitioninferrous iron in MgSiO 3 perosvskite. We address the influence of iron concentration and configuration(structuralandmagnetic),aswellastechnicalissuessuchasthenatureof the exchange correlation (XC) functional (CALDA versus PBEGGA) on the spin transitionpressure.Supercellscontainingupto160atomswereadoptedtotacklethese issues.Weshowthattherearepreferredconfigurationsforhighspinandlowspiniron and that the spin transition pressure depends strongly on iron concentration and XC functionals.WealsoaddressastructuralchangearoundFeatomsaccompanyingthespin transition. Research supported by NSF/EAR 013533, 0230319, and NSF/ITR 0428774 (VLab). Computations were performed at the Minnesota Supercomputing Institute and Indiana University’sBigRedsystem.

41 Convection modeling of the postperovskite transition and Constraints on thermal conditions near the core mantle boundary ArievandenBerg–UtrechtUniversity,Dept.EarthSciences Inst.EarthSciences,Budapestlaan4,3584CDUtrecht,TheNetherlands (+31)302535072 [email protected] DavidYuen–UniversityofMinnesota,Dept.GeologyandGeophysicsand MinnesotaSupercomputingInstitute Minneapolis,MN554550219,UnitedStates 6126249801 [email protected] RecentseismologicalevidencelinkstheirregularstructureofthebottomD"zoneofthe Earth'smantletothepostperovskitephasetransition.Thepossibilityofdelineatingthe phaseboundaryseismologicallyhasmadeitpossibletoobtaintemperatureestimatesat verycloserangefromtheEarth'score.Combinedwithanestimatedtemperatureofthe coremantleboundary(cmb)thisprovidesdirectevidenceforthestructureofthebottom thermalboundarylayerofthemantle,independentfromestimatesbasedondatafromthe transitionzoneinterpolatedacrossthedepthofthelowermantle. WehaveconductedmantleconvectionexperimentswithanextendedBoussinesqmodel including the postperovskite phase transition. The experiments were focused on the structure of the phase boundary, in particular under conditions where the intercept temperatureatthecmbisseveralhundredKelvinbelowthecmbtemperature,resultingin multiplecrossingsofthegeothermwiththephaseboundary. Ourconvectionresultsincluderegionswithathinbottomlayerofperovskiteunderlying athickerpostperovskitelayerwherethephasetransitionisinsidethethermalboundary layeratthecmb. The modeling results clearly indicate the feasibility of estimating the local thermal gradient at the cmb from seismologically determined mapping of the bottom phase boundary.Thisopenstheperspectiveofstrongerconstraintsofthelocalheatflowfrom theEarth'score.

42 Earth’s Deep Water Cycle SuzanvanderLee NorthwesternUniversity Dept.EarthandPlanetarySciences 1850CampusDr. EvanstonIL60208 18474918183 [email protected] Majormineralsinthedeepuppermantleandparticularlyinthetransitionzonecanhold considerablequantitiesofhydrogenfromwater.Exactlyhowmuchthereisandhowthis hydrogenaffectsthemineral’sphysicalpropertiesisatopicofcurrentresearch.Observed seismic waves indeed show evidence of lateral variations in the depth, thickness, and jumpsinseismicvelocityoftransitionzonephasetransitionsintheseminerals.Observed seismicwavesalsoshowclearevidenceforregionsofanomalousseismicvelocity.Both types of evidence can be a result of spatial variationsinhydrogencontent;howmuch hydrogenisneededtoexplaintheobservationsand howtodiscriminatetheeffectsof hydrogenfromthoseofheatarealsotopicsofcurrentresearch.Iwilldiscusssomeof this recent and ongoing research on detecting waterinthemantleandthenfocusona seismic anomaly beneath the eastern margin of the US. This anomaly is a region of weaklyreducedshearwavevelocitythatstretcheslaterallyinadirectionparalleltothe easternmarginandstretchesverticallyfromthetopofthelowermantletolithospheric depths.Inthelowermantle,thislowSvelocityanomalysitsadjacenttoandabovean eastdippinghighSvelocityregion,whichlikelyrepresentssubductedlithospherefrom theFarallonPlate.Theleastunlikelyexplanationforthelowvelocityanomalyisthatit isrelativelyhydrous,withupto1wt%ofwateraboveaverage.Ifthishydrousregionis slightly buoyant, it could well up and hydrate the strong lithosphere at the currently passive margin between the NorthAmerican continent and Atlantic Ocean. If the lithosphereissufficientlyweakenedbyhydrationitmightgivewaytotypicalforcesfrom ridge push and sediment loads to develop a new subduction zone. I will discuss implicationsofsuchascenariofortheevolutionofplatetectonics.

43 Hydrogen bonding in minerals BjoernWinkler–JohannWolfgangGoetheUniversitaetFrankfurt Geowissenschaften,FEMineralogie/Kristallographie +496979840107 [email protected]frankfurt.de Theinfluenceofhydrogenbondingonstructuralandphysicalpropertiesofhydrousand nominallyanhydrousmineralsiswellestablished[1].However,littleisknownaboutthe pressureinducedchangesofhydrogenbonds.Themainproblemisthatevenforhydrous minerals the determination of the positions of hydrogen atoms at high pressures is experimentallychallenging,andhenceoftenstructurepropertycorrelationsestablishedat ambientpressureareemployedfortheinterpretationofspectroscopicmeasurements. In the presentation, I will discuss our recent experimental and theoretical studies on hydrogenbearingsystemsathighpressures.Fordiaspore,wehaverefinedthestructure at 50 GPa, and can correlate these findings with spectroscopic data and with lattice dynamical calculations. For zoisite and orthozoisite, the pressureinduced shifts of the OHvalence vibration are very different and this difference can be explained using density functional theory calculations. These results imply that a straightforward applicationofstructurepropertycorrelationsestablishedatambientpressurescannotbe employedtoinfertheatomicarrangementofhydrogenbondsathighpressures.Also,our calculationsonbruciteindicatethattoobtainrealisticmodelsofthehydrogendynamics, conventionalMDsimulationsmaybeinappropriateandinsteadalternativessuchaspath integralmethodshavetobeused.Finally,I’lldiscusstheuseofdensityfunctionaltheory calculations for the interpretation of resonant ultrasound spectra and discuss elasticity dataforsomehydrousandanhydrousminerals. [1]Keppler,HandSmyth,JR(eds)(2006)Waterinnominallyanhydrousminerals.Rev. Min.Geochem.,62

44 SEISMIC WAVE ATTENUATION AND WATER IN THE LOWER MANTLE MICHAELWYSESSION–WASHINGTONUNIVERSITY DEPTEARTHANDPLANETARYSCIENCES,CAMPUSBOX1169, ST.LOUIS,MO63130 3149355625/3149357361 [email protected] JESSEFISHERLAWRENCE–UCSD IGPP0225,9500GILMANDRIVE,LAJOLLA,CA92093 8588225979/8585345332 [email protected] Weuseseismicattenuationtomographytoidentifyaregionatthetopofthelowermantle that displays very high attenuation consistent with an elevated water content. Tomography inversions with >80,000 differential traveltime and attenuation measurements yield 3D wholemantle models of shear velocity ( VS) and shear quality factor ( Q).The global attenuationpatternisdominatedbythe location of subducting lithosphere. The lowest Q anomalyinthewholemantleisobservedatthetop of the lowermantle(6601400kmdepth)beneatheasternAsia.Theanomalyoccupiesalarge region overlying the highQ sheetlike features interpreted as subducted oceanic lithosphere.Seismicvelocitiesdecreaseonlyslightlyinthisregion,suggestingthatwater contentbestexplainstheanomaly.ThesubductingofPacificoceaniclithospherebeneath theeasternAsialikelyremainscoldenoughtotransport stable dense hydrous mineral phaseDwellintothelowermantle.Weproposethattheeventualdecompositionofphase Dduetoincreasedtemperatureorpressurewithinthelowermantle floodsthemantle withwater,yieldingalargelowQanomaly.

45

3-D Interactive Visualization with Mantle Convection DaveA.Yuen(1),MeganDamon(1),ErikO.D.Sevre(1),MikeKnox(2)DavidH. Porter(2) M.CharleyKameyama(3) 1. Dept.ofGeologyandGeophysicsandMinnesotaSupercomputingInstitute,Univ. ofMinnesota,Minneapolis,MN 2. LaboratoryofComputationalSciencesandEngineering,Univ.ofMinnesota, Minneapolis,MN 3. GeodynamicsResearchCenter,EhimeUniversity,Matsuyama,Japan ResearchersattheUniversityofMinnesotaandfromJapanhaveimplementedasystem capable of interactive exploration of large numerical simulated data sets which are volumetrically rendered in near real time. These 3D data sets are computed over hundredsofprocessorsonaLinuxclusterandaresentoveralocalInfinibandnetworkto the Laboratory of Computational Sciences and Engineering Laboratory (LCSE) on a shorttermperiodicbasisforvisualizationandrenderedonanextremelyhighdefinition displaydevice,calledthePowerWall,whichhasover13millionpixels.Wedescribethe technical details involved in designing such as system and describe the specific application to the 3D mantle convection parallel MPI code, ACuTEMan. by M.C. Kameyama.

46