LTD20-100K A64FX™: Power Efficient Design for HPC and AI
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
File System and Power Management Enhanced for Supercomputer Fugaku
File System and Power Management Enhanced for Supercomputer Fugaku Hideyuki Akimoto Takuya Okamoto Takahiro Kagami Ken Seki Kenichirou Sakai Hiroaki Imade Makoto Shinohara Shinji Sumimoto RIKEN and Fujitsu are jointly developing the supercomputer Fugaku as the successor to the K computer with a view to starting public use in FY2021. While inheriting the software assets of the K computer, the plan for Fugaku is to make improvements, upgrades, and functional enhancements in various areas such as computational performance, efficient use of resources, and ease of use. As part of these changes, functions in the file system have been greatly enhanced with a focus on usability in addition to improving performance and capacity beyond that of the K computer. Additionally, as reducing power consumption and using power efficiently are issues common to all ultra-large-scale computer systems, power management functions have been newly designed and developed as part of the up- grading of operations management software in Fugaku. This article describes the Fugaku file system featuring significantly enhanced functions from the K computer and introduces new power management functions. 1. Introduction application development environment are taken up in RIKEN and Fujitsu are developing the supercom- separate articles [1, 2], this article focuses on the file puter Fugaku as the successor to the K computer and system and operations management software. The are planning to begin public service in FY2021. file system provides a high-performance and reliable The Fugaku is composed of various kinds of storage environment for application programs and as- system software for supporting the execution of su- sociated data. -
Xinya (Leah) Zhao Abdulahi Abu Outline
K-Computer Xinya (Leah) Zhao Abdulahi Abu Outline • History of Supercomputing • K-Computer Architecture • Programming Environment • Performance Evaluation • What's next? Timeline of Supercomputing Control Data The Cray era Massive Processing Petaflop Computing Corporation (1960s) (mid-1970s - 1980s) (1990s) (21st century) • CDC 1604 (1960): First • 80 MHz Cray-1 (1976): • Hitachi SR2201 (1996): • Realization: Power of solid state The most successful used 2048 processors large number of small • CDC 6600 (1964): 100 supercomputers in history connected via a fast three processors can be computers were sold at $8 • Vector processor dimensioanl corssbar harnessed to achieve high million each • Introduced chaining in network performance • Gained speed by "farming which scalar and vector • ASCI Red: mesh-based • IBM Blue Gene out" work to peripheral registers generate interim MIMD massively parallel architecture: trades computing elements, results system with over 9,000 processor speed for low freeing the CPU to • The Cray-2 (1985): No compute nodes and well power consumption, so a process actual data chaning and high memory over 12 terabytes of disk large number of • STAR-100: First to use latency with deep storage processors can be used at vector processing pipelinging • ASCI Red was the first air cooled temperature ever to break through the • K computer (2011) : 1 teraflop barrier fastest in the world K Computer is #1 !!! Why K Computer? Purpose: • Perform extremely complex mathematical or scientific calculations (ex: modelling the changes -
Fujitsu PRIMEHPC FX10 Supercomputer
Brochure Fujitsu PRIMEHPC FX10 Supercomputer Fujitsu PRIMEHPC FX10 Supercomputer Fujitsu's PRIMEHPC FX10 supercomputer provides the ability to address these high magnitude problems by delivering over 23 Petaflops, a quantum leap in processing performance. Combining high performance, scalability, and Green Credentials as well as High Performance High Reliability and Operability in Large reliability with superior energy efficiency, Mean Power Savings Systems PRIMEHPC FX10 further improves on Fujitsu's In today's quest for a greener world the Incorporating RAS functions, proven on supercomputer technology employed in the "K compromise between high performance and mainframe and high-end SPARC64 servers, computer," which achieved the world's environmental footprint is a major issue. At the SPARC64 IXfx processor delivers higher top -ranked performance*¹ in November 2011. heart of PRIMEHPC FX10 are SPARC64 IXfx reliability and operability. The flexible 6D All of the supercomputer's components—from processors that deliver ultra high performance of Mesh/Torus architecture of the Tofu processors to middleware—have been 236.5 Gigaflops and superb power efficiency of interconnect also contributes to overall developed by Fujitsu, thereby delivering high over 2 Gigaflops per watt. reliability. The result is outstanding levels of reliability and operability. The system operation: enhanced by the advanced set of can be scaled to meet customer needs, up to a Application Performance and Simple system management, monitoring, and job 1,024 rack configuration achieving a Development management software, and the highly super -high speed of 23.2 PFLOPS. SPARC64 IXfx processor includes extensions for scalable distributed file system. HPC applications known as HPC-ACE. This plus Fujitsu has developed PRIMEHPC FX10, a wide memory bandwidth, high performance Tofu supercomputer capable of world-class interconnect, Technical Computing Suite, HPC performance of up to 23.2 PFLOPS. -
BDEC2 Poznan Japanese HPC Infrastructure Update
BDEC2 Poznan Japanese HPC Infrastructure Update Presenter: Masaaki Kondo, Riken R-CCS/Univ. of Tokyo (on behalf of Satoshi Matsuoka, Director, Riken R-CCS) 1 Post-K: The Game Changer (2020) 1. Heritage of the K-Computer, HP in simulation via extensive Co-Design • High performance: up to x100 performance of K in real applications • Multitudes of Scientific Breakthroughs via Post-K application programs • Simultaneous high performance and ease-of-programming 2. New Technology Innovations of Post-K Global leadership not just in High Performance, esp. via high memory BW • the machine & apps, but as Performance boost by “factors” c.f. mainstream CPUs in many HPC & Society5.0 apps via BW & Vector acceleration cutting edge IT • Very Green e.g. extreme power efficiency Ultra Power efficient design & various power control knobs • Arm Global Ecosystem & SVE contribution Top CPU in ARM Ecosystem of 21 billion chips/year, SVE co- design and world’s first implementation by Fujitsu High Perf. on Society5.0 apps incl. AI • ARM: Massive ecosystem Architectural features for high perf on Society 5.0 apps from embedded to HPC based on Big Data, AI/ML, CAE/EDA, Blockchain security, etc. Technology not just limited to Post-K, but into societal IT infrastructures e.g. Clouds 2 Arm64fx & Post-K (to be renamed) Fujitsu-Riken design A64fx ARM v8.2 (SVE), 48/52 core CPU HPC Optimized: Extremely high package high memory BW (1TByte/s), on-die Tofu-D network BW (~400Gbps), high SVE FLOPS (~3Teraflops), various AI support (FP16, INT8, etc.) Gen purpose CPU – Linux, -
Supercomputer Fugaku
Supercomputer Fugaku Toshiyuki Shimizu Feb. 18th, 2020 FUJITSU LIMITED Copyright 2020 FUJITSU LIMITED Outline ◼ Fugaku project overview ◼ Co-design ◼ Approach ◼ Design results ◼ Performance & energy consumption evaluation ◼ Green500 ◼ OSS apps ◼ Fugaku priority issues ◼ Summary 1 Copyright 2020 FUJITSU LIMITED Supercomputer “Fugaku”, formerly known as Post-K Focus Approach Application performance Co-design w/ application developers and Fujitsu-designed CPU core w/ high memory bandwidth utilizing HBM2 Leading-edge Si-technology, Fujitsu's proven low power & high Power efficiency performance logic design, and power-controlling knobs Arm®v8-A ISA with Scalable Vector Extension (“SVE”), and Arm standard Usability Linux 2 Copyright 2020 FUJITSU LIMITED Fugaku project schedule 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 Fugaku development & delivery Manufacturing, Apps Basic Detailed design & General Feasibility study Installation review design Implementation operation and Tuning Select Architecture & Co-Design w/ apps groups apps sizing 3 Copyright 2020 FUJITSU LIMITED Fugaku co-design ◼ Co-design goals ◼ Obtain the best performance, 100x apps performance than K computer, within power budget, 30-40MW • Design applications, compilers, libraries, and hardware ◼ Approach ◼ Estimate perf & power using apps info, performance counts of Fujitsu FX100, and cycle base simulator • Computation time: brief & precise estimation • Communication time: bandwidth and latency for communication w/ some attributes for communication patterns • I/O time: ◼ Then, optimize apps/compilers etc. and resolve bottlenecks ◼ Estimation of performance and power ◼ Precise performance estimation for primary kernels • Make & run Fugaku objects on the Fugaku cycle base simulator ◼ Brief performance estimation for other sections • Replace performance counts of FX100 w/ Fugaku params: # of inst. commit/cycle, wait cycles of barrier, inst. -
Masahori Nunami (NIFS)
US-Japan Joint Institute for Fusion Theory National Institute for Fusion Science Workshop on Innovations and co-designs of fusion simulations towards extreme scale computing August 20-21, 2015 Nagoya University, Nagoya, Japan Numerical Simulation Research in NIFS and Fujitsu’s New Supercomputer PRIMEHPC FX100 Masanori Nunamia, Toshiyuki Shimizub aNational Institute for Fusion Science, Japan bFujitsu, Japan Outline M. Nunami (NIFS) l Overview of Numerical Simulation Reactor Research Project in NIFS l Supercomputers in NIFS and Japan T. Shimizu (Fujitsu) l Fujitsu’s new supercomputer (FX100) l Features and evaluations l Application evaluation l The next step in exascale capability Page § 2 Research activities in NIFS In NIFS, there exists 7 divisions and 3 projects for fusion research activities. LHD project NSR project FER project Page § 3 Numerical Simulation Reactor Research Project ( NSRP ) NSRP has been launched to continue the tasks in simulation group in NIFS, and evolve them on re-organization of NIFS in 2010. Final Goal Based on large-scale numerical simulation researches by using a super-computer, - To understand and systemize physical mechanisms in fusion plasmas - To realize ultimately the “Numerical Simulation Reactor” which will be an integrated predictive modeling for plasma behaviors in the reactor. Realization of numerical test reactor requires - understanding all element physics in each hierarchy, - inclusion of all elemental physical processes into our numerical models, - development of innovative simulation technology -
Download SC18 Final Program
Program November 11-16, 2018 The International Conference Exhibits November 12-15, 2018 for High Performance KAY BAILEY HUTCHISON CONVENTION CENTER Computing, Networking, DALLAS, TEXAS, USA Storage, and Analysis Sponsored by: MICHAEL S. RAWLINGS Mayor of Dallas November 11, 2018 Supercomputing – SC18 Conference: As Mayor of Dallas, it is my pleasure to welcome SC18 – the ultimate international conference for high performance computing, networking, storage, and analysis – to the Kay Bailey Hutchison Convention Center! I applaud SC18 for bringing together high-performance computing (HPC) professionals and students from across the globe to share ideas, attend and participate in technical presentations, papers and workshops, all while inspiring the next generation of HPC professionals. Dallas is the No. 1 visitor destination in Texas and one of the top cities in the nation for meetings and conventions. In addition to having the resources to host major events and conventions, Dallas is a greatly diverse American city and a melting pot of cultures. This important convergence of uniqueness and differences is reflected throughout the sights and sounds of our city. Dallas' authentic arts, music, food, historic landmarks and urban lifestyle all contribute to the city's rich cultural makeup. Let the bold, vibrant spirit of Dallas, with a touch of Texas charm, guide the way to your BIG Dallas moments. Our city is filled with the unique experiences one can only have in Dallas – from cuisine by celebrity chefs, to the cultural landscape in one of the nation’s largest arts districts, to first-class shopping - make the most of your time in our great city! From transportation to hotels, restaurants, retail and entertainment venues, Dallas is ready to roll out our red carpet to host SC18. -
Mixed Precision Block Fused Multiply-Add
Mixed Precision Block Fused Multiply-Add: Error Analysis and Application to GPU Tensor Cores Pierre Blanchard, Nicholas Higham, Florent Lopez, Théo Mary, Srikara Pranesh To cite this version: Pierre Blanchard, Nicholas Higham, Florent Lopez, Théo Mary, Srikara Pranesh. Mixed Precision Block Fused Multiply-Add: Error Analysis and Application to GPU Tensor Cores. SIAM Journal on Scientific Computing, Society for Industrial and Applied Mathematics, 2020, 42 (3), pp.C124-C141. 10.1137/19M1289546. hal-02491076v2 HAL Id: hal-02491076 https://hal.archives-ouvertes.fr/hal-02491076v2 Submitted on 28 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. MIXED PRECISION BLOCK FUSED MULTIPLY-ADD: ERROR ANALYSIS AND APPLICATION TO GPU TENSOR CORES∗ PIERRE BLANCHARDy , NICHOLAS J. HIGHAMz , FLORENT LOPEZx , THEO MARY{, AND SRIKARA PRANESHk Abstract. Computing units that carry out a fused multiply-add (FMA) operation with matrix arguments, referred to as tensor units by some vendors, have great potential for use in scientific computing. However, these units are inherently mixed precision and existing rounding error analyses do not support them. We consider a mixed precision block FMA that generalizes both the usual scalar FMA and existing tensor units. -
HPC Systems in the Next Decade – What to Expect, When, Where
EPJ Web of Conferences 245, 11004 (2020) https://doi.org/10.1051/epjconf/202024511004 CHEP 2019 HPC Systems in the Next Decade – What to Expect, When, Where Dirk Pleiter1;∗ 1Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich, Germany Abstract. HPC systems have seen impressive growth in terms of performance over a period of many years. Soon the next milestone is expected to be reached with the deployment of exascale systems in 2021. In this paper, we provide an overview of the exascale challenges from a computer architecture’s perspec- tive and explore technological and other constraints. The analysis of upcoming architectural options and emerging technologies allow for setting expectations for application developers, which will have to cope with heterogeneous archi- tectures, increasingly diverse compute technologies as well as deeper memory and storage hierarchies. Finally, needs resulting from changing science and en- gineering workflows will be discussed, which need to be addressed by making HPC systems available as part of more open e-infrastructures that provide also other compute and storage services. 1 Introduction Over several decades, high-performance computing (HPC) has seen an exponential growth of performance when solving large-scale numerical problems involving dense-matrix opera- tions. This development is well documented by the Top500 list [1], which is published twice a year since 1993. In various regions around the world, significant efforts are being per- formed to reach the next milestone of performance with the deployment of exascale systems. For various reasons, improving on the performance of HPC systems has become increasingly more difficult. In this paper, we discuss some of the reasons. -
Management Direction Update
• Thank you for taking the time out of your busy schedules today to participate in this briefing on our fiscal year 2020 financial results. • To prevent the spread of COVID-19 infections, we are holding today’s event online. We apologize for any inconvenience this may cause. • My presentation will offer an overview of the progress of our management direction. To meet the management targets we announced last year for FY2022, I will explain the initiatives we have undertaken in FY2020 and the areas on which we will focus this fiscal year and into the future. Copyright 2021 FUJITSU LIMITED 0 • It was just around a year ago that we first defined our Purpose: “to make the world more sustainable by building trust in society through innovation.” • Today, all of our activities are aligned to achieve this purpose. Copyright 2021 FUJITSU LIMITED 1 Copyright 2021 FUJITSU LIMITED 2 • First, I would like to provide a summary of our financial results for FY2020. • The upper part of the table shows company-wide figures for Fujitsu. Consolidated revenue was 3,589.7 billion yen, and operating profit was 266.3 billion yen. • In the lower part of the table, which shows the results in our core business of Technology Solutions, consolidated revenue was 3,043.6 billion yen, operating profit was 188.4 billion yen, and our operating profit margin was 6.2%. • Due to the impact of COVID-19, revenue fell, but because of our shift toward the services business and greater efficiencies, on a company-wide basis our operating profit and profit for the year were the highest in Fujitsu’s history. -
The Post-K Project and Fujitsu ARM-SVE Enabled A64FX Processor for Energy-Efficiency and Sustained Application Performance
CEA‐RIKEN Summer School, 13th June 2019 @ MDLS, Paris The post-K project and Fujitsu ARM-SVE enabled A64FX processor for energy-efficiency and sustained application performance Mitsuhisa Sato Team Leader of Architecture Development Team Deputy project leader, FLAGSHIP 2020 project Deputy Director, RIKEN Center for Computational Science (R-CCS) Professor (Cooperative Graduate School Program), University of Tsukuba The name of our system (a.k.a post‐K) was announced as “Fugaku” (May 23, 2019) 富岳 富岳 (Fugaku) = Mt. Fuji http://www.bestweb‐link.net/PD‐Museum‐of‐Art/ukiyoe/ukiyoe/fuga2 ku36/No.027.jpg FLAGSHIP2020 Project Missions • Building the Japanese national flagship supercomputer, “Fugaku” (a.k.a Post‐K), and • Developing wide range of HPC applications, running on Fugaku, in order to solve social and science issues in Japan Planned Budget (from 2014FY to 2020FY) • 110 billion JPY (about 1 billion US$ if 1US$=110JPY, total) includes: • Research and development, and manufacturing of the Fugakusystem • Development of applications Project organization Applications • The government selected 9 social & System development scientific priority issues and their • RIKEN is in charge of development R&D organizations. • Fujitsu is vendor partner. • Additional projects for Exploratory • International collaborations: DOE, JLESC, Issues were selected in Jun 2016 CEA .. 2019/5/17 Target science: 9 Priority Issues 重点課題① ⽣体分⼦システムの機能制御による ⾰新的創薬基盤の構築 重点課題② 個別化・予防医療を⽀援する 統合計算⽣命科学 重点課題③ 地震・津波による複合災害の ①Innovative Drug Discovery ②Personalized and Preventive ③Hazard統合的予測システムの構築 and Disaster induced by Medicine Earthquake and Tsunami Society with health and longevity Disaster prevention RIKEN Quant. Biology Center Inst. Medical Science, U. Tokyo Earthquakeand global climate Res. Inst., U. -
Integrated Report 2019 the Fujitsu Way CONTENTS
FUJITSU GROUP Integrated Report 2019 Report FUJITSU Integrated GROUP Fujitsu Group Integrated Report 2019 The Fujitsu Way CONTENTS The Fujitsu Way articulates the principles LETTER FROM THE MANAGEMENT 02 of the Fujitsu Group’s purpose in society, the values MESSAGE TO 02 MESSAGE TO SHAREHOLDERS AND INVESTORS SHAREHOLDERS AND INVESTORS it upholds, and the code of conduct that Group Takahito Tokita Representative Director and President employees follow in their daily business activities. CORPORATE VALUES By adhering to the values of the Fujitsu Way FUJITSU GROUP OVERVIEW What we strive for: 08 FUJITSU AT A GLANCE in their daily business activities, all Fujitsu Group Society and In all our actions, we protect the Environment environment and contribute to society. 10 FINANCIAL HIGHLIGHTS employees aim to enhance corporate value Profit and Growth We strive to meet the expectations of 11 ENVIRONMENT, SOCIETY, AND GOVERNANCE HIGHLIGHTS customers, employees, and shareholders. and contribute to global society. 12 MANAGEMENT CAPITAL: KEY DATA Shareholders We seek to continuously increase our 14 BOARD OF DIRECTORS / AUDIT & SUPERVISORY BOARD MEMBERS and Investors corporate value. Global Perspective We think and act from a global perspective. What we value: SPECIAL FEATURE: MANAGEMENT DIRECTION Employees We respect diversity and support individual 16 MANAGEMENT DIRECTION—TOWARD FUJITSU’S GROWTH growth. 17 Market Overview Customers We seek to be their valued and trusted Core Policy partner. 18 CORPORATE VISION Business Partners We build mutually beneficial relationships. 19 The Anticipated DX Business Technology We seek to create new value through 20 A New Company to Drive the DX Business Through our constant pursuit of innovation.