bs_bs_banner

Zoological Journal of the Linnean Society, 2014, 170, 362–399. With 143 figures

Phylogeny of Neotropical Castniinae (: : ): testing the hypothesis of the mimics as a monophyletic group and implications for the arrangement of the genera

SIMEÃO DE SOUZA MORAES1,2* and MARCELO DUARTE2

1Curso de Pós-Graduação em Ciências Biológicas (Zoologia), Instituto de Biociências, Departamento de Zoologia, Universidade de São Paulo, Rua do Matão, travessa 14, número 321, CEP 05508-900, São Paulo, São Paulo, 2Museu de Zoologia da Universidade de São Paulo, Avenida Nazaré 481, 04263-000, São Paulo, São Paulo, Brazil

Received 19 March 2013; revised 11 October 2013; accepted for publication 13 October 2013

A cladistic analysis of the Neotropical Castniidae is presented using 120 morphological characters, and a taxonomic treatment based on that analysis is also presented. The tribe Gazerini as previously delimited was found to be paraphyletic with respect to the genera Ceretes, , Riechia, Frostetola, and Oiticicastnia. The genera , , and were also found to be non-monophyletic taxa. The mimicry pattern had multiple independent origins in the Neotropical castniids, and at least two lineages, Riechia and Prometheus, are involved in Batesian mimicry rings with unpalatable butterfly models in the tribes Acraeini and Heliconiini (). We propose for Castniini 13 new synonymies and 27 new combinations. Geyeria strigata (Walker, 1854) is revalidated. The generic placements of Athis superba (Strand, 1912) and Castnia eudesmia Gray, 1838 are questionable, but presently upheld.

© 2014 The Linnean Society of London, Zoological Journal of the Linnean Society, 2014, 170, 362–399. doi: 10.1111/zoj.12102

ADDITIONAL KEYWORDS: Batesian mimicry – new synonyms – .

INTRODUCTION anterior projections, the ejaculatory bulb enlarged, the extendable ovipositor, and the hooked aedeagus Currently Castniidae is placed in the superfamily (Edwards et al., 1998); however, these features are Cossoidea (van Nieukerken et al., 2011). Although a also found in other families of Lepidoptera. molecular analysis showed a phylogenetic affinity According to Miller (1986), Castniidae also has between Castniidae and , it also showed some similarities with and Cossidae, as phylogenetic affinities between Castniidae and previously speculated based on some characters of Sesiidae (Regier et al., 2009). Indeed, Edwards et al. immatures, such as vertical eggs, larvae with the borer (1998) placed Castniidae together with Sesiidae and habit, and pupae with spines on the abdominal terga Brachodidae, based on adult characters provided by (Mosher, 1916). Nevertheless, castniids differ from the Minet (1991) and Kozlov, Kuznetzov & Stekolnikov Tortricidae by the absence of chaetosemata, and from (1998). Castniidae is distinguished by the presence of the Cossidae by the presence of an apiculus on the a ridge on the prothoracic tergite, the saccus with distal part of the antenna (Miller, 1986). The family Castniidae contains approximately 150 *Corresponding author. E-mail: simeao_moraes@yahoo. , and includes the subfamilies Castniinae com.br and Tascininae (Edwards et al., 1998). Studies on

362 © 2014 The Linnean Society of London, Zoological Journal of the Linnean Society, 2014, 170, 362–399 PHYLOGENY OF NEOTROPICAL CASTNIINAE 363

Tascininae are few, as are the number of specimens cal properties, or morphological features of the held in collections worldwide. Currently the group castniids with a view towards understanding the comprises four described species belonging to the relationships among the species and the evolution Tascina Westwood, 1877, which occur in the of this group. Here, we provide a morphological Indo-Malayan region (Holloway, 1998; Fukuda, 2000). data set based on characters other than colour, in Castniinae is a more diverse group, arranged in three order to test the monophyly of Neotropical tribes and tribes. Synemoniini, found in the Australian region, is relationships among the genera. Based on this pool represented by 24 described species. of morphological data, we construct a phylogenetic The other two tribes of Castniinae (Gazerini and hypothesis, and suggest new rearrangements at the Castniini) occur in the Neotropics and comprise 31 genus level for the Neotropical castniids, based on genera and 88 species; together these are the most monophyletic groups. We also provide an overview diverse and speciose group of Castniidae (Figs 1–36). of the taxonomy of Castniidae, focusing on the The two tribes are inadequately delimited, however, Neotropical species. We briefly discuss the evolution based only on colour pattern. Gazerini includes the of the colour patterns that mimick certain butter- mimetic species of Ithomiinae and Heliconiinae flies, and hope that this introductory analysis may (Nymphalidae), and the remaining species are encourage further studies focusing on different included in Castniini (Lamas, 1995; Miller, 1995). aspects of the mimicry, by alternative methods (e.g. The only phylogenetic analysis that tested the DNA sequencing). monophyly of Castniidae and the relationships among the subfamilies, tribes, and genera was performed by Miller (1986). In this study, Castniidae and its three A TAXONOMIC OVERVIEW OF THE constituent subfamilies were all recovered as a NEOTROPICAL SPECIES monophyletic group, which is accepted as the starting point for the present investigation; the Neotropical The first record of a castniid was an illustration of an Castniinae + Synemoniini formed the sister group of unknown species by Maria Sibylla Merian (1705), the Tascininae. Miller (1986) also recovered the Neo- later described as Papilio licus by Drury (1773). tropical Castniini and Gazerini as monophyletic taxa. Fabricius (1807) erected 40 genera of Lepidoptera Although some genera have been synonymized from the genus Papilio, the seventh of which was (González & Cock, 2004; Moraes & Duarte, 2009), Castnia Fabricius, 1807. In 1824, Latreille & Godart some monotypic genera of the Neotropical Castniidae and Dalman published the first studies compiling are still considered valid (Table 1), based on wing species of castniids, with both works focusing on colour pattern, without further support from morpho- colour characters. Latreille & Godart (1824) gave a logical evidence. For more than a century the brief redescription of eight species, most of which Neotropical Castniidae have received typological– were originally described by Cramer (1773–1782) and taxonomic treatments, mainly based on colour Fabricius (1775), and described five new species. pattern, and some species that are presently consid- Dalman (1824) dealt with 18 species, of which four ered as valid may actually represent chromatic vari- were considered new. Some of the species treated by ations, as shown by Moraes, Duarte & González Latreille & Godart (1824) were not mentioned by (2010), and suggested by Vinciguerra (2011b). Dalman (1824), and vice versa. Gray (1838) published In the Neotropics, some castniids are economically a synopsis of Castnia including 29 valid species, three important agricultural pests that cause extensive of which were new. Although the species were still damage to plantations of sugar cane, oil palms, pine- grouped within the genus Castnia, the author pro- apples, and orchids. They have been studied with posed five sections, using characters such as the regard to pest control (Esquivel, 1981), chemical colour and shape of wings, proportions of palp seg- (Rebouças, Caraciolo & Sant’Ana, 1999), morphologi- ments, and presence or absence of sexual dimor- cal (Moraes & Duarte, 2009), ethological (Albertoni phism. He also discussed differences in the branching et al., 2012), and molecular aspects (Silva-Brandão pattern of veins of the radial system. Between 1854 et al., 2012). The main agricultural pest species is and 1858, Walker (1854), Ménétriés (1857), and licus (Drury, 1773), which bores into sugar- Herrich-Schäffer (1850–1858) provided colour-based cane stem tissues. Other important pest species are descriptive studies. Walker attempted to separate cyparrissias (Fabricius, 1776) on palm the 41 species described or redescribed in his study trees, Riechia acraeoides (Guérin-Ménéville, [1832]) into subdivisions, using the colour and shape of the on orchids, and Castnia invaria Walker, 1854 on wings, but provided no further discussion on tax- pineapples. onomy. In the study by Boisduval (1875), Castniidae Few studies have investigated the butterfly-like was represented by 78 species divided into the tribes behaviour (Sarto i Monteys et al., 2012), physiologi- ‘Castniaires’ and ‘Synemonides’. Synemonides was

© 2014 The Linnean Society of London, Zoological Journal of the Linnean Society, 2014, 170, 362–399 364 S. S. MORAES AND M. DUARTE

© 2014 The Linnean Society of London, Zoological Journal of the Linnean Society, 2014, 170, 362–399 PHYLOGENY OF NEOTROPICAL CASTNIINAE 365

Table 1. Genus arrangement for the Neotropical Castniidae according to Lamas (1995) and number of species per genus included in the cladistic analysis

Number of Number Number of Number species per of species species per of species Genera genus* dissected Genera genus* dissected

Athis Hübner, [1819] 16 6 Yagra Oiticica, 1955 2 2 Castnia Fabricius, 1807 6 2 Feschaeria Oiticica, 1955 2 1 Eupalamides Hübner, [1819] 5 1 Tosxampila Oiticica, 1955 2 1 Synpalamides Hübner, [1823] 5 2 Ceretes Schaufuss, 1870 2 2 Houlbert, 1918 4 2 Spilopastes Houlbert, 1918 1 1 Hübner, [1819] 4 2 Ircila Houlbert, 1918 1 1 Lapaeumides Oiticica, 1955 3 3 Xanthocastnia Houlbert, 1918 1 1 Houlbert, 1918 3 3 Riechia Oiticica, 1955 1 1 Haemonides Hübner, [1819] 3 2 Prometheus Hübner, [1824] 1 1 Telchin Hübner, [1825] 3 3 Divana Miller, 1982 1 1 Geyeria Buchecker, [1880] 4 4 Herrich-Schäffer, [1853] 1 1 Castnius Hübner, [1819] 3 2 Frostetola Oiticica, 1955 1 1 Duboisvalia Oiticica, 1955 3 1 Oiticicastnia Lamas, 1955 1 1 Oiticica, 1955 3 1 Paysandisia Houlbert, 1918 1 1 Mirocastnia Miller, 1980 3 0 Insigniocastnia Miller, 2007 1 0 Oiticica, 1955 2 2

*The number of species per genus follows the checklist of Lamas (1995), except that recently described species in the genera Athis, Imara, Castnius, Zegara, and Insigniocastnia have been added (Pierre & Pierre-Baltus, 2003; Espinoza & González, 2005; Miller, 2007, 2008; Vinciguerra, 2011a). composed of ten species grouped in a single genus: The monograph of Westwood (1877) revoked Doubleday, 1846. Castniaires included the divisions made by Boisduval (1875), and the all the species in the genus Castnia, as well as Neotropical species were allocated to the genus some species currently belonging to Castnia, except for Castnius pelasgus (Cramer, [1779]), (). The species were arranged in the placed in the genus Orthia. Also, the genus Tascina following genera: Castnia, with 53 species; Ceretes was described, and together with Synemon, Orthia, Schaufuss, 1870, with three species; Orthia Herrich- and Hecatesia Boisduval, 1829 was considered Schäffer, 1853, with six species; and Gazera Herrich- taxonomically close to Castnia. Westwood (1877) also Schäffer, [1853], with six species, grouped based on provided a detailed study of wing venation, and com- their mimetic relationships with butterflies. mented on the many descriptions made without a

◀ Figures 1–36. Habitus of representatives of Castniini, left dorsal view, right ventral view: 1, Ceretes marcelserres (Godart, [1824]); 2, Paysandisia uruguayana (Burmeister, 1879) comb. nov.;3,Paysandysia archon (Burmeister, 1879); 4, Castnia invaria Walker, 1854; 5, Castnius pelasgus (Cramer, [1779]); 6, Castnius marcus (Jordan, 1908); 7, (Fabricius, 1776); 8, Corybantes pylades (Stoll, 1782); 9, Prometheus zagraea (Felder, 1874) comb. nov.; 10, Prometheus mimica (Felder, 1874) comb. nov.;11,Prometheus ecuadoria (Westwood, 1877) comb. nov.; 12, Prometheus heliconioides (Herrich-Schäffer, [1853]) comb. nov.; 13, Prometheus cochrus (Fabricius, 1787); 14, Telchin gramivora (Schaus, 1896) comb. nov.; 15, Telchin hubneri (Gray, 1838) comb. nov.; 16, Telchin diva (Butler, 1870) comb. nov.; 17, Telchin evalthe (Fabricius, 1775) comb. nov.; 18, Telchin cacica (Herrich-Schäffer, [1854]) comb. nov.; 19, (Drury, 1773); 20, Athis inca (Walker, 1854); 21, Athis palatinus (Cramer, 1777); 22, Athis analibiae (Espinoza & González, 2005) comb. nov.; 23, Imara acraeoides (Guérin-Ménéville, [1832]) comb. nov.; 24, Imara therapon (Kollar, 1839) comb. nov.; 25, Imara pallasia (Eschscholtz, 1821); 26, Imara satrapes (Kollar, 1839); 27, Haemonides cronis (Cramer, [1775]); 28, Geyeria galinthias (Hopffer, 1856) comb. nov.; 29, Geyeria decussata (Godart, [1824]) comb. nov.; 30. Yagra fonscolombe (Godart, [1824]); 31, Synpalamides ctesiphon (Hübner, [1820]) comb. nov.; 32, Synpalamides amycus (Cramer [1779]) comb. nov.; 33, Synpalamides phalaris (Fabricius, 1793); 34, Synpalamides fabricii (Swainson, 1823); 35, Ircila hecate (Herrich-Schäffer, [1854]); 36, Oiticicastnia erycina (Westwood, 1877). Scale bars: 1 cm.

© 2014 The Linnean Society of London, Zoological Journal of the Linnean Society, 2014, 170, 362–399 366 S. S. MORAES AND M. DUARTE detailed study and insufficient appreciation of the ment proposed by Boisduval (1875), Westwood (1877), morphological characters. Buchecker (1880), using dif- and Strand (1913), with the Neotropical castniids ferences in the hindwing venation, separated Castnii- arranged in the tribes Castniini and Gazerini. Lamas dae into ‘Athinae’ and ‘Castninae’. Subsequently, (1995), in a critical review of Miller (1995), added Druce (1882, 1890, 1893) and Preiss (1899) provided corrections and synonymized several species, result- descriptions of some new species, but no supplemen- ing in 81 valid species. tary information about the taxonomy and relation- Since then, several studies have focused mainly ships among species. Dalla-Torre (1913) erected on the descriptions of new species (Pierre & Castniinae and retained in the genus Castnia all 109 Pierre-Baltus, 2003; Espinoza & González, 2005; Neotropical castniid species listed in the catalog. Miller, 2007, 2008; Vinciguerra, 2011a) and lists Strand (1913) listed 105 species, and a large of local fauna (Miller, 2000; González, 2003, 2004; number of new forms were described, based only González & Cock, 2004; Ríos & González, 2011; on wing colour pattern. Of the 95 species, 84 were Hernández-Baz et al., 2012). A few studies have dealt grouped, based on the size of the wings, in the ‘sec- with morphology (Moraes & Duarte, 2009), revisions tions’ Castnia (67 species) and Gazera (27 species), based on characters other than colour pattern both in the genus Castnia. Another 11 species could (Moraes et al., 2010; Moraes, Duarte & Miller, 2011), not be grouped based on these characters. Houlbert and ethology (Albertoni et al., 2012). (1917) described 27 new species, based on colour pattern. Later, in 1918, he published a monograph on Castniinae, compiling information on biology, MATERIAL AND METHODS morphology, classification, and distribution. Houlbert (1918) listed 160 species, 33 genera, and four tribes. TAXON SAMPLING The genera erected were established based on wing Species of Castniidae are rare in collections, with few colour pattern, as well as wing venation and shape exceptions. For this reason, the taxa treated herein of the arolium. He also made errors in the delimita- were selected from the available material. tion of some genera and designation of type species. As out-groups we selected Morpheis clenchi These errors particularly affected the genera Aciloa Donahue, 1980 (Cossidae) to root the tree, plus two Houlbert, 1918 and Athis Houlbert, 1918, nec Hübner, genera of Australian and Indo-Malayan Castniidae, [1819]. In addition, various forms have been estab- Synemon Doubleday, 1846 and Tascina Westood, 1877. lished from specimens deposited in the collection In lieu of specimens of Tascina metallica Pagenstecher, of Charles Oberthür, now held at the Natural 1890, we used photographs and drawings from the History Museum, London, and the Muséum national studies of Holloway (1998) and Fukuda (2000). d’Histoire naturelle, Paris. Our in-group sample included representatives for Talbot (1919) and Rothschild (1919) published notes 29 genera and 52 species of Neotropical Castniidae. A about the publication of Houlbert (1918). Rothschild total of 163 specimens were dissected (Table 2). The (1919) considered all genera erected by Houlbert to be genera Mirocastnia Miller, 1980 and Insigniocastnia subgenera. Oiticica (1955) solved part of the taxo- Miller, 2007 were not included because of a lack of nomic problems concerning the priority of names and available specimens. designation of type species for some of the South For 12 of the 55 terminal taxa it was not possible to American castniids. He also contributed new taxo- obtain information about females because of the scar- nomic rearrangements for Athis and established the city of material. In such cases we consulted the illus- genera Hista, named pro Athis Houlbert, 1918 nec trations by Miller (1986) and original descriptions, in Hübner, 1819; and Yagra, named pro Graya Houlbert, order to code characters for females, when possible. 1918 nec Buchecker, 1880. Miller (1986) contributed a The specimens used in this study are deposited in phylogenetic analysis involving Neotropical castniids the Museu de Zoologia da Universidade de São Paulo and some representatives of the genus Synemon. She (São Paulo, Brazil). Part of the material studied was discussed the characters and geographical distribu- loaned from the Lepidoptera collections of the Natural tions, and provided a taxonomic revision of all genera. History Museum (London, UK), Departamento de As a result, the Neotropical species, Castniidi, were Zoologia da Universidade Federal do Paraná (Curitiba, included together with the Australian representa- PR, Brazil), Essig Museum of Entomology (Berkeley, tives, Synemoniidi, in Castniini. For the Neotropics CA, USA), Museo de La Plata (Buenos Aires, Argen- she recognized 29 genera and five subgenera. The tina), Museu Nacional, Universidade Federal do Rio de phylogenetic hypothesis of Miller remains the only Janeiro (Rio de Janeiro, RJ, Brazil), and the National existing scheme for Castniidae. Miller (1995) recog- Museum of Natural History, Smithsonian Institution nized 134 species arranged in 32 genera. Departing (Washington, DC, USA). Acronyms used in Table 2 from her previous work, she followed the arrange- follow Arnett et al. (1993).

© 2014 The Linnean Society of London, Zoological Journal of the Linnean Society, 2014, 170, 362–399 PHYLOGENY OF NEOTROPICAL CASTNIINAE 367

Table 2. Material dissected

Institution Species Sex Locality Genitalia Voucher

MZSP Amauta cacica ǩ Panama, Chiriqui S. Moraes 2007–49 MNRJ Amauta cacica ǩ Without Locality S. Moraes 2007–78 MNRJ Amauta cacica Ǩ , Muzo S. Moraes 2007–83 MNRJ Amauta papilionaris Ǩ , Candos S. Moraes 2010–225 MNRJ Amauta papilionaris ǩ Ecuador S. Moraes 2011–313 USNM Athis flavimaculata ǩ Mexico, Morelos,Tepoztlán 96261 USNM Athis hecthiae ǩ Mexico, Tehuacán 96260 USNM Athis hecthiae Ǩ Mexico, Tehuacán 96266 USNM Athis hecthiae ǩ Mexico, Tehuacán 96267 USNM Athis inca ǩ Mexico, Cordova 85590 USNM Athis inca ǩ Panama, Gatun 85591 USNM Athis inca ǩ Mexico, Cordova 85592 USNM Athis inca Ǩ Without Locality 85593 USNM Athis palatinus ǩ French Guiana 85587 USNM Athis palatinus Ǩ Ecuador, Macas 85588 MNRJ Athis palatinus Ǩ French Guiana, Bas Maroni S. Moraes 2007–82 USNM Athis superba Ǩ , Manu 96265 MNRJ Athis superba Ǩ Brazil, Pará, Óbidos S. Moraes 2010–216 USNM Athis therapon ǩ Without Locality 85594 MZSP Athis therapon ǩ Brazil, Rio de Janeiro, Rio de Janeiro S. Moraes 2007–56 MZSP Athis therapon Ǩ Brazil, São Paulo S. Moraes 2007–69 MNRJ Athis therapon Ǩ Without Locality S. Moraes 2007–71 MZSP Castnia eudesmia ǩ Without Locality S. Moraes 2009–103 MZSP Castnia eudesmia ǩ Ecuador S. Moraes 2009–104 USNM Castnia invaria ǩ Without Locality 96263 MZSP Castnia invaria Ǩ Brazil, Mato Grosso, Murtinho S. Moraes 2007–45 MZSP Castnia invaria ǩ Brazil, São Paulo S. Moraes 2007–51 MZSP Castnia invaria ǩ Brazil, Mato Grosso S. Moraes 2007–58 USNM Castnia invaria ǩ Paraguay, Sapucay 96264 MZSP Castnia juturna Ǩ Brazil, São Paulo S. Moraes 2007–72 MLP Castnia uruguayana Ǩ Uruguay, Paysandu S. Moraes 2011–366 MLP Castnia uruguayana ǩ Uruguay, Paysandu S. Moraes 2011–376 MZSP Castniomera atymnius ǩ Brazil, São Paulo, Peruíbe S. Moraes 2007–28 MZSP Castniomera atymnius Ǩ Without Locality S. Moraes 2007–32 MZSP Castniomera atymnius ǩ Brazil, Bahia, Camacã S. Moraes 2007–40 MZSP Castniomera atymnius ǩ Brazil, São Paulo S. Moraes 2007–59 MNRJ Castnius marcus Ǩ Brazil, Amazonas, Benjamin Constant S. Moraes 2010–218 MNRJ Castnius marcus ǩ Brazil, Amazonas, Benjamin Constant S. Moraes 2010–230 MZSP Castnius pelasgus ǩ Without Locality S. Moraes 2009–152 MZSP Castnius pelasgus ǩ Without Locality S. Moraes 2009–154 MNRJ Castnius pelasgus Ǩ Brazil, Amazonas, Tabatinga S. Moraes 2010–208 MZSP Ceretes marcelserres ǩ Brazil, Santa Catarina, Joinville S. Moraes 2009–112 MZSP Ceretes marcelserres Ǩ Brazil, Santa Catarina, Joinville S. Moraes 2009–118 MZSP Ceretes marcelserres Ǩ Without Locality S. Moraes 2012–495 MZSP Ceretes thais ǩ Brazil, Santa Catarina, Joinville S. Moraes 2009–110 MZSP Ceretes thais Ǩ Brazil, Amazonas, Itacoatiara S. Moraes 2009–116 MZSP Ceretes thais Ǩ Brazil, Pará, Santarém S. Moraes 2011–369 MZSP Ceretes thais Ǩ Brazil, Santa Catarina, Timbó S. Moraes 2012–496 MZSP Corybantes mathani Ǩ Without Locality S. Moraes 2009–136 MZSP Corybantes mathani ǩ Without Locality S. Moraes 2009–151 MZSP Corybantes pylades ǩ Without Locality S. Moraes 2007–21 MZSP Corybantes pylades ǩ Without Locality S. Moraes 2007–47 MZSP Corybantes pylades Ǩ Brazil, Pará, Óbidos S. Moraes 2007–63 MZSP Divana diva ǩ Without Locality S. Moraes 2009–160 MNRJ Divana diva ǩ Without Locality S. Moraes 2010–223 MNRJ Divana diva ǩ Mexico, Catemaco S. Moraes 2010–224

© 2014 The Linnean Society of London, Zoological Journal of the Linnean Society, 2014, 170, 362–399 368 S. S. MORAES AND M. DUARTE

Table 2. Continued

Institution Species Sex Locality Genitalia Voucher

MNRJ Duboisvalia ecuadoria ǩ Colombia, Rio Negro S. Moraes 2010–231 MZSP Erythrocastnia syphax ǩ Brazil, Pará, Óbidos S. Moraes 2007–30 MZSP Erythrocastnia syphax Ǩ Without Locality S. Moraes 2007–33 MZSP Erythrocastnia syphax Ǩ Brazil, Pará, Óbidos S. Moraes 2007–35 MZSP Erythrocastnia syphax Ǩ Brazil, Pará, Óbidos S. Moraes 2007–41 MZSP Erythrocastnia syphax ǩ Without Locality S. Moraes 2007–57 MZSP Erythrocastnia syphax ǩ Without Locality S. Moraes 2007–60 MZSP Eupalamides cyparissias ǩ Brazil, Amazonas, Itacoatiara S. Moraes 2007–36 MZSP Eupalamides cyparissias ǩ Peru, Tingo Maria S. Moraes 2007–38 MZSP Eupalamides cyparissias Ǩ Brazil S. Moraes 2007–42 MZSP Feschaeria amycus ǩ Brazil, Rio de Janeiro, Niterói S. Moraes 2007–27 MZSP Feschaeria amycus Ǩ Brazil, São Paulo, Mato do Governo S. Moraes 2007–65 MZSP Feschaeria amycus Ǩ Brazil, São Paulo S. Moraes 2007–68 MNRJ Frostetola grammivora Ǩ Brazil, Mato Grosso S. Moraes 2010–207 MNRJ Frostetola grammivora ǩ Brazil, Mato Grosso S. Moraes 2010–292 DZUP Frostetola grammivora ǩ Brazil, Brasília S. Moraes 2011–377 MZSP Gazera heliconioides ǩ Brazil, Pará, Óbidos S. Moraes 2009–101 MZSP Gazera heliconioides Ǩ Without Locality S. Moraes 2009–109 MZSP Gazera heliconioides Ǩ Brazil, Amazonas, Itacoatiara S. Moraes 2009–117 MZSP Gazera heliconioides Ǩ Without Locality S. Moraes 2012–484 MZSP Geyeria decussata Ǩ Without Locality S. Moraes 2007–20 MZSP Geyeria decussata ǩ Without Locality S. Moraes 2007–26 MZSP Geyeria decussata Ǩ Brazil, São Paulo S. Moraes 2007–64 MZSP Geyeria decussata Ǩ Brazil, São Paulo S. Moraes 2007–67 MNRJ Geyeria hubneri Ǩ Brazil, Minas Gerais S. Moraes 2010–232 MNRJ Geyeria hubneri ǩ Brazil, Minas Gerais, Lagoa Santa S. Moraes 2010–291 MZSP Geyeria hubneri Ǩ Brazil, Brasília S. Moraes 2011–380 MZSP Geyeria strigata ǩ Without Locality S. Moraes 2007–13 MNRJ Geyeria strigata Ǩ Brazil, Rio de Janeiro, Rio de Janeiro S. Moraes 2010–205 MNRJ Haemonides cronis Ǩ Brazil, Amazonas, São Paulo de Olivença S. Moraes 2010–215 MNRJ Haemonides cronis ǩ Brazil, Pará, Bonfim S. Moraes 2007–79 MZSP Haemonides cronis Ǩ Brazil, Amazonas, Benjamin Constant S. Moraes 2007–84 MZSP Haemonides emiliae Ǩ Without Locality S. Moraes 2009–145 MZSP Haemonides emiliae ǩ Without Locality S. Moraes 2009–153 USNM Hista fabricii ǩ Brazil 85580 USNM Hista fabricii Ǩ Brazil 85589 MNRJ Hista fabricii Ǩ Brazil, São Paulo, Campos do Jordão S. Moraes 2007–54 MZSP Hista fabricii ǩ Brazil, São Paulo, Salesópolis S. Moraes 2007–01 MZSP Hista fabricii ǩ Brazil, São Paulo, Salesópolis S. Moraes 2007–22 MZSP Hista fabricii Ǩ Brazil, Rio de Janeiro, Petrópolis S. Moraes 2007–31 MZSP Hista fabricii Ǩ Brazil, Santa Catarina, Timbó S. Moraes 2007–73 MZSP Hista fabricii Ǩ Brazil, São Paulo, Salesópolis S. Moraes 2007–75 MZSP Hista hegemon ǩ Without Locality S. Moraes 2007–12 MNRJ Hista hegemon Ǩ Brazil, Rio de Janeiro, Rio de Janeiro S. Moraes 2007–61 USNM Hista hegemon ǩ Brazil, Rio de Janeiro, Rio de Janeiro 85585 USNM Hista hegemon ǩ Brazil 85586 MNRJ Hista hegemon ǩ Without Locality S. Moraes 2007–76 MZSP Hista hegemon ǩ Brazil, São Paulo S. Moraes 2007–70 EMEC Imara analibiae ǩ Costa Rica, Heredia, La Selva S. Moraes 2007–77 USNM Imara pallasia ǩ Brazil, Rio de Janeiro 85581 MZSP Imara pallasia ǩ Brazil, Santa Catarina, Timbó M. Duarte 58 MZSP Imara pallasia ǩ Brazil, Rio de Janeiro, Rio de Janeiro S. Moraes 2007–03 MZSP Imara pallasia Ǩ Brazil, São Paulo, São Paulo S. Moraes 2007–06 MZSP Imara pallasia Ǩ Brazil, Rio de Janeiro, Petrópolis S. Moraes 2007–09 MZSP Imara pallasia Ǩ Without Locality S. Moraes 2007–16 MZSP Imara pallasia Ǩ Brazil, São Paulo, Osasco S. Moraes 2007–17 USNM Imara satrapes ǩ Uruguay, Montevideo 85583

© 2014 The Linnean Society of London, Zoological Journal of the Linnean Society, 2014, 170, 362–399 PHYLOGENY OF NEOTROPICAL CASTNIINAE 369

Table 2. Continued

Institution Species Sex Locality Genitalia Voucher

MZSP Imara satrapes ǩ Brazil, São Paulo, São Paulo S. Moraes 2007–02 MZSP Imara satrapes Ǩ Brazil, São Paulo, São Paulo S. Moraes 2007–10 MZSP Imara satrapes ǩ Brazil, Rio Grande do Sul, Porto Alegre S. Moraes 2007–23 MNRJ Imara satrapes Ǩ Brazil, São Paulo S. Moraes 2007–62 USNM Ircila hecate ǩ Domican Republic, Ciudad Trujillo 96262 MNRJ Lapaeumides actor ǩ Brazil S. Moraes 2011–310 MZSP Lapaeumides ctesiphon ǩ Brazil, Mato Grosso S. Moraes 2007–48 MNRJ Lapaeumides ctesiphon ǩ Brazil, Espirito Santo S. Moraes 2011–312 MNRJ Lapaeumides zerynthia Ǩ Brazil, Rio de Janeiro, Lagoinha S. Moraes 2010–226 MNRJ Lapaeumides zerynthia ǩ Brazil, Minas Gerais, Leopoldina S. Moraes 2011–311 MZSP Morpheis clenchi ǩ Brazil, São Paulo, Salesópolis S. Moraes 2011–316 MZSP Morpheis clenchi Ǩ Brazil, São Paulo, São Paulo S. Moraes 2011–336 DZUP Oiticicastnia erycina ǩ Brazil, Acre, Cruzeiro do Sul S. Moraes 2012–502 MLP Ǩ Argentina, Buenos Aires S. Moraes 2011–365 MLP Paysandisia archon ǩ Uruguay, Paysandu S. Moraes 2011–375 MZSP Riechia acraeoides ǩ Without Locality S. Moraes 2009–114 MZSP Riechia acraeoides Ǩ Without Locality S. Moraes 2009–119 MZSP Riechia acraeoides Ǩ Without Locality S. Moraes 2011–368 USNM Spilopastes galinthias ǩ Without Locality 85584 MZSP Spilopastes galinthias ǩ Without Locality S. Moraes 2007–15 MZSP Spilopastes galinthias ǩ Brazil, São Paulo, São Paulo S. Moraes 2009–102 MNRJ Spilopastes galinthias Ǩ Brazil, Rio de Janeiro, Petrópolis S. Moraes 2010–206 MZSP Synpalamides phalaris Ǩ Brazil, São Paulo, Salesópolis S. Moraes 2007–08 MZSP Synpalamides phalaris ǩ Without Locality S. Moraes 2007–14 MZSP Synpalamides phalaris Ǩ Brazil, São Paulo, Salesópolis S. Moraes 2007–43 MZSP Synpalamides phalaris Ǩ Brazil, São Paulo S. Moraes 2007–52 MZSP Synpalamides phalaris Ǩ Brazil, São Paulo S. Moraes 2007–53 BMNH Synemon parthenoides ǩ Australia, Park Side S. Moraes 2011–314 BMNH Synemon parthenoides Ǩ Australia, Park Side S. Moraes 2011–335 BMNH Synemon parthenoides Ǩ Without Locality S. Moraes 2011–367 MZSP Synpalamides orestes ǩ Brazil, Rio de Janeiro, Petrópolis S. Moraes 2009–111 MZSP Synpalamides orestes Ǩ Brazil, Rio de Janeiro, Petrópolis S. Moraes 2009–115 MZSP Telchin licus Ǩ Brazil, Amazonas, São Paulo de Olivença S. Moraes 2007–18 MZSP Telchin licus ǩ Without Locality S. Moraes 2007–24 MZSP Telchin licus Ǩ Brazil, Amazonas, Itacoatiara S. Moraes 2007–34 MZSP Telchin licus ǩ Brazil, Amazonas, Itacoatiara S. Moraes 2007–39 MZSP Telchin licus ǩ Without Locality S. Moraes 2007–66 MNRJ Tosxampila mimica Ǩ Brazil, Amazonas, Tefé S. Moraes 2010–209 MNRJ Tosxampila mimica ǩ Brazil, Amazonas, Tefé S. Moraes 2010–293 MZSP Xanthocastnia evalthe ǩ Brazil, Amazonas, Benjamin Constant S. Moraes 2007–29 MZSP Xanthocastnia evalthe ǩ Brazil, Pará, Óbidos S. Moraes 2007–46 MZSP Xanthocastnia evalthe Ǩ Without Locality S. Moraes 2007–81 MNRJ Xanthocastnia evalthe Ǩ Brazil, Rio de Janeiro, Rio de Janeiro S. Moraes 2010–217 MZSP Yagra dalmannii ǩ Without Locality S. Moraes 2007–11 MZSP Yagra dalmannii ǩ Brazil, Rio de Janeiro, Rio de Janeiro S. Moraes 2007–37 MNRJ Yagra dalmannii Ǩ Brazil, Rio de Janeiro, Rio de Janeiro S. Moraes 2007–55 MZSP Yagra dalmannii Ǩ Without Locality S. Moraes 2007–74 USNM Yagra fonscolombe ǩ Brazil, Rio de Janeiro 85582 MZSP Yagra fonscolombe ǩ Brazil, Santa Catarina, Timbó S. Moraes 2007–04 MZSP Yagra fonscolombe ǩ Without Locality S. Moraes 2007–05 MZSP Yagra fonscolombe Ǩ Without Locality S. Moraes 2007–07 MNRJ Yagra fonscolombe Ǩ Brazil, Rio de Janeiro, Rio de Janeiro S. Moraes 2007–44 MZSP Yagra fonscolombe ǩ Brazil, Santa Catarina, Timbó S. Moraes 2007–50 MNRJ Zegara zagraea Ǩ Panama S. Moraes 2010–219 MNRJ Zegara zagraea ǩ Panama S. Moraes 2010–294

© 2014 The Linnean Society of London, Zoological Journal of the Linnean Society, 2014, 170, 362–399 370 S. S. MORAES AND M. DUARTE

SPECIMEN PREPARATION, ILLUSTRATIONS, is largely new. The matrix included both nongenital AND TERMINOLOGY and genital characters, as follows: four of head; one of The external morphology and colour patterns were leg; seven of wing; ten of wing pattern, 65 of male analysed following the standard protocols (Winter, genitalia, and 33 of female genitalia. Twenty-eight 2000), with some modifications. Abdomens were characters were multistate: all were treated as unor- soaked in cold 10% potassium hydroxide for 24–36 h, dered, because for most of them there is no evidence and stained with a saturated solution of Chlorazol or prior hypotheses about the transformation of Black E dissolved in water. The head and thorax were states. not dissected, as the investigation of sclerites involves irreversible damage to specimens, a practice usually PHYLOGENETIC ANALYSES not permitted by curators for rare material in collec- A parsimony analysis was performed with the tions. Wings and genitalia were dissected if sufficient program TNT (Goloboff, Farris & Nixon, 2007) using material was available. a heuristic search, tree bisection and reconnection The illustrations were made with the aid of a (TBR), 1000 replicates for each analysis, and 50 trees camera lucida attached to a stereomicroscope, and saved by replication. subsequently digitized and processed in Adobe For Tascina metallica we were able to codify 41 ILLUSTRATOR 12.0 to improve the line drawings. characters (34% of the total number of characters). The photographs of genitalia were taken with a Zeiss In order to evaluate how missing characters would AxioCam MRc 5 attached to a stereomicroscope, and affect polarization, we performed four analyses: (i) were processed in AxioVision 4.8. including T. metallica, under unweighted analysis; To interpret and describe the genital structures, (ii) including T. metallica, using implied weighting; we followed the procedures outlined by Moraes & (iii) without T. metallica under unweighted analysis; Duarte (2009), which are based on classical and and (iv) without T. metallica using implied weighting. widely recognized works on Lepidoptera morphology For implied weighting we used the following values (male genitalia, Pierce, 1909; Sibatani et al., 1954; for k: 5, 7, 9, 15, 20, 25, 30, 40, and 50. Okagaki et al., 1955; Klots, 1956; Ogata et al., 1957; Birket-Smith, 1974; female genitalia, Pierce, 1914; Klots, 1956; Mutuura, 1972; Galicia, Sánchez & RESULTS AND DISCUSSION Cordeiro, 2008). In cases where there were problems CHARACTER LIST in establishing homologies and the terminology did not seem appropriate, we consulted well-known con- Head tributions on the general morphology of 1. Antenna: (0) clavate (Figs 41–45); (1) filiform (Snodgrass, 1935; Matsuda, 1965, 1970, 1976). (Fig. 40). 2. Transition from antennal nodule to apiculus: (0) CHARACTER CODING AND SAMPLING gradual (Figs 43–45); (1) abrupt (Fig. 42). 3. Apex of antenna: (0) scales of nodule coloured We codified morphological characters for adults only differently from remaining flagellomeres (the available information about the immatures is (Figs 41, 44); (1) scales of nodule coloured as still very insufficient for such comparative analyses). remaining flagellomeres (Fig. 44). The characters were treated as homologous among 4. Nodule of antenna: (0) without scales (Fig. 45); different taxa (taxon homology) based on similarities (1) with scales on inner surface (Figs 41–44). in morphology and position, according to the concept of primary homology and Hennig’s auxiliary principle Wings (Fig. 52) (Hennig, 1966), in which morphological similarity may be considered to imply homology, unless contra- 5. Posterior margin of forewing near tornus: (0) dicted by specific evidence. straight (Fig. 46); (1) sinuous (Fig. 47). We used the contingent method of codification 6. Hindwing: (0) oblong scales at base absent (Forey & Kitching, 2000). Although this method has (Fig. 49); (1) oblong scales at base present limitations, especially regarding inapplicable coding (Fig. 50). for some taxa (discussed by Maddison, 1993), it 7. Posterior margin of forewing: (0) with projec- reduces the loss of information without violating the tion bearing oblong scales (Fig. 51); (1) without principle of independence among characters. projection.

For the 55 species examined, 120 characters and 8. Forewing: (0) areole present between R2 and

298 states were defined (see character list). Although stem of R3 +R4 +R5 (Fig. 47); (1) absent; (2) some characters were based on a previous study areole present, between R1 and stem of

(Miller, 1986), the set of characters presented here R2 +R3 +R4 +R5.

© 2014 The Linnean Society of London, Zoological Journal of the Linnean Society, 2014, 170, 362–399 PHYLOGENY OF NEOTROPICAL CASTNIINAE 371

Morpheis clenchi (Cossidae) Morpheis clenchi (Cossidae) Tascina metallica Synemon parthenoides Synemon parthenoides Castnia eudesmia Corybantes pylades Ceretes thais Eupalamides cyparissias Ceretes marcelserres Castnia invaria Corybantes pylades Imara analibiae Corybantes mathani Castnia eudesmia Eupalamides cyparissias Corybantes mathani Oiticicastnia erycina Athis palatinus Castnius pelasgus Athis hechtiae Castnius marcus Ircila hecate Castnia invaria Athis superba Paysandisia archon Paysandisia archon Geyeria uruguayana Geyeria uruguayana Ircila hecate Oiticicastnia erycina Frostetola gramivora Ceretes thais Xanthocastnia evalthe Ceretes marcelserres Amauta cacica Castnius pelasgus Amauta papilionaris Castnius marcus Divana diva Yagra fonscolombe Geyeria hubneri Yagra dalmannii Telchin licus Athis inca Telchin atymnius Athis flavimaculata Telchin syphax Prometheus cochrus Synpalamides phalaris Duboisvalia ecuadoria T os xampila mimic a Feschaeria amycus Synpalamides orestes Gazera heliconioides Zegara zagraea Hista fabricii Hista hegemon Hista fabricii Lapaeumides ctesiphon Hista hegemon Lapaeumides actor Synpalamides phalaris Lapaeumides zerynthia Feschaeria amycus Imara analibiae Synpalamides orestes B A Athis palatinus Lapaeumides ctesiphon Lapaeumides actor Athis hechtiae Lapaeumides zerynthia Athis superba Yagra fonscolombe Frostetola gramivora Yagra dalmannii Xanthocastnia evalthe Athis inca Divana diva Geyeria hubneri Athis flavimaculata Amauta cacica Prometheus cochrus Amauta papilionaris Duboisvalia ecuadoria Telchin licus Tosxampila mimica Telchin atymnius Gazera heliconioides Telchin syphax Zegara zagraea Athis therapon Athis therapon Riechia acraeoides Riechia acraeoides Haemonides cronis Haemonides cronis Haemonides emiliae Haemonides emiliae Imara pallasia Imara pallasia Imara satrapes Imara satrapes Spilopastes galinthias Spilopastes galinthias Geyeria strigata Geyeria strigata Geyeria decussata Geyeria decussata

37

Figure 37. Cladograms obtained from unweighted analyses: A, cladogram including Tascina metallica Pagenstecher, 1890, from Oriental fauna; B, cladogram without Tascina metallica Pagenstecher, 1890.

© 2014 The Linnean Society of London, Zoological Journal of the Linnean Society, 2014, 170, 362–399 372 S. S. MORAES AND M. DUARTE

Morpheis clenchi (Cossidae) 58 74 11 011411612 0

2 0 1 0 1 0 Synemon parthenoides 36 43 50 60 86 118 Castnia eudesmia 9 61 1 0 2 1 1 1 * 1 0 12 27 40 67 87 Ceretes thais 3 0 1 0 2 1 Ceretes marcelserres 42 45 99 0 50 55 86 111112 0 0 1 6 36 37 2 1 2 0 1 Corybantes pylades 1 1 2 Corybantes mathani 24 25 31 64 8 10 34 50 52 77 86 96 100112115

1 0 1 1 1 0 1 2 2 0 2 1 2 1 0 Eupalamides cyparissias 43 49 89 92 10611 0 0 0 Oiticicastnia erycina 0 1 0 1 27 8 10 25 47 48 51 76 1 Castnius pelasgus 19 1 0 1 1 3 1 0 5 Castnius marcus 3 11 16 36 107109

60 61 87 Paysandisia 0 0 0 1 0 6 Castnia invaria 1 0 1 11 13 18 76 89 92 94 0 1 1 1 Paysandisia archon 9 16 22 25 27 49 53 106109 6 27 79 81 1 0 1 1 0 1 1 2 0 0 1 4 Geyeria uruguayana 1 0 1 1 19 20 51 60 61 76 86 *

5 0 1 3 1 1 2 Ircila hecate 24 27 39 61 100

43 72 1 2 1 1 6 Frostetola gramivora 10 11 15 86 87 6 9 28 46 48 53 55 60 102105113 0 1 0 0 0 1 0 Xanthocastnia evalthe 0 1 1 1 2 3 1 2 0 0 0 10 54 70 43 44 52 58 70 117 6 12 18 20 72 0 1 0 Amauta cacica 27 44 1 1 1 1 1 2 1 1 1 0 0 85 95 96 2 0 Amauta papilionaris 24 31 64 46 50 Telchin 1 0 1 0 0 0 0 1 Divana diva 24 8 10 19 43 89 94 99

1 1 0 4 0 1 1 0 Geyeria hubneri 27 38 39

2 0 1 Telchin licus 3 6 11 54 86 87 104

0 1 0 1 2 3 0 Telchin atymnius Telchin syphax 71 82 86

0 1 2 Synpalamides phalaris 7 19 87 19 24 52

0 3 0 4 1 0 Feschaeria amycus Synpalamides Synpalamides orestes 15 25 31 52 53 88 90

3 1 1 2 1 0 1 43 Hista fabricii 1 33 Hista hegemon 0 Lapaeumides ctesiphon 16 19 49

0 5 2 Lapaeumides actor

19 79 81 95 96 103111 Lapaeumides zerynthia 100 111 1 0 0 0 1 0 0 Athis superba 20 5 1 * 0 19 109112116 Yagra fonscolombe 2 3 1 1 Yagra dalmannii 8 10 26 43 71 95 96

1 0 0 2 1 1 0 Prometheus cochrus 31 64 70 78 82 103107108116 94 Prometheus 13 66 1 1 1 0 0 1 0 1 2 Tosxampila mimica 25 32 37 1 1 1 1 1 1 9 Duboisvalia ecuadoria 25 43 1 4 13 18 0 2 Gazera heliconioides 0 0 0 Zegara zagraea 6 18 53 18 25 43 112

0 1 1 1 Athis palatinus 0 1 0 20 6 9 11

0 1 1 0 Imara analibiae 70 72 20 89 95 96 99

1 0 24 1 1 1 0 0 Athis hechtiae 1 48 60 87 Athis inca 72 30 48 4 0 0 1 Athis flavimaculata 1 0

15 67 84 97 109 Spilopastes galinthias Geyeria 14 86 2 0 2 1 2 8 10 12 0 Geyeria strigata 87 1 0 11 16 0 Geyeria decussata 43 0 0 25 1 Haemonides cronis 9 112 1 5 1 1 Haemonides emiliae 11 1 1 Riechia acraeoides 67 20 Imara 2 57 0 Athis therapon 9 1 22 1 Imara pallasia 1 Imara satrapes

Figure 38. Cladogram obtained from analysis using weighting (k = 20), not including Tascina metallica Pagenstecher, 1890. Filled circles represent synapomorphies; open circles represent homoplasies. Asterisks next to taxa names represent species of uncertain position.

© 2014 The Linnean Society of London, Zoological Journal of the Linnean Society, 2014, 170, 362–399 PHYLOGENY OF NEOTROPICAL CASTNIINAE 373

Morpheis clenchi (Cossidae) 64

1 Tascina metallica 2 58 74 11 0 12 0

1 2 0 1 0 Synemon parthenoides 36 50 60 73 86 87 118 100 Castnia eudesmia 23 41 59 69 9 61 1 2 1 1 1 2 1 *

1 0 0 0 1 0 12 27 40 43 67 72 Ceretes thais 3 59 6 0 1 0 1 2 0 8 42 45 99 91 0 Ceretes marcelserres 19 20 27 51 62 70 86 0 0 0 1 5 0 0 1 1 0 2 Ircila hecate 64 50 55 86 111 112 6 25 66 26 36 39 43 73 79 81 87 Corybantes pylades

2 1 2 0 1 Paysandisia 33 52 72 1 0 0 0 1 2 1 1 2 0 2 22 2 1 0 Corybantes mathani 6 9 16 22 25 49 53 31 64 Geyeria uruguayana 1 1 1 0 1 1 0 0 * 5 13 18 34 70 60 61 11 0 1 1 1 0 Paysandisia archon 3 16 36 72 107 109 1 0 1 0 0 1 0 0 6 Castnia invaria 5 39 61 70 71 100 106 1 1 0 0 6 Frostetola gramivora 10 11 15 24 29 71 86 87 0 9 28 29 31 46 48 53 55 60 64 80 82 102 105113 26 27 68 5 0 0 0 0 0 0 1 0 Xanthocastnia evalthe 46 50 1 1 1 0 1 2 3 1 2 0 0 1 0 0 0 0 0 1 11 0 1 Divana diva 89 92 94 76 44 52 58 117 10 27 54 68 70 71 Telchin 13 18 20 24 72 Amauta cacica 0 1 0 1 1 1 2 0 0 1 1 0 0 26 29 44 5 9 1 1 0 0 0 85 0 0 0 Amauta papilionaris 11 8 10 19 43 89 94 99 1 1 0 4 0 1 1 0 Geyeria hubneri 11 38 39 0 1 Telchin licus 3 11 54 86 87 104 6 100 115 94 Telchin atymnius 0 2 0 0 0 1 2 3 0 5 100 Telchin syphax 34 50 52 60 61 73 76 86 87 112

8 10 33 72 1 2 2 3 1 1 1 2 2 1 Eupalamides cyparissias 27 1 0 2 0 25 47 48 51 100115 1 Castnius pelasgus 19 5 1 1 3 1 0 1 73 5 Castnius marcus 61 87

26 79 81 1 2 Oiticicastnia erycina 8 10 43 0 2 0 1 0 2 Prometheus cochrus Prometheus 5 18 78 107 108 94 1 0 0 1 Tosxampila mimica 29 25 32 37 1 49 1 1 1 9 Duboisvalia ecuadoria 34 25 43 0 1 4 13 18 Gazera heliconioides 5 9 0 2 0 0 0 18 Zegara zagraea 86

2 Synpalamides phalaris 7 19 87 19 24 52 24 27 0 3 0 4 1 0 Feschaeria amycus 0 0 Synpalamides 8 55 Synpalamides orestes 13 15 25 52 53 88 90

0 3 1 2 1 0 1 43 Hista fabricii 51 1 33 9 Hista hegemon 0 Lapaeumides ctesiphon 51 16 19 49

6 64 70 82 103 0 5 2 Lapaeumides actor 55 1 0 0 1 0 Lapaeumides zerynthia 11 100 111

5 1 Athis superba * 19 35 52 56 72 109 112 116 Yagra fonscolombe 2 1 3 1 0 3 1 1 20 31 66 89 Yagra dalmannii 25 112 0 0 1 1 1 Athis palatinus 9 6 9

1 1 Imara analibiae 70 72 20 89 95 96 99 6 30 48 1 0 24 1 1 1 0 0 Athis hechtiae 0 1 0 9 9 1 48 60 87 Athis inca 9 72 4 0 0 18 95 1 Athis flavimaculata Geyeria 1 15 67 84 97 109 Spilopastes galinthias 9 14 86 2 0 2 1 2 8 10 12 0 Geyeria strigata 72 87 1 0 16 20 72 0 Geyeria decussata 43 0 1 25 1 Haemonides cronis 72 9 112 1 5 31 1 1 Haemonides emiliae 11 1 Riechia acraeoides 67 1 74 20 Imara

2 57 0 Athis therapon 74 9 1 22 Imara pallasia 75 1 1 75 Imara satrapes 39

Figure 39. Cladogram obtained from analysis using weighting (k = 20), including Tascina metallica Pagenstecher, 1890. Filled circles represent synapomorphies; open circles represent homoplasies. The numbers represent the values of Bremer support for the branches. Clades with heavier lines represent the new genera proposed. Coloured branches represent the appearance of a mimetic pattern. Asterisks next to taxa names represent species of uncertain position.

© 2014 The Linnean Society of London, Zoological Journal of the Linnean Society, 2014, 170, 362–399 374 S. S. MORAES AND M. DUARTE

Figures 40–45. Antennae: 40, Morpheis clenchi Donahue, 1980; 41, Ceretes marcelserres (Godart, [1824]); 42, Synemon parthenoides R. Felder, 1874; 43, Castnia invaria Walker, 1854; 44, Geyeria decussata (Godart, [1824]); 45, Prometheus heliconioides (Herrich-Schäffer, [1853]) comb. nov. Scale bars: 1 mm.

10 (1) 9 (1) 9 (0) 8 (0) 10 (0) 11 (1) 11 (0)

5 (1) 5 (0) 46 47 48

Figures 46–48. Wing venation and associated characters: 46, Geyeria decussata (Godart, [1824]); 47, Imara pallasia (Eschscholtz, 1821); 48, Yagra fonscolombe (Godart, [1824]). Scale bars: 1 cm.

Figures 49–51. Wing scales: 49, piliform scales on the hindwing base of Imara pallasia (Eschscholtz, 1821); 50, oblong scales on the hindwing of Yagra fonscolombe (Godart, [1824]); 51, projection on the inner margin of the forewing with oblong scales of Synpalamides amycus (Cramer [1779]) comb. nov. Scale bars: 1 cm.

© 2014 The Linnean Society of London, Zoological Journal of the Linnean Society, 2014, 170, 362–399 PHYLOGENY OF NEOTROPICAL CASTNIINAE 375

9. Forewing veins R3 and R4: (0) stalked (Fig. 48); Sub-apical spot-band Post-discal band Discal band (1) forked (Fig. 47). 10. Ramification of R system on forewing: (0) rami-

fication between R2 and R3 (Fig. 46); (1) ramifi-

cation between R3 and R4 (Fig. 48).

11. Ramification of M2 and M3, and position related

to CuA1 on forewing: (0) M2 and M3 forked,

origin near CuA1 (Fig. 46); (1) M2 and M3

stalked, origin distal to CuA1 (Fig. 48). 12. Sexual dimorphism on wing pattern: (0) males and females with different pattern and colour; (1) males and females with same pattern and colour. 13. Subapical band on forewing: (0) present (Fig. 15); (1) absent. 14. Extension of subapical band on forewing: (0) Oblique band reaching M3 (Fig. 19); (1) reaching M1; (2) reach- 52

ing M2 (Fig. 27); (3) reaching CuA1. 15. Subapical band on forewing: (0) oblique Figure 52. Diagram with the colour bands used to code the characters of the wing pattern. Scale bar: 1 cm. (Fig. 17); (1) semicircular (Fig. 12); (2) sinuous (Fig. 29); (3) triangular (Fig. 34). 16. Post-discal band on forewing: (0) present (Fig. 25); (1) absent. above the coecum. Then we measured if: (i) the

17. Extension of postdiscal band: (0) reaching M1 distal part of the aedeagus crossed the two hori-

(Fig. 25); (1) reaching CuA1 (Fig. 26); (2) reach- zontal lines (deeply curved); (ii) the distal part of

ing M3 (Fig. 28); (3) Reaching CuA2 (Fig. 29); (4) the aedeagus is aligned with the dorsal horizon-

reaching M2 (Fig. 27); (5) reaching 2A (Fig. 31); tal line (moderately curved); or (iii) the distal (6) reaching CuP (Fig. 2). part did not cross any of the horizontal lines 18. Discal band: (0) present (Fig. 5); (1) absent. (slightly curved).] 19. Extension of discal band: (0) reaching 2A 25. Aedeagus: (0) contorted (Fig. 65); (1) straight

(Fig. 5); (1) reaching M3 (Fig. 12); (2) reaching (Fig. 71).

M2 (Fig. 30); (3) reaching CuA2 (Fig. 33); (4) 26. Contortion of aedeagus: (0) incomplete (Fig. 67);

reaching CuP (Fig. 32); (5) reaching CuA1 (1) complete (Fig. 65). (Fig. 35). [Measurement based on the less sclerotized 20. Oblique band on forewing: (0) present (Fig. 18); region of the aedeagus. If the less sclerotized (1) absent. portion has a twist of 360° along the aedeagus 21. Oblique band on forewing: (0) parallel with body we considered this a complete contortion, and if axis (Fig. 18); (1) oblique (Fig. 22). the twist was less than 360° we considered the twist as incomplete.] 27. Length of aedeagus: (0) more than twice length Legs of coecum (Figs 57, 58); (1) less than twice 22. Tibiae: (0) nude; (1) bearing spines. length of coecum (Fig. 55); (2) twice length of coecum (Fig. 72). 28. Subterminal portion of aedeagus: (0) not Male genitalia enlarged (Fig. 71); (1) enlarged (Fig. 70). 23. Aedeagus: (0) straight (Fig. 53); (1) curved 29. Contour of subterminal portion of aedeagus: (0) (Figs 54–58). smooth, regular (Fig. 69); (1) indented, irregular 24. Curvature of aedeagus: (0) deeply curved (Fig. 70). (Figs 57–58); (1) moderately curved (Fig. 56); (2) 30. Terminal portion of aedeagus: (0) without slightly curved (Figs 54, 55). carina; (1) carinate (Fig. 59). [Measured according to the angle of the distal 31. Aedeagus: (0) smooth; (1) bearing a terminal portion of the aedeagus in relation to the projection of wall (Figs 60–63). coecum. With the coecum horizontal, we traced 32. Terminal projection of aedeagus: (0) lateral two horizontal lines: one along the ventral (Figs 61–63); (1) ventral (Fig. 60). margin of the coecum and the other on the 33. Latero-terminal projection of aedeagus: (0) anteriormost part of the aedeagus, immediately straight (Fig. 60); (1) curved (Fig. 61).

© 2014 The Linnean Society of London, Zoological Journal of the Linnean Society, 2014, 170, 362–399 376 S. S. MORAES AND M. DUARTE

23 (1)

23 (0), 41 (1)

5343 (2) 54

40 (0)

24 (1)

24 (2), 27 (1)

41 (0)

55 56

27 (0)

37 (1)

24 (0)

42 (0) 57 58

Figures 53–58. Aedeagus and associated characters, lateral view: 53, Morpheis clenchi Donahue, 1980; 54, Synemon parthenoides R. Felder, 1874; 55, Ceretes thais (Drury, 1782); 56, Castnius pelasgus (Cramer, [1779]); 57, Synpalamides orestes (Walker, 1854); 58, Prometheus heliconioides (Herrich-Schäffer, [1853]) comb. nov. Scale bar: 1 mm.

© 2014 The Linnean Society of London, Zoological Journal of the Linnean Society, 2014, 170, 362–399 PHYLOGENY OF NEOTROPICAL CASTNIINAE 377

30 (1)

31 (1), 32 (1)

59 60

31 (1), 32 (0)

33 (1)

61 62

33 (0)

38 (1)

63 64

Figures 59–64. Posterior end of aedeagus and associated characters, lateral view: 59, Imara pallasia (Eschscholtz, 1821); 60, Prometheus mimica (R. Felder, 1874) comb. nov.; 61, Synpalamides hegemon (Kollar, 1839) comb. nov.; 62, Corybantes mathani (Oberthür, 1881); 63, Synpalamides phalaris (Fabricius, 1793); 64, Telchin licus (Drury, 1773). Scale bars: 1 mm.

© 2014 The Linnean Society of London, Zoological Journal of the Linnean Society, 2014, 170, 362–399 378 S. S. MORAES AND M. DUARTE

25 (0) 27 (2)

34 (1) 26 (1)

43 (0)

43 (1) 65 66

35 (2)

26 (0)

44 (0)

67 68

29 (0) 29 (1)

44 (1)

28 (1)

69 70 39 (2)

38 (1) 27 (2) 25 (1)

28 (0)

39 (1)

71 72

Figures 65–72. Aedeagus and associated characters, lateral view: 65, Imara pallasia (Eschscholtz, 1821); 66, Eupalamides cyparissias (Fabricius, 1776); 67, Telchin evalthe (Fabricius, 1775) comb. nov.; 68, Yagra fonscolombe (Godart, [1824]); 69, Corybantes pylades (Stoll, 1782); 70, Telchin atymnius (Dalman, 1824); 71, Synpalamides ctesiphon (Hübner, [1820]) comb. nov. 72, Telchin syphax (Fabricius, 1775). Scale bars: 1 mm.

34. Terminal projection of aedeagus: (0) nude; (1) 36. Proximal portion of vesica: (0) nude; (1) bearing bearing spines (Fig. 66). cornuti consisting of microspicules. 35. Aedeagus: (0) spineless; (2) with spines 37. Middle region of aedeagus: (0) nude; implanted on a sclerotized plate in subterminal (1) bearing membranous pouch portion (Fig. 68). (Fig. 58).

© 2014 The Linnean Society of London, Zoological Journal of the Linnean Society, 2014, 170, 362–399 PHYLOGENY OF NEOTROPICAL CASTNIINAE 379

38. Middle region of vesica: (0) nude; (1) bearing 59. Vinculum: (0) projected (Fig. 81); (1) sclerotized plate (Figs 64, 72). inconspicuous. 39. Terminal region of vesica: (0) nude; (1) spines 60. Contour of vinculum: (0) triangular (Fig. 85); arranged on sclerotized plate (Fig. 72); (2) spines (1) elliptical (Fig. 82); (2) rectangular (Fig. 84); directly implanted in membrane (Fig. 69). (3) semicircular (Fig. 83). 40. Vesica: (0) uniformly ornamented with micro- 61. Vinculum: (0) wide (Fig. 86); (1) narrow (Fig. 83). spicules (Fig. 55); (1) nude. 62. Base of uncus: (0) smooth; (1) bearing projec- 41. Coecum: (0) present (Figs 54–58); (1) absent tions (Figs 81, 95). (Fig. 53). 63. Projections of uncus: (0) acute (Fig. 87); (1) trun- 42. Ejaculatory duct: (0) spiralled (Fig. 58); (1) cated (Fig. 88). straight. 64. Apex of uncus: (0) simple (Fig. 92); (1) bifurcate 43. Length of coecum: (0) medium (Fig. 65); (1) long (Fig. 91). (Fig. 66); (2) short (Fig. 54). 65. Bifurcated uncus: (0) arms parallel (Fig. 94); [Measured by dividing the entire length of the (1) arms divergent (Fig. 89). ejaculatory bulb by the length of the foramen 66. Simple uncus: (0) abruptly curved (Fig. 84); of the ejaculatory duct, and using three ratios: (1) gradually curved (Fig. 82). (i) bulb/foramen > 2 (long); (ii) bulb/foramen 67. Length of simple uncus: (0) not exceeding < 2 and > 1 (medium); (iii) bulb/foramen < 1 gnathos; (1) exceeding gnathos, but not reaching (short).] posterior margin of valva (Fig. 85); (2) reaching 44. Vesica: (0) one lobe (Fig. 68); (1) bilobed posterior margin of valva (Fig. 82). (Fig. 70). 68. Apex of curved uncus: (0) triangular (Fig. 90); 45. Valva: (0) sacculus distinct (Figs 73–80); (1) (1) quadrate (Fig. 93). sacculus indistinct. 69. Saccus: (0) with two anterior projections 46. Sacculus orientation: (0) toward proximal region (Fig. 106); (1) with one anterior projection. of valva (Fig. 75); (1) toward posterior portion of 70. Anterior projection of saccus in lateral view: valva (Fig. 78). (0) wider than or equal to width of aedeagus 47. Sacculus: (0) fold (Fig. 76); (1) projection (Fig. 82); (1) narrower than width of aedeagus (Fig. 77). (Fig. 85). 48. Shape of sacculus: (0) subtriangular (Fig. 75); 71. Anterior projection of saccus in lateral view: (1) quadrate (Fig. 76); (2) digitiform (Fig. 78); (0) longer than ejaculatory bulb (Fig. 84); (1) (3) rectangular (Fig. 77); (4) rounded (Fig. 74). shorter than ejaculatory bulb (Fig. 86). 49. Sacculus fold-like: (0) complete fold (Fig. 76); (1) 72. Ventral margin of anterior projection of saccus: incomplete fold, forming digitiform projection (0) concave (Fig. 81); (1) straight (Fig. 86). (Fig. 80); (2) incomplete fold, forming falciform 73. Posterior region of saccus: (0) with projection projection (Fig. 79). (Fig. 105); (1) without projection (Fig. 107). 50. Valva: (0) harpe indistinct; (1) harpe distinct, 74. Gnathos: (0) absent; (1) present. projection digitiform; (2) harpe distinct, fold-like. 75. Gnathos: (0) consisting of anterior and posterior 51. Valvula: (0) indistinct; (1) distinct as a mem- arm (Fig. 103); (1) consisting of a single sclerite. brane portion (Fig. 77). 76. Posterior arms of gnathos: (0) free (Fig. 102); (1) 52. Region of valva corresponding to cuculus and fused (Fig. 104). valvula (posterior margin): (0) rounded (Fig. 74); 77. Fusion of posterior arms of gnathos: (0) a (1) quadrate (Fig. 78); (2) triangular (Fig. 80); sclerotized plate (Fig. 104); (1) fused by (3) rectangular; (4) clavate. membrane. 53. Ventral margin of valva: (0) horizontal (Fig. 75); 78. Posterior arm of gnathos: (0) lacking anterior (1) oblique (Fig. 76); (2) concave (Fig. 75); (3) extension (Fig. 101); (1) with anterior extension recessed (Fig. 78). (Fig. 98). 54. Recess between sacculus and cuculus: (0) com- 79. Extension of posterior arm of gnathos: (0) not plete; (1) membranous. exceeding anterior limit of anterior arm of 55. Costa: (0) ventrally bent in anterior portion gnathos (Fig. 96); (1) exceeding anterior limit of (Fig. 79); (1) straight (Fig. 78). anterior arm of gnathos (Fig. 99); (2) Vestigial 56. Corona: (0) absent; (1) dentiform projection near (Fig. 100). external margin (Fig. 73). 80. Posterior arm of gnathos: (0) with membranous 57. Corona: (0) absent; (1) a rough stripe following median portion; (1) uniformly sclerotized. contour of posterior margin of valva (Fig. 75). 81. Orientation of posterior arm related to anterior 58. Valva and vinculum: (0) connected by membrane arm: (0) rectilinear (Fig. 103); (1) directed (Fig. 83); (1) fused in saccus region (Fig. 84). toward anal tube (Fig. 102).

© 2014 The Linnean Society of London, Zoological Journal of the Linnean Society, 2014, 170, 362–399 380 S. S. MORAES AND M. DUARTE

56 (1)

52 (0) 48 (4) 53 (2) 73 74

13 (0) 57 (1)

47 (0), 48 (1), 49 (0) 45 (0), 46 (0), 48 (0) 53 (1) 53 (0) 75 76

52 (1) 55 (1) 51 (1)

47 (1), 48 (3) 53 (3) 46 (1)

48 (2)

77 78

52 (2)

55 (0)

49 (2) 49 (1)

79 80

Figures 73–80. Valva and associated characters, internal view: 73, Yagra fonscolombe (Godart, [1824]); 74, Athis flavimaculata (Miller, 1972); 75, Imara satrapes (Kollar, 1839); 76, Synpalamides phalaris (Fabricius, 1793); 77, Castnius pelasgus (Cramer, [1779]); 78, Telchin evalthe (Fabricius, 1775) comb. nov. 79, Synpalamides ctesiphon (Hübner, [1820]) comb. nov.; 80, Eupalamides cyparissias (Fabricius, 1776). Scale bars: 1 mm.

82. Posterior and anterior arms of gnathos: (0) fused 84. Shape of gnathos with arms fused through through entire length (Fig. 101); fused through median portion: (0) oblique ‘H’ (Fig. 96); median portion (Fig. 96). (1) oblique ‘R’ (Fig. 99); (2) oblique ‘M’ 83. Shape of gnathos with arms fused through (Fig. 97). entire length: (0) quadrate (Fig. 101); (1) rectan- 85. Juxta: (0) ‘U’-shaped (Fig. 109); (1) ‘V’-shaped gular (Fig. 100). (Fig. 110).

© 2014 The Linnean Society of London, Zoological Journal of the Linnean Society, 2014, 170, 362–399 PHYLOGENY OF NEOTROPICAL CASTNIINAE 381

66 (1), 67 (2)

62 (1)

59 (0)

60 (1)

70 (0)

72 (0) 81 82

66 (0)

58(0) 60 (2) 60 (3), 61 (1)

71(0) 58 (1) 83 84 67 (1)

60 (0) 61 (0)

71 (1)

70 (1) 85 72(1) 86

Figures 81–86. Genital capsule and associated characters, lateral view: 81, Yagra dalmannii (Gray, 1838); 82, Imara therapon (Kollar, 1839); 83, Eupalamides cyparissias (Fabricius, 1776); 84, Telchin cacica (Herrich-Schäffer, [1854]) comb. nov.; 85, Athis inca (Walker, 1854); 86, Ircila hecate (Herrich-Schäffer, [1854]). Scale bar: 1 mm.

86. Juxta: (0) totally membranous; (1) membranous, 89. Bulla seminalis: (0) ornamented; (1) nude. with some sclerotization in lateral and ventral 90. Sclerotized plates on bulla seminalis: (0) absent portions; (2) strongly sclerotized. (Fig. 131); (1) present (Figs 112, 128, 134). 87. Posterior margin of saccus in ventral view: (0) 91. Sclerotized plates on bulla seminalis: (0) ‘V’-shaped (Fig. 106); (1) rectilinear (Fig. 107); arranged randomly (Fig. 134); (1) arranged in (2) sinuous (Fig. 105); (3) ‘U’-shaped (Fig. 108). rays (Fig. 128). 92. Micropapillae on inner surface of bulla seminalis: (0) absent (Fig. 123); (1) present Female genitalia (Figs 121, 124–127). 88. Bulla seminalis: (0) globular (Fig. 112); (1) 93. Bursa copulatrix: (0) with accessory sac; (1) longer than wide (Fig. 111). without accessory sac.

© 2014 The Linnean Society of London, Zoological Journal of the Linnean Society, 2014, 170, 362–399 382 S. S. MORAES AND M. DUARTE

63 (1) 65 (1) 63 (0)

87 88 89

64 (0) 64 (1) 68 (0)

90 91 92

65 (0) 62 (1) 68 (1)

93 94 95

Figures 87–95. Tegumen, uncus, and associated characters, dorsal view: 87, Yagra dalmannii (Gray, 1838); 88, Synpalamides ctesiphon (Hübner, [1820]) comb. nov.; 89, Prometheus heliconioides (Herrich-Schäffer, [1853]) comb. nov.; 90, Telchin atymnius (Dalman, 1824); 91, Castnia invaria Walker, 1854; 92, Imara satrapes (Kollar, 1839); 93, Telchin evalthe (Fabricius, 1775) comb. nov.; 94, Castnius pelasgus (Cramer, [1779]); 95, Synpalamides hegemon (Kollar, 1839) comb. nov. Scale bars: 1 mm.

94. Bursa copulatrix: (0) with signa (Fig. 111); (1) 98. Ductus bursae: (0) ornamented with sclerotized without signa (Fig. 116). plates (Fig. 119); (1) nude. 95. Signa: (0) developed (Fig. 111); (1) vestigial 99. Ductus bursae: (0) entirely smooth; (1) with (Fig. 113). spiral portion (Figs 117–118). 96. Signa: (0) single plate; (1) paired plates. 100. Number of loops of ductus bursae: (0) 1; (1) 2; 97. Signa: (0) simple plate; (1) two circles. (2) 3; (3) 4; (4) 5; (5) 8; (6) 1/2.

© 2014 The Linnean Society of London, Zoological Journal of the Linnean Society, 2014, 170, 362–399 PHYLOGENY OF NEOTROPICAL CASTNIINAE 383

84 (2) 82 (1) 84 (0)

79 (0) 78 (1) 96 97 98

84 (1) 83 (1) 83 (0) 82 (0)

79 (2)

79 (1) 78 (0) 99 100 101 75 (0) 76 (0)

81 (0) 81 (1) 76 (1), 77 (0) 102 103 104

Figures 96–104. Gnathos and associated characters. 96–101, lateral view: 96, Imara therapon (Kollar, 1839) comb. nov.; 97, Geyeria galinthias (Hopffer, 1856) comb. nov.; 98, Yagra fonscolombe (Godart, [1824]); 99, Telchin licus (Drury, 1773); 100, Corybantes pylades (Stoll, 1782); 101, Prometheus cochrus (Fabricius, 1787). 102–104, posterior view: 102, Telchin syphax (Fabricius, 1775); 103, Synpalamides phalaris (Fabricius, 1793); 104, Corybantes pylades (Stoll, 1872). Scale bars: 1 mm.

101. Posterior portion of antrum: (0) smooth; (1) with (Fig. 132); (5) rounded (Fig. 128); (6) rectangular sclerotized plate (Fig. 122). (Fig. 135). 102. Spiral portion of ductus bursae: (0) with 110. Lateral region of eighth segment: (0) with sclerotized plate (Fig. 120); (1) without sensilla (Fig. 116); (1) nude. sclerotized plate. 111. Antrum: (0) slender, longer than wide (Fig. 143); 103. Female eighth tergum: (0) with central band (1) short (Fig. 139). weakly sclerotized (Fig. 111); (1) uniformly 112. Antrum: (0) membranous (Fig. 138); (1) sclerotized (Fig. 115). sclerotized (Fig. 141). 104. Female eighth tergum: (0) with cleft; (1) smooth. 113. Antrum: (0) bloated (Fig. 136); (1) slender 105. Female eighth tergum: (0) median region (Fig. 142). strongly sclerotized; (1) median region uniformly 114. Lamella antevaginalis: (0) absent; (1) present. or weakly sclerotized. 115. Lamella antevaginalis: (0) sclerotized (Fig. 136); 106. Female eighth tergum: (0) with fold on posterior (1) membranous (Fig. 140). portion (Fig. 113); (1) without fold (Fig. 116). 116. Lamella postvaginalis: (0) sclerotized as flap 107. Sensilla on the eighth tergum: (0) present (Fig. 137); (1) membranous (Fig. 141); (2) vestig- (Figs 114, 135); (1) absent. ial (Fig. 140). 108. Posterior margin of eighth tergum: (0) entire 117. Shape of lamella postvaginalis as flap: (0) (Fig. 113); (1) indented (Fig. 115). rounded (Fig. 142); (1) indented (Fig. 143); 109. Shape of eighth tergum: (0) triangular (2) concave (Fig. 136); (3) triangular (Fig. 137); (Fig. 133); (1) quadrate (Fig. 134); (2) elliptic (4) quadrate. (Fig. 130); (3) triangular with lateral margin 118. Vestigial lamella postvaginalis: (0) as sclerotized sinuous (Fig. 129); (4) triangular elongate quadrate area (Fig. 140); (1) as rectangular

© 2014 The Linnean Society of London, Zoological Journal of the Linnean Society, 2014, 170, 362–399 384 S. S. MORAES AND M. DUARTE

73 (0) 87 (0) 73 (1) 87 (1) 87 (2)

69 (0)

105 106 107

87 (3)

85 (1) 85 (0)

108 109 110

Figures 105–110. Saccus, juxta, and associated characters. 105–108, saccus, ventral view: 105, Corybantes pylades (Stoll, 1872); 106, Athis inca (Walker, 1854); 107, Athis hechtiae (Dyar, 1910); 108, Telchin syphax (Fabricius, 1775). 109–110, juxta, posterior view: 109, Imara pallasia (Eschscholtz, 1821); 110, Eupalamides cyparissias (Fabricius, 1776). Scale bars: 1 mm.

sclerotized area; (2) as two parallel sclerotized and will better represent the morphological diversity bars. of Castniidae. Moreover, the two implied weighting 119. Length of lamella postvaginalis: (0) not extend- analyses showed only minor differences resulting ing beyond lamella antevaginalis (Fig. 138); from the inclusion or exclusion of T. metallica. (1) slightly extended, shorter than lamella Species of Tascina show some plesiomorphic mor- antevaginalis (Fig. 142); (2) extended, longer phological characters, including aedeagus not curved, than lamella antevaginalis (Fig. 139). coecum absent, and saccus undivided, all of which 120. Ostium: (0) fused with seventh sternite; (1) free. support a position of Tascininae outside a clade comprising all other Castniidae. Some interesting PHYLOGENETIC ANALYSIS attributes mentioned by Holloway (1998) seem to be The unweighted analysis including T. metallica derived features for this subfamily, such as the mor- resulted in 6700 most parsimonious trees, of 393 steps phology of the valva, gnathos, and vinculum; however, in length (consensus in Fig. 37A). The unweighted we were unable to assess these morphological fea- analysis excluding T. metallica resulted in 216 most tures using only photographs. parsimonious trees, of 388 steps in length (consensus The curved aedeagus (23: 1), saccus with two ante- in Fig. 37B). rior projections (69: 0), ejaculatory bulb with coecum For the two analyses using implied weighting we (41: 0), and projected vinculum (59: 0) supported found only one tree with values of k = 20 and above, the monophyly of Castniinae. The monophyly of although the topologies with and without T. metallica Neotropical species was supported by the presence of showed some minor differences (Figs 38, 39). an areole on the forewing, between R2 and the stem

The discussion is based on the topology obtained of R3 +R4 +R5 (8: 0), ejaculatory duct spiraled (42: 0), from the implied weighting analysis including sacculus distinct (45: 0), and ductus bursae with a T. metallica (Fig. 39), because we are of the opinion spiral portion (99: 1). that although it was not possible to code all charac- Three genera (Athis, Castnia, and Geyeria ters for this taxon, the analysis will be more inclusive Buchecker, [1880]) appeared as non-monophyletic

© 2014 The Linnean Society of London, Zoological Journal of the Linnean Society, 2014, 170, 362–399 PHYLOGENY OF NEOTROPICAL CASTNIINAE 385

Figures 111–116. Female genitalia and associated characters, dorsal view: 111, Imara acraeoides (Guérin-Ménéville, [1832]) comb. nov.; 112, Synpalamides amycus (Cramer [1779]) comb. nov.; 113, Castnius marcus (Jordan, 1908); 114, Castnia invaria Walker, 1854; 115, Prometheus cochrus (Fabricius, 1787); 116, Ceretes marcelserres (Godart, [1824]). Scale bars: 1 mm. assemblages; however, in the analysis using implied logical characters with other genera, supporting the weighting and without T. metallica, Athis was recov- establishment of synonymies. There is additional ered as a monophyletic genus. support to combine other non-monotypic genera. Of the 11 monotypic genera analysed, Riechia Oiticica, 1955, Spilopastes Houlbert, 1918, Gazera Herrich-Schäffer, [1853], Prometheus Hübner, [1824], MIMETIC RELATIONSHIPS AND WING Feschaeria Oiticica, 1955, Divana Miller, 1982, PATTERN EVOLUTION Frostetola Oiticica, 1955, Xanthocastnia Houlbert, Traditionally, the Neotropical castniids are included in 1918, and Paysandisia Houlbert, 1918 share morpho- two tribes: Castniini and Gazerini. This arrangement

© 2014 The Linnean Society of London, Zoological Journal of the Linnean Society, 2014, 170, 362–399 386 S. S. MORAES AND M. DUARTE

100 µm 118 100 µm 117

120 30 µm 119 30 µm

122 121 200 µm 100 µm

Figures 117–122. Structures of the female genitalia: 117, Prometheus heliconioides (Herrich-Schäffer, [1853]) comb. nov., spiral portion of ductus bursae; 118, Telchin licus (Drury, 1773), spiral portion of ductus bursae, with the covering membrane removed to show the internal ornamentation; 119, Telchin licus (Drury, 1773), detail of one spiral and the microsclerotized plates; 120, Telchin licus (Drury, 1773), detail of the sclerotized plate on the posterior end of the spiral portion of ductus bursae; 121, Imara pallasia (Eschscholtz, 1821), inner surface of the bulla seminalis covered with micropapillae; 122, Yagra fonscolombe (Godart, [1824]), sclerotized plate on the anterior portion of antrum. was proposed by Westwood (1877) based on some working on Castniidae (Strand, 1913; Lamas, 1995; species (Gazerini) that are involved in mimetic com- Miller, 1995) have followed this classification; however, plexes with butterflies, especially Ithomiinae and other species in Castniini may also be involved in Heliconiinae (Nymphalidae). Subsequent researchers mimetic complexes. Indeed, the mimetic relationship

© 2014 The Linnean Society of London, Zoological Journal of the Linnean Society, 2014, 170, 362–399 PHYLOGENY OF NEOTROPICAL CASTNIINAE 387

Figures 123–127. Detail of the inner surface of bulla seminalis: 123, Castnia invaria Walker, 1854, without micropapillae; 124, Prometheus cochrus (Fabricius, 1787), small and flattened micropapillae present in low density; 125, Yagra fonscolombe (Godart, [1824]), micropapillae present in moderate density; 126, Prometheus heliconioides (Herrich-Schäffer, [1853]) comb. nov., cylindrical micropapillae present in high density; 127, Prometheus heliconioides (Herrich-Schäffer, [1853]) comb. nov., detail of the micropapillae. with butterflies is also a feature present in Tascininae widespread mimetic pattern evolved several times in and Synemoniini (some species of synemonids Castniidae, and that a strong selection for mimicry have a flight behaviour very similar to some may have led to highly diverse bright colour patterns Hesperiidae), but not as diverse as is found in in Castniini. Neotropical species. Considering the preferences of members of In our analysis, Castniini and Gazerini were not Castniidae for food plants, mostly bromeliads (e.g. recovered as monophyletic groups, indicating that the Geyeria and Synpalamides), orchids (e.g. Riechia),

© 2014 The Linnean Society of London, Zoological Journal of the Linnean Society, 2014, 170, 362–399 388 S. S. MORAES AND M. DUARTE

109 (5) 109 (2) 109 (3)

90 (0) 91 (1)

128 129 130 131

109 (4) 109 (0)

109 (1) 107 (1) 109 (6)

91 (0)

132 133 134 135

Figures 128–135. Female genitalia and associated characters, dorsal view: 128, Synpalamides amycus (Cramer [1779]) comb. nov.; 129, Yagra fonscolombe (Godart, [1824]); 130, Athis inca (Walker, 1854); 131, Athis palatinus (Cramer, 1777); 132, Telchin syphax (Fabricius, 1775); 133, Imara therapon (Kollar, 1839) comb. nov.; 134, Synpalamides fabricii (Swainson, 1823) comb. nov.; 135, Castnia invaria Walker, 1854. Scale bar: 1 mm.

© 2014 The Linnean Society of London, Zoological Journal of the Linnean Society, 2014, 170, 362–399 PHYLOGENY OF NEOTROPICAL CASTNIINAE 389

117 (2) 116 (0) 119 (2)

115 (0)

117 (3) 119 (0)

113 (0) 112 (0)

111 (1)

136 137 138 139

117(1)

117 (1) 116 (2), 118 (0) 119 (1) 111 (0) 116 (1) 115 (1) 113 (1)

112 (1)

140 141 142 143

Figures 136–143. Female genitalia and associated characters, ventral view: 136, Telchin atymnius (Dalman, 1824); 137, Synpalamides amycus (Cramer [1779]) comb. nov.; 138, Geyeria decussata (Godart, [1824]); 139, Athis superba (Strand, 1913) incertae sedis; 140, Corybantes pylades (Stoll, 1872); 141, Yagra dalmannii (Gray, 1838); 142, Imara satrapes (Kollar, 1839); 143, Synpalamides hegemon (Kollar, 1839) comb. nov. Scale bar: 1 mm. and palm trees (e.g. Eupalamides and Paysandisia), we can infer that the mimetic castniids are involved and that these plants have no chemical properties in Batesian mimicry. that could potentially be sequestered as defensive In the Neotropical castniids we find species that chemicals or used to synthesize defensive compounds, resemble different groups of butterflies, such as

© 2014 The Linnean Society of London, Zoological Journal of the Linnean Society, 2014, 170, 362–399 390 S. S. MORAES AND M. DUARTE

Nymphalidae: Acraeini (Riechia acraeoides resem- (Houlbert, 1917), Athis flavimaculata (Miller, 1972), bles some Acraea species), Heliconiini (Prometheus Athis axaqua González & Fernández, 1992, Athis zagraea, Prometheus mimica, and Prometheus analibiae (Espinoza & González, 2005) (Imara) ecuadoria resemble some Melinaea and Heliconius comb. nov., Athis pinchoni Pierre & Pierre-Baltus species), (Prometheus heliconioides resem- 2003, and Athis pirrelloi Vinciguerra, 2011. bles Methona species); Papilionidae (Prometheus Athis superba (Strand, 1912) incertae sedis. cochrus resembles Parides ascanius, and Riechia pallasia resembles some Mimoides species), Comments Lycaenidae (Oiticicastnia ericyna resembles Eumaeus This is the most speciose genus in the family. The species), and Pieridae (Haemonides cronis resembles monophyly of the genus is highly questionable, some Dismorphia species). Only a few species of making this a priority group for future revisionary Castniinae have been reported as flying among the studies. Although Athis appeared as a monophyletic mimicked species, such as Riechia acraeoides flying group (in part) in one of the analyses (Fig. 38), this among Acraeini (S. Moraes, unpubl. data) and Riechia condition was corroborated only by homoplastic char- satrapes (Kollar, 1839) flying among Heliconiini acters (70: 1, 72: 0). (R. Oliveira e Silva, pers. comm.). In describing Imara analibiae (Fig. 22), Espinoza & At least two lineages in tropical Castiniidae have González (2005) suggested that this species might be independently evolved a Batesian mimicry pattern. more closely related to Athis than to the nominative The species belonging to the genus Prometheus genus. Indeed, the species included in Athis share have evolved a wing pattern mimicking Heliconius with Imara several morphological traits, especially butterflies, and the species of the genus Riechia those of the male genitalia, including the shape and have evolved a pattern mimicking Acraeinii butter- length of the uncus, gnathos, and aedeagus, and some flies. Additionally, Oiticicastnia erycina (Westwood, elements of the wing pattern. 1881) has evolved a wing pattern similar to some Jorge González (pers. comm.) suggested that Athis Eumaeus species (Lycaenidae) that feed on may represent at least four lineages: (i) a Central Cycadaceae (Beccaloni et al., 2008), which has toxic American group, including A. inca, A. clitarcha, metabolites. and A. flavimaculata; (ii) a Caribbean group, includ- Other castniids also have a wing pattern that ing A. pinchoni, A. palatinus, A. axaqua, and A. resembles butterflies, although the potential models fuscorubra; (iii) a south-east American group, are known to be palatable. Some Telchin Hübner, including A. therapon (here transferred to the genus [1825] species, notably Telchin diva (Butler, 1870), Imara) and A. amalthaea; and (iv) an Amazonian have a wing pattern similar to Agrias; and species of group, including A. ahala, A. rutila, A. hechtiae, Haemonides have a wing pattern mimicking species A. bogota, and A. thysanete. Although this hypothesis of Pieridae and Papilionidae. could not be tested because of a lack of material, it Nevertheless, for the majority of Neotropical seems reasonable that Athis can be divided into more castniids no food plants have been recorded, and than one group. Indeed, the Caribbean group, repre- because of the low population numbers there is sented in this analysis by A. inca and A. flavimaculata, little information about the palatability spectra is supported by the rounded sacculus (48: 4) and (Miller, 1986), indicating the need for more studies triangular vinculum (60: 0). focusing on the food-plant preferences and mimetic For A. superba, we sampled only females. The relationships among Castniini and other groups of general morphology of the female genitalia, such as Lepidoptera. the extremely long ductus bursae, shape of the lamella antevaginalis and postvaginalis, and the eighth tergum, is quite different from other Athis GENUS ARRANGEMENT FOR CASTNIINI species. In our analysis, A. superba was more closely ATHIS HÜBNER, [1819] (FIGS 20–22) related to Yagra than to the nominative genus. Pri- Type species marily because we did not include males of this Papilio palatinus Cramer, 1777 species in our analysis, we prefer to designate Athis superba as incertae sedis and retain this species in Included species the nominative genus. Athis palatinus (Cramer, 1777), Athis inca (Walker, The recently described A. pirrelloi somewhat 1854), Athis rutila (R. Felder, 1874), Athis clitarcha resembles A. palatinus (Fig. 21); however, no morpho- (Westwood, 1877), Athis amalthaea (Druce, 1890), logical attributes other than colour were provided Athis ahala (Druce, 1896), Athis hechtiae (Dyar, 1910), in the original description, an oversight that has Athis delecta (Schaus, 1911), Athis bogota (Strand, been continually repeated for members of the 1912), Athis thysanete (Dyar, 1912), Athis fuscorubra Castniini.

© 2014 The Linnean Society of London, Zoological Journal of the Linnean Society, 2014, 170, 362–399 PHYLOGENY OF NEOTROPICAL CASTNIINAE 391

CASTNIA FABRICIUS, 1807 (FIG.4) phism in the wing and colour pattern (12: 0). Also the Type species cornuti, consisting of spines covering the entire vesica Papilio icarus Cramer, [1775] (40: 0), is another synapomorphic character. This genus shares some plesiomorphic attributes with Included species the Australian species, particularly the curvature of Castnia invaria Walker, 1854, Castnia juturna the aedeagus. Hopffer, 1856, Castnia lecerfi Dalla-Torre, 1913, Castnia estherae Miller, 1976, and Castnia fernandezi CORYBANTES HÜBNER, [1819] (FIG.8) González, 1992. Castnia eudesmia Gray, 1838 incertae sedis. Type species Papilio pylades Stoll, 1782 Comments The two species included in our analysis represent Included species two morphologically distinct lineages. Castnia Corybantes pylades (Stoll, 1782), Corybantes eudesmia is more closely related to the species veraguana (Westwood, 1877), Corybantes mathani included in Ceretes, sharing with this genus morpho- (Oberthür, 1881), and Corybantes dolopia (Druce, logical attributes such as the general shape of the 1907). uncus and valva, as well as characters of the wing venation. Some characters of C. eudesmia are Comments plesiomorphic, also related to Corybantes Hübner, The two species included in our analysis share some [1819]. morphological traits concerning the arrangement of Castnia invaria has morphological traits similar to the cornuti (39: 2), which supports the monophyly of Telchin, especially the morphology of the gnathos. For the genus. Certain homoplastic characters such as the this reason the identity of the genus Castnia needs to incomplete contortion of the aedeagus (26: 0), mor- be validated through a revisionary study including all phology of the saccus (73: 1) and (87: 2), and morphol- the species. ogy of the gnathos (79: 2) and (81: 0) are diagnostic characters.

CASTNIUS HÜBNER, [1819] (FIGS 5, 6) Type species EUPALAMIDES HÜBNER, [1819] (FIG.7) Papilio pelasgus Cramer, [1779] Type species Papilio cyparissias Fabricius, 1776 Included species Castnius pelasgus (Cramer, [1779]), Castnius marcus Included species (Jordan, 1908), and C. asteropoides Porion, 2004. Eupalamides cyparissias (Fabricius, 1776), Eupala- mides geron (Kollar, 1839), Eupalamides preissi Comments (Staudinger, 1899), Eupalamides guyanensis Two synapomorphic characters, the sacculus as an (Houlbert, 1917), and Eupalamides boliviensis anterior projection (47: 1) and rectangular (48: 3), (Houlbert, 1917). plus the homoplastic characters related to wing vena- tion and morphology of the aedeagus and valva, Comments support the arrangement of this genus. We must note, Only E. cyparissias (Fig. 7) was included in our analy- however, that C. asteropoides was not included in the sis. This species shares with the genus Castnius char- analysis. acters related to wing venation, aedeagus, and saccus. Several homoplastic characters define the species; CERETES SCHAUFUSS, 1870 (FIG.1) however, because only one species of the genus was Type species examined, these characters may also be diagnostic for Papilio thais Drury, 1782 the species, and for this reason they were not included here. We maintain the validity of the genus Included species and its composition as given by Lamas (1995). Ceretes thais (Drury, 1782) and Ceretes marcelserres (Godart, [1824]). GEYERIA BUCHECKER, [1880] (FIGS 28, 29) Comments SPILOPASTES HOULBERT, 1918 SYN. NOV. The species included in this genus are the only Type species Neotropical species to show extensive sexual dimor- Castnia decussata Godart, [1824]

© 2014 The Linnean Society of London, Zoological Journal of the Linnean Society, 2014, 170, 362–399 392 S. S. MORAES AND M. DUARTE

Included species Comments Geyeria decussata (Godart, [1824]), Geyeria strigata This arrangement is supported only by one homoplas- (Walker, 1854) stat. rev., G. galinthias (Hopffer, 1856) tic character of the length of the uncus (67: 2), but the (Spilopastes) comb. nov. general morphology of the male and female genitalia supports this arrangement of genera. Although it was not possible to code some of the common characters Comments because of the difficulty of establishing the primary Synapomorphic characters for the wing pattern homology, or because some states were overlapping, (15: 2), length of uncus (67: 0), morphology of gnathos some traits of the male and female genitalia, such (84: 2), signa (97: 1), and shape of female eighth as the shape of the uncus, the morphology of the abdominal tergite (109: 2) support this arrangement aedeagus and valva, as well as the morphology of the of genera, with the synonymization of Spilopastes bursa, signum, ductus bursae, and the sterigma agree under Geyeria. with the taxonomic attribution. We considered G. strigata, which was synonymized Imara acraeoides (Fig. 23) shares with I. satrapes by Lamas (1995) under G. decussata, to be a valid (Fig. 26) the mimetic wing pattern of Acraeini species because of the distinct wing pattern as well (Nymphalidae), which seems to be plesiomorphic in as characters of the valva and ductus bursae that this lineage. are slightly different from those of G. decussata Imara therapon (Fig. 24) is one of the two species (Fig. 29). The other two species formerly included in previously included in Athis and distributed in south- Geyeria, e.g. Geyeria hubneri (Fig. 15) and Geyeria east America. As suggested by J. M. González (pers. uruguayana (Fig. 2), possess morphological attributes comm.), I. therapon and A. amalthaea may be part that are not related to the nominative genus. of the same group, which means that, similarly to I. therapon, A. amalthaea may be more closely related to Imara than to Athis. HAEMONIDES HÜBNER, [1819] (FIG. 27) Type species Papilio cronis Cramer, [1775] IRCILA HOULBERT, 1918 (FIG. 35) Type species Castnia hecate Herrich-Schäffer, [1854] Included species Haemonides cronis (Cramer, [1775]), Haemonides cronida (Herrich-Schäffer, [1854]), and Haemonides Included species candida (Houlbert, 1917). Ircila hecate (Herrich-Schäffer, [1854])

Comments Comments This enigmatic species, restricted to Cuba and the Although there is support to synonymize this genus Dominican Republic, has some idiosyncratic features, with Riechia and Imara, we consider it as a valid such as a heavily sclerotized plate dorsal to the genus because of some distinct features, such as the anellus (transtila?), as well as the juxta and morphology and sclerotization of the aedeagus, and subscaphium heavily sclerotized, and the posterior the shape of the gnathos. Diagnostic characters for arms of the gnathos fused together, enclosing the anal this genus include the aedeagus heavily sclerotized tube. Moreover, I. hecate shares some common fea- and not twisted, and the white colour in the wing tures, such as the morphology of the gnathos, with pattern. the Telchin group, and plesiomorphic characters, such as the valva morphology, with Ceretes and Corybanthes. Concerning the forewing pattern, this IMARA HOULBERT, 1918 (FIGS 23–26) genus has some patterns similar to G. decussata and RIECHIA OITICICA, 1955 SYN. NOV. the translucent subapical spots that are also present Type species in Athis and Hista species, but these are homoplastic Castnia pallasia Eschscholtz, 1821 characters. The sister-group relationship with a suprageneric clade was considered in our decision to maintain this monotypic genus. Included species Imara pallasia (Eschscholtz, 1821), Imara satrapes (Kollar, 1839), Imara therapon (Kollar, 1839) (Athis) OITICICASTNIA LAMAS, 1995 (FIG. 36) comb. nov., and Imara acraeoides (Guérin-Ménéville, Type species [1832]) (Riechia) comb. nov. Castnia erycina Westwood, 1881

© 2014 The Linnean Society of London, Zoological Journal of the Linnean Society, 2014, 170, 362–399 PHYLOGENY OF NEOTROPICAL CASTNIINAE 393

Included species comb. nov., Prometheus personata (Walker, [1865]) Oiticicastnia erycina (Westwood, 1881). (Zegara) comb. nov., Prometheus zagraea (R. Felder, 1874) (Zegara) comb. nov., Prometheus mimica Comments (R. Felder, 1874) (Tosxampila) comb. nov., Prometheus This monotypic genus has a very distinct wing simulans (Boisduval, [1875]) (Duboisvalia) comb. nov., pattern, resembling those of Eumaeus (Lycaenidae), Prometheus coconia (Westwood, 1877) (Duboisvalia) Lyropterix (Riodinidae), and Diaethria (Nymphalidae). comb. nov., Prometheus ecuadoria (Westwood, Oiticicastnia erycina shares with the genera Castnius 1877) (Duboisvalia) comb. nov., Prometheus annae and Eupalamides characters of the uncus, whereas (Bierdemann, 1935) (Tosxampila) comb. nov., and the morphology of the gnathos and sacculus is quite Prometheus polymorpha (Miller, 2008) (Zegara) similar to Prometheus. The valva is very characteristic, comb. nov. with the distance between the sacculus and cuculus shortened. Comments This genus arrangement is supported by the eighth PAYSANDISIA HOULBERT, 1918 (FIGS 2, 3) tergite, in females, divided on the posterior margin. Type species Moreover, the absence of a discal band on the fore- Castnia josepha Oberthür, 1914 wing, the posterior portion of the gnathos lacking an Included species anterior extension, and the sensilla on the female Paysandisia archon (Burmeister, 1879), Paysandisia eighth tergite are also diagnostic characters for this uruguayana (Burmeister, 1879) (Geyeria) comb. nov. group. This genus includes some of the most remarkable Comments mimetic species of Heliconiinae (Nymphalidae), Paysandisia archon was introduced into Europe and except for P. cochrus (Fig. 13), which resembles some became an important pest on ornamental palms (Sarto species of the genus Mimoides (Papilionidae). i Monteys, 2002; Alario, 2004). This preference for Although it is tempting to hypothesize that these species of Palmae, as well as some morphological patterns originated from a common ancestor, which is traits, is shared with Eupalamides. Although the corroborated by other morphological characters, this general genital morphology, especially the aedeagus supposition is not easy to defend because the patterns and the shape of the uncus and valva, is similar in are so different (Figs 9–12), and probably evolved Eupalamides and Paysandisia, the absence of support several times in this lineage. Such diverse patterns led us to retain the two genera. Future morphological led to the establishment of several subspecies for studies may show that the species included in Pay- some species included in this genus. These were sandisia are more closely related to other Eupalamides erected based only on the type locality and slight species that were not included in this study, in which differences in the wing pattern, without any further case the two genera must be synonymized. investigations or compilation of geographical data in Paysandisia uruguayana was grouped with P. order to establish the true range of distribution for archon in both analyses that did not include T. the different populations, which apparently have a metallica. Although the grouping was based on homo- very restricted niche. plastic characters, such as the nude bulla seminalis The species of this group included in our analysis, (89: 1), the absence of micropapillae on the inner except P. cochrus (Fig. 124), have the inner surface of surface of the bulla seminalis (92: 0), and the bursa the bulla seminalis densely covered by micropapillae without a signa (94: 1), the general morphological (Fig. 126), which seems to be a diagnostic character. traits for male and female support this arrangement. The morphology of the micropapillae shows signifi- cant differences. In P. cochrus these are smaller and PROMETHEUS HÜBNER, [1824] (FIGS 9–13) flattened (Fig. 124), and in the other species analysed GAZERA HERRICH-SCHÄFFER, [1853] SYN. NOV. they are larger and cylindrical (127). DUBOISVALIA OITICICA, 1955 SYN. NOV. TOSXAMPILA OITICICA 1955 SYN. NOV. TELCHIN HÜBNER [1825] (FIGS 14–19) ZEGARA OITICICA, 1955 SYN. NOV. AMAUTA HOULBERT, 1918 SYN. NOV. Type species XANTHOCASTNIA HOULBERT, 1918 SYN. NOV. Papilio cochrus Fabricius, 1787 FROSTETOLA OITICICA, 1955 SYN. NOV. Included species DIVANA MILLER, 1982 SYN. NOV. Prometheus cochrus (Fabricius, 1787), Prometheus Type species heliconioides (Herrich-Schäffer, [1853]), (Gazera) Papilio licus Drury, 1773

© 2014 The Linnean Society of London, Zoological Journal of the Linnean Society, 2014, 170, 362–399 394 S. S. MORAES AND M. DUARTE

Included species SYNPALAMIDES HÜBNER, [1823] (FIGS 31–34) Telchin licus (Drury, 1773), Telchin syphax (Fabricius, FESCHAERIA OITICICA, 1955 SYN. NOV. 1775), Telchin evalthe (Fabricius, 1775) (Xanthocast- HISTA OITICICA, 1955 SYN. NOV. nia) comb. nov., Telchin atymnius (Dalman, 1824), Telchin hubneri (Gray, 1838) (Geyeria) comb. nov., LAPAEUMIDES OITICICA, 1955 SYN. NOV. Telchin cacica (Herrich-Schäffer, [1854]) (Amauta) Type species comb. nov., Telchin papilionaris (Walker, [1865]) Papilio mimon Hübner, [1823] (Amauta) comb. nov., Telchin diva (Butler, 1870) (Divana) comb. nov., Telchin hodeei (Oberthür, 1881) Included species (Amauta) comb. nov., Telchin gramivora (Schaus, Synpalamides phalaris (Fabricius, 1793), Synpala- 1896) (Frostetola) comb. nov., and Telchin ambatensis mides amycus (Cramer [1779]) (Feschaeria) comb. (Houlbert, 1917) (Amauta) comb. nov. nov., Synpalamides ctesiphon (Hübner, [1820]) (Lapaeumides) comb. nov., Synpalamides fabricii (Swainson, 1823) (Hista) comb. nov., Synpalamides Comments actor (Dalman, 1824) (Lapaeumides) comb. nov., Syn- The new composition of Telchin now includes palamides zerynthia (Gray, 1838) (Lapaeumides) three formerly monotypic genera. This taxonomic comb. nov., Synpalamides hegemon (Kollar, 1839) arrangement is the best supported in number of (Hista) comb. nov., Synpalamides chelone (Hopffer, synapomorphies: (i) distal part of aedeagus enlarged 1856), Synpalamides orestes (Walker, 1854), Syn- (28: 1); (ii) contour of subterminal part of aedeagus palamides rubrophalaris (Houlbert, 1917), and indented or irregular (29: 1); (iii) sacculus directed Synpalamides escalantei (Miller, 1976). posteriorly (46: 1); (iv) sacculus digitiform (48: 2); (iv) area between sacculus and valvula recessed (53: 3); Comments (v) vinculum rectangular (60: 2); (vi) length of pos- This arrangement was suggested in a previous report terior arm of gnathos (80: 0); (vii) spiral portion of (Moraes et al., 2010), but could not be supported ductus bursae with a sclerotized plate (102: 0); because of the limited taxa sampling, particularly for (viii) median region of female eighth tergite more species that were earlier included in the genus sclerotized (105: 0); and (ix) antrum bloated (113: 0). Lapaeumides. Now, with a more complete sampling, a In contrast to T. evalthe (Fig. 17), which shares a number of synapomorphic characters agree with this similar wing pattern with other Telchin species, arrangement: (i) subapical band on forewing as a T. gramivora (Fig. 14) was probably assigned to triangle (15: 3); (ii) ventral margin of valva oblique a monotypic genus because of its uncommon (53: 1); (iii) bulla seminalis globular (88: 2); and (iv) semitranslucent wing pattern; whereas T. diva bulla seminalis with sclerotized plates (90: 1). (Fig. 16) has an uncommon wing pattern somewhat The wing pattern is similar in all species, except resembling some species of Agrias Doubleday, 1844 for S. amycus (Fig. 32). Moreover, the wing pattern (Nymphalidae). Telchin hubneri (Fig. 15), formerly is so similar in S. hegemon and S. zerynthia that we included in Geyeria, shares with the species originally wonder why no one has previously attempted to included in Telchin some elements of the wing assess the morphology of these two species and to pattern, and especially the general morphology of the synonymize them. male and female genitalia; however, the extremely diverse wing patterns in this lineage constitute only minor differences compared with the astonishing mor- YAGRA OITICICA, 1955 (FIG. 30) phological congruence. Type species The genus contains the T. licus complex, including Castnia dalmannii Gray, 1838 T. licus, T atymnius, and T. syphax. This group has the largest number of subspecies: 12 for T. licus and Included species seven for T. atymnius. These were erected based only Yagra fonscolombe (Godart, [1824]) and Yagra on the type locality and slight differences in the wing dalmannii (Gray, 1838). pattern, without any further investigations or compi- lation of geographical data in order to establish the Comments true range of distribution for the different popula- This group was the subject of a recent revisionary tions. The morphological study of Moraes & Duarte study (Moraes et al., 2011), which showed that the (2009) revealed only a few differences among the species have distinctive characters that corroborate species. The molecular study of Silva-Brandão et al. the genus status: (i) discal band extending to M2 (2012) was the first attempt to identify possibly (19: 2); (ii) subterminal part of aedeagus wall with cryptic taxa and to validate some subspecies. spines implanted on a sclerotized plate (35: 1); (iii)

© 2014 The Linnean Society of London, Zoological Journal of the Linnean Society, 2014, 170, 362–399 PHYLOGENY OF NEOTROPICAL CASTNIINAE 395 valva with a tooth-like corona near the posterior future revisionary studies and in understanding the margin (57: 1); and (iv) eighth tergite in females with evolution of this interesting group of . the lateral margin sinuous (109: 3). The following genera were not included in this analysis because of a lack of material, and for this ACKNOWLEDGEMENTS reason we maintained the species in the nominative We are grateful to the Fundação de Amparo à genus, with no taxonomic modification. Pesquisa do Estado de São Paulo (FAPESP) for a Insigniocastnia Miller, 2007 scholarship awarded to the senior author (process number 06/05365-3), to Dr Rafaela Lopes Falaschi Included species: Insigniocastnia taisae Miller, 2007. (MZSP), MSc Laura Rocha Prado (MZSP), and two Mirocastnia Miller, 1980 anonymous reviwers for their critical reading of the article, and to Janet W. Reid for revising the English. MD thanks FAPESP for financial support (grants Included species: Mirocastnia canis (Lathy, 1923), 2002/13898-0, 2010/14682-8, 2011/50225-3), CNPq (as Mirocastnia pyrrhopygoides (Houlbert, 1917), and part of the project ‘National Research Network for Mirocastnia smalli Miller, 1980. Conservation of Lepidoptera/SISBIOTA-Brasil’; grant 563332/2010-7) and the Universidade de São Paulo CONCLUSION (USP) for additional financial support for the project (Projeto 1). MD also thanks CNPq for a Research Castniidae have diverse wing patterns that resemble Productivity Fellowship (process 305905/2012-0). We those of several other groups of Lepidoptera. These are greatly indebted to all curators for permission to resemblances make this an interesting group to make use of the collections in their charge. explore in evolutionary studies, especially because of the striking resemblance to butterflies, including the clubbed antennae, diurnal habit, and the probably REFERENCES Batesian mimetic relationships. The widespread Alario SM. 2004. Paysandisia archon (Burmeister, 1880) mimetic patterns found in Castniini, which resemble (Lepidoptera, Castniidae), nuevas localizaciones em la many different groups of Lepidopera (Nymphalidae: Península Ibérica y su gestión. Boletín de la Sociedad Heliconiini, Ithomiinae, Acraenii; Papilionidae; Entomológica Aragonesa 34: 237–246. Lycaenidae; and Pieridae), seem to have evolved Albertoni FF, Moraes SS, Schmid S, Steiner J, Zillikens several times in Castniidae. Apparently, a strong A. 2012. Description of the pupa and redescription of the mimicry has led to the development of a wide diver- imagines of Geyeria decussata and their association with sity of bright wing patterns. bromeliads in Southern Brazil (Lepidoptera: Castniidae). This wing pattern diversity has also led to a strictly Entomologia Generalis 34: 61–74. typological treatment in this group, however. The Arnett RH Jr, Samuelson GA, Nishida GM. 1993. The taxonomic limits based exclusively on wing colour and spider collections of the world. Gainesville: pattern have generated an exaggerated number of Sandhill Crane Press. genera and species currently recognized as valid for Beccaloni GW, Viloria AL, Hall SK, Robinson GS. 2008. the Neotropical Castniidae, including several small or Catalogue of the host plants of the Neotropical butterflies. monotypic genera. Monografias Tercer Milenio. Vol. 8. Zaragoza, Spain: This study showed that the genital traits of males S.E.A., RIBES-CYTED, The Natural History Museum, and females are also diverse and phylogenetically InstitutoVenezolano de Investigaciones Científicas. informative for Neotropical castniids. Using morpho- Birket-Smith J. 1974. Morphology of the male genitalia of logical characters, together with wing pattern char- Lepidoptera I. Ditrysia. Entomologica Scandinavica 5: 1–22. acters, we have produced a coherent classification Boisduval JBAD. 1875. Species général des Lépidoptères based on synapomorphies. The Neotropical species Hétérocères. Tôme premier: Sphingides, Séssiides, are now included in only one tribe, Castniini, and Castnides. Paris: Libraire Encyclopédique de Roret. with the new arrangement the number of genera is Buchecker H. 1880. Systema entomologiae, sistens reduced from 31 to 16. insectorum Classes, Ordines, Genera, Species. Pars 6. Our results indicate that a number of taxonomic Munich: Published by the author. modifications are needed for Neotropical Castniidae. Burmeister H. 1879. Atlas de la description physique de la Probably the hesitation of previous authors in République Argentine contenant des vues pittoresques et des merging some genera is a result of the striking dif- figures d’histoire naturelle. Cinquième section, seconde ferences in wing pattern, contrasting with the simi- partie. Lépidoptères. Buenos Aires, Paris: P.F. Coni. larities in other morphological traits. We hope that Cramer P. 1773–1782. De uitlandische Kapellen the morphological data presented here will help in voorkomende in de drie Waereld-Deelen Asia, Africa

© 2014 The Linnean Society of London, Zoological Journal of the Linnean Society, 2014, 170, 362–399 396 S. S. MORAES AND M. DUARTE

en America. 4 Vols. Amsteldam: S.J. Baalde & J. Van Transport, ed. Proceedings of the Second Inter-American Schoonhoven & Comp. Sugar Cane Seminar. Miami: Florida International Univer- Dalla-Torre KW. 1913. Castniidae: subfamilia. Castniinae, sity, 70–84. Neocastniinae, Pemphigostolinae. Lepidoperorum Catalogus Fabricius JC. 1775. Systema entomologicae, sistens insecto- 15: 1–28. rum classes, ordines, genera, species, adiectus, synonymis, Dalman JW. 1824. Försök att nämare bestämma slägtet locis, descriptionibus, observationibus. Flensburgi et Lipsiae: Castnia Fabr., samt de detsamma tillhörande Arter. Korte. Kongliga Vetenskaps Academiens Handlingar 45: 392–407. Fabricius JC. 1776. Genera insectorum eorumque Druce H. 1882. Descriptions of a new genus and some new characteres naturales secundum numerum, figuram, situm species of Heterocera. Proceedings of the Zoological Society et proportionem omnium partium oris adiecta mantissa of London 1882 50: 777–782. specierum nuper detectarum. Chilonii: Bartsch. Druce H. 1890. Descriptions of four new species of Castnia Fabricius JC. 1787. Mantissa insectorum sistens eorum from , in the collection of Herbert Druce. species nuper detectas adiectis characteribus genericis, Entomologist’s Monthly Magazine 26: 69–70. differentiis specificis, emendationibus, observationibus. Druce H. 1893. Descriptions of new species of Lepidoptera Hafniae: Christian Gottlieb Proft. Heterocera from Central and South America. Proceedings of Fabricius JC. 1793. Entomologia systematica emendata et the Zoological Society of London 1893 61: 281–311. aucta. Secundum classes, ordines, genera, species adjectis Druce H. 1896. Descriptions of five new species of synonimis, locis observationibus, descriptionibus. Hafniae: Heterocera. Annals and Magazine of Natural History 17: Christian Gottlieb Proft, Fil. et Soc. 28–42. Fabricius JC. 1807. Die neueste Gattungs-Eintheilung der Druce H. 1907. Descriptions of five new species of Schmetterlinge aus den linnéischen Gattungen. Papilio und Heterocera. Annals and Magazine of Natural History 20: Sphinx Magazin für Insektenkunde 6: 277–289. 505–506. Felder R. 1874. Reise der Österreichischen Fregatte Novara Drury D. 1770–1782. Illustrations of Natural History. um die Erde in den Jahren 1857, 1858, 1859 unter den Wherein are exhibited upwards of two hundred and forty Befehlen des Commodore B. von Wüllerstorf-Urbair. figures of exotic insects, according to their different genera; Zoologischer Theil, Zweiter Band, Zweite Abtheilung: very fewo of which have hitherto been figured by any author, Lepidoptera. Wien: C. Gerold’s Sohn. being engraved and coloured from nature, with the greatest Forey PL, Kitching IJ. 2000. Experiments in coding accuracy, and under the author’s own inspection, on fifity multistate characters. In: Scotland RW, Pennington T, copper-plates. With a particular description of each insect: eds. Homology and systematics: coding characters for interspersed with remarks and reflections on the nature and phylogenetic analysis. London: Taylor & Francis, 55–80. properties of many of them. 3 Vols. London: B. White. Fukuda H. 2000. A new species of the genus Tascina Dyar HG. 1910. Descriptions of some new species and genera Westwood (Castniidae, Tascininae) from Vietnam. Transac- of Lepidoptera from Mexico. Proceedings of the United tions of the Lepidopterological Society of Japan 52: 45–48. States National Museum 38: 229–273. Galicia I, Sánchez V, Cordeiro C. 2008. On the function of Dyar HG. 1912. Descriptions of some new species and genera signa, a genital trait of female Lepidoptera. Annals of the of Lepidoptera, chiefly from Mexico. Proceedings of the Entomological Society of America 101: 786–793. United States National Museum 42: 39–106. Godart JB. 1824. [no title]. In: Latreille PA, Godart JB, eds. Edwards ED, Gentili P, Horak M, Kristensen NP, Encyclopédie Méthodique. Histoire Naturelle: Histoire Nielsen ES. 1998. The cossoid/sesioid assemblage. In: naturelle des crustacés, des arachnides et des insectes. Paris: Kristensen NP, ed. Band IV Arthropoda: insecta. Veuve Agasse, 724–801. Lepidoptera, moths and butterflies: evolution, systematics Goloboff P, Farris S, Nixon K. 2007. T.N.T.: tree analysis and biogeography. Vol. 1. In: Fische M, ed. Handbuch der using new technology. Available compliments of the Willi Zoologie. Berlin, New York: Walter de Gruyter, 181–197. Hennig Society at: http://www.zmuc.dk/public/phylogeny Eschscholtz JFG. 1821. Beschreibung neuer ausländischer González J. 1992. Descripción de una nueva especie del Schmetterlinge nebst Abbildungen. In: von Kotzebue O, ed. género Castnia (Lepidoptera: Castniidae: Castniinae). Endeckungs-reise in die Süd-See und nach der Berings- Memoria de la Sociedad de Ciencias Naturales La Salle 52: Strasse zur Erforschung einer nordöstlichen Durchfahrt. 11–16. Unternommen in den Jahren 1815, 1816, 181 und 1818, auf González JM. 2003. Castniinae (Lepidoptera: Castniidae) Kosten Sr. Erlaucht des Herrn Reichs-Kanzlers Grafen from . V: Castnia Fabricius and Telchin Hübner. Rumanzoff auf den Schiffe Rurik unter dem Befehle des Boletín del Centro de Investigaciones Biológicas 37: 191– Lieutenants der Russisch-Kaiserlichen Marine Otto von 201. Kotzbue. Weimar: Gerbrüdern Hoffman, 201–219, 11 pls. González JM. 2004. Castniinae (Lepidoptera: Castniidae) Espinoza B, González JM. 2005. Description of a new from Venezuela. VI: the genus Athis. Diagnosis and com- species of Imara Houlbert, 1918 (Lepidoptera: Castniidae). ments. Caribbean Journal of Science 40: 408–4013. Zootaxa 849: 1–8. González JM, Cock MJW. 2004. A synopsis of the Esquivel EA. 1981. The giant cane borer, Castnia licus Castniidae (Lepidoptera) of Trinidad and Tobago. Zootaxa Drury, and its integrated control. In: Inter-American 762: 1–19.

© 2014 The Linnean Society of London, Zoological Journal of the Linnean Society, 2014, 170, 362–399 PHYLOGENY OF NEOTROPICAL CASTNIINAE 397

Gray GR. 1838. Synopsis of the species belonging to the Maddison WP. 1993. Missing data versus missing characters genus Castnia. Transactions of the Entomological Society of in phylogenetic analysis. Systematic Biology 42: 576– London 2: 140–149. 581. Guérin-Ménéville FE. 1831–1844. Dixième orde. Les Matsuda R. 1965. Morphology and evolution of the insect Lépidoptères. Iconographie du règne de G. Cuvier, ou head. Memoirs of the American Entomological Institute 4: représentation d’après nature de l’une des espèces les plus et 1–334. souvent non encore figurées de chaque genre d’animaux: avec Matsuda R. 1970. Morphology and evolution of the insect un texte descriptif mis au courant de la science : ouvrage thorax. Memoirs of the Entomological Society of Canada 76: pouvant servir d’atlas a tous les traités de zoologie. Insectes. 1–431. Paris: J.B. Baillière, 466–530, 76–91 pls. Matsuda R. 1976. Morphology and evolution of the insect Hennig W. 1966. Phylogenetic Systematics. Urbana: Illinois abdomen: with special reference to developmental patterns University Press. and their bearings upon systematics. New York: Pergamon Hernández-Baz F, Serna F, Navarro EV, Lamas G, Press. González JM. 2012. New records of giant butterfly-moths Ménétriés E. 1857. Enumeratio corporum animalium Musei (Lepidoptera: Castniidae) from Colombia with general notes Imperialis Academiae Scientiarum Petropolitanae. Classis on natural history. Revista Colombiana de Entomología 38: insectorun. Ordo lepidopterorum. Petropoli: Eggers et Soc. 162–163. Merian MS. 1705. Metamorphosis insectorum surinamensium. Herrich-Schäffer GAW. 1850–1858. Sammlung neuer In qua erucae ac vermes surinamenses, cum omnibus suis oder wenig bekannter aussereuropäischer Schmetterlinge. transfor-mationibus, ad vivum delineantur et describuntur, Regensburg: G.J. Manz. singulis eorum in plantas, flores et fructus collocatis, in Holloway JD. 1998. Moths of Borneo (part 8) Castniidae, quibus reperta sunt; tunc etiam generatio ranarum, bufonum , Drepanidae & . Kuala Lumpur: The rariorum, lacertarum, serpentum, araneorum et formicarum Malaysian Nature Society & Southdene. exhibetur; omnia in America ad vivum naturali magnitudine Hopffer CH. 1856. Neue oder wenig bekannte Schmetterlinge picta atque descripta. Amstelodami: Gerard Valk. der Insekten-Sammlung des königl. Berlin: Zoologischen Miller JY. 1972. Review of the Central American Castnia Musei der Universität zu Berlin. inca complex (Castniidae). Bulletin of the Allyn Museum 6: Houlbert C. 1917. Diagnoses de Castnies nouvelles et recti- 1–13. fication de quelques noms indûment employés. Etudes de Miller JY. 1976. Studies in the Castniidae II. Description of Lépidoptérologie Comparée 13: 49–85. three new species of Castnia, s. l. Bulletin of the Allyn Houlbert C. 1918. Revision monographique de la sous-famille Museum 34: 1–13. des Castniinae. Etudes de Lépidoptérologie Comparée 15: Miller JY. 1980. Studies in the Castniidae III. Mirocastnia. 1–730. Bulletin of the Allyn Museum 60: 1–15. Hübner J. 1806–1826. Sammlung exotischer Schmetterlinge. Miller JY. 1986. The taxonomy phylogeny and zoogeography Augsburg: J. Hübner. of the Neotropical subfamily Castniinae (Lepidoptera, Jordan HEK. 1908. Some new and some unfigured Castnoidea: Castiniidae). Unpublished D. Phil Thesis, Uni- Lepidoptera. Novitates Zoologicae 15: 253–258. versity of Florida. Klots AB. 1956. Lepidoptera. In: Tuxen LS, ed. Taxonomist’s Miller JY. 1995. Castniidae. In: Heppner JB, ed. Catálogo: glossary of genitalia in insects. Copenhagen: Munksgaard, part 2. Hyblaioidea--Tortricoidea. Atlas of 97–110. neotropical Lepidoptera. Gainesville: Association for Neotro- Kollar V. 1839. Lepidopterorum Brasiliae species novae pical Lepidoptera/Scientific Publishers, 133–137, 176–177. iconibus illustratae. Annalen des Wiener Museums der Miller JY. 2000. Castniidae (Lepidoptera). In: Bousquets JEL, Naturgeschichte 2: 213–218. Soriano EG, Papavero N, eds. Biodiversidad, Taxonomía y Kozlov MV, Kuznetzov VI, Stekolnikov AA. 1998. Skeleto- Biogeografía de Artrópodos de México: Hacia una Síntesis de muscular morphology of the pterothorax and male genitalia su Conocimiento. Mexico (DF): Facultad de Ciencias, of Walker (Castniidae) and Brachodes Universidad Nacional Autónoma de Mexico, 527–533. appendiculata (Esper) (Brachodidae), with notes on Miller JY. 2007. Studies in the Castniidae IV. Description of phylogenetic relationships of tortricoid-grade moth families a new genus, Insigniocastnia. Bulletin of the Allyn Museum (Lepidoptera). Invertebrate Taxonomy 12: 245–256. 145: 1–7. Lamas G. 1995. A critical review of J. Y. Miller’s Checklist of Miller JY. 2008. Studies in the Castniidae V. Descriptions of the Neotropical Castniidae (Lepidoptera). Revista Peruana a new species of Zegara. Bulletin of the Allyn Museum 160: de Entomología 37: 73–87. 1–13. Lathy PI. 1923. Further notes on the Castniinae in the Minet J. 1991. Tentative reconstruction of the ditrysian phy- Collection of Madame Gaston Fournier (Lepidoptera). logeny (Lepidoptera: ). Entomologica Scandinavia Annals and Magazine of Natural History 12: 223– 22: 69–95. 227. Moraes SS, Duarte M. 2009. Morfologia externa comparada Latreille PA, Godart JB. 1824. Encyclopédie Méthodique. das três espécies do complexo Telchin licus (Drury) Histoire Naturelle: Histoire naturelle des crustacés, des (Lepidoptera, Castniidae) com uma sinonímia. Revista arachnides et des insectes. Paris: Veuve Agasse. Brasileira de Entomologia 53: 245–265.

© 2014 The Linnean Society of London, Zoological Journal of the Linnean Society, 2014, 170, 362–399 398 S. S. MORAES AND M. DUARTE

Moraes SS, Duarte M, González JM. 2010. Revision of Rebouças LMC, Caraciolo MSB, Sant’Ana AEG. 1999. Hista Oiticica (Lepidoptera: Castniidae) and discussion of Composição química da glândula abdominal da fêmea da the validity of its subspecies. Zootaxa 2421: 1–27. mariposa Castnia licus (Drury) (Lepidoptera: Castniidae): Moraes SS, Duarte M, Miller JY. 2011. Revision of the possíveis feromônios e precursores. Química Nova 22: 645– Neotropical genus Yagra Oiticica (Lepidoptera: Castniidae). 648. Journal of Natural History 45: 1511–1531. Regier JC, Zwick A, Cummings MP, Kawahara AY, Cho Mosher E. 1916. A classification of Lepidoptera based on S, Weller S, Roe JB, Brown JW, Parr C, Davis DR, characters of the pupa. Bulletin of the Illinois State Labora- Epstein M, Hallwachs W, Hausmann A, Janzen DH, tory of Natural History 12: 13–159. Kitching IJ, Solis MA, Yen S-H, Bazinet AL, Mitter C. Mutuura A. 1972. Morphology of the female terminalia in 2009. Toward reconstructing the evolution of advanced Lepidoptera, and its taxonomic significance. Canadian moths and butterflies (Lepidoptera: Ditrysia): an initial Entomologist 104: 1055–1071. molecular study. Evolutionary Biology 9: 1–21. van Nieukerken EJ, Kaila L, Kitching IJ, Kristensen Ríos SD, González JM. 2011. A synopsis of the Castniidae NP, Lees DC, Minet J, Mitter C, Mutanen M, Regier (Lepidoptera) of Paraguay. Zootaxa 3055: 43–61. JC, Simonsen TJ, Wahlberg N, Yen S-H, Zahiri R, Rothschild LW. 1919. Supplementary notes to the review of Adamski D, Baixeras J, Bartsch D, Bengtsson BÅ, Houlbert and Oberthür’s monograph of Castniidae by Talbot Brown JW, Bucheli SR, Davis DR, De Prins J, De and Prout. Novitates Zoologicae 26: 1–27. Prins W, Epstein ME, Gentili-Poole P, Gielis C, Sarto i Monteys V. 2002. The discovery, description and Hättenschwiler P, Hausmann A, Holloway JD, Kallies taxonomy of Paysandisia archon (Burmeister, 1880), a A, Karsholt O, Kawahara AY, Koster SJC, Kozlov M, castniid species recently found in southwestern Europe Lafontaine JD, Lamas G, Landry JF, Lee S, Nuss M, (Castniidae). Nota Lepidopterologica 25: 3–15. Penz C, Rota J, Schmidt BC, Schintlmeister A, Sohn Sarto i Monteys V, Acín P, Rosell G, Quero C, Jiménez JC, Solis MA, Tarmann GM, Warren AD, Weller S, MA, Guerrero A. 2012. Moths behaving like butterflies. Yakovlev RV, Zolotuhin V, Zwick A. 2011. Order Evolutionary loss of long range attractant pheromones in Lepidoptera Linnaeus. In: Zhang ZQ, ed. Animal biodiver- castniid moths: a Paysandisia archon model. PLoS ONE 7: sity: an outline of higher-level classification and survey of e29282. taxonomic richness. Zootaxa 3148: 212–221. Schaufuss LW. 1870. Die exotischen Lepidoptera Heterocera Oberthür C. 1881. II. Lépidoptères d’Amérique. Etudes der frijher Kaden’schen Sammlung. Nunquam Otiosus 1: d’Entomologie 6: xxv–xxvi, 27–38, pls. 4–6, 10. 7–13. Ogata M, Okada Y, Okagaki H, Sibatani A. 1957. Male Schaus W. 1896. New species of Heterocera from tropical genitalia of Lepidoptera: morphology and nomenclature III. America. Journal of the New York Entomological Society 4: Appendages pertaining to the tenth somite. Annals of the 147–154. Entomological Society of America 50: 237–244. Schaus W. 1911. New species of Heterocera from Costa Oiticica J. 1955. Revisão dos nomes genéricos sul-americanos Rica V. Annals and Magazine of Natural History 7: 172– da subfamília Castniinae (Lepidoptera Castniidae). Revista 193. Brasileira de Entomologia 3: 137–167. Sibatani A, Ogata M, Okada Y, Okagaki H. 1954. Male Okagaki H, Sibatani A, Ogata M, Okada Y. 1955. Male genitalia of Lepidoptera: morphology and Nomenclature. genitalia of Lepidoptera: morphology and nomenclature II. I. Divisions of the valvae in Rhopalocera, Phalaenidae Morphological significance of sacculus and furca. Annals of (= Noctuidae) and Geometridae. Annals of the Entomologi- the Entomological Society of America 8: 438–442. cal Society of America 47: 93–106. Pagenstecher A. 1890. Heteroceren der Insel Palawan. Silva-Brandão KL, Almeida LC, Moraes SS, Cônsoli FL. Deutsche Entomologische Zeitschrift Iris 3: 1–33. 2012. Using population genetic methods to identify the Pierce FN. 1909. The genitalia of the group Noctuidae of the origin of an invasive population and to diagnose cryptic Lepidoptera of the British Islands. An account of the mor- subspecies of Telchin licus (Lepidoptera: Castniidae). Bul- phology of the male clasping organs. Liverpool: A. W. Duncan. letin of Entomological Research 103: 89–97. Pierce FN. 1914. The genitalia of the group Geometridae of Snodgrass RE. 1935. Principles of insect morphology. New the Lepidoptera of the British Islands. An account of the York: McGraw-Hill Book Company. morphology of the male clasping organs and the correspond- Staudinger O. 1899. Neue und seltene Arten des ing organs of the female. Liverpool: A. W. Duncan. Lepidopteren-Genus Castnia. Von Paul Preiss, Ludwigsha- Pierre J, Pierre-Baltus C. 2003. Un nouveau Castnia fen a/Rh. Societas Entomologica 14: 20–21. endémique de la Martinique (Lepidoptera, Castniidae). Bul- Stoll C. 1782. [Footnotes]. In: Cramer P, ed. De uitlandsche letin de la Société Entomologique de France 108: 437–439. Kapellen voor-komende in de drie Waereld-Deelen Asia, Porion T. 2004. Castnius asteropoides n. sp. nouveau Africa en America. Papillons exotiques des trois parties du castniide neotropical (Lepidoptera, Castniidae). Lépidoptères monde l’Asie, l’Afrique et l’Amérique. Amsteldam: J.S. 2: 47–50. Baalde, Utrecht: Barthelemy Wild, 200, 387 pls. Preiss P. 1899. Neue und seltene Arten des Lepidopteren- Strand E. 1912. Sechs neue exotische Grossschmetterlinge. Genus Castnia. Ludwigshafen a/ Rhein: Published by the Archiv für Naturgeschichte 77: 98–102. author. Strand E. 1913. Gattung: Castnia F. In: Seitz A, ed. Die

© 2014 The Linnean Society of London, Zoological Journal of the Linnean Society, 2014, 170, 362–399 PHYLOGENY OF NEOTROPICAL CASTNIINAE 399

Gross-Schmetterlinge der Erde. Vol. 6. Stuttgart: A. Kernen, invaria penelope Schaufuss, 1870 (Lepidoptera, Castniidae). 7–17, pls. 1–8. Biodiversity Journal 2: 149–150. Swainson W. 1823. Zoological illustrations or original figures Walker F. 1854. List of the species of lepidopterous insects in and descriptions of new, rare or interesting , selected the collections of the British Museum. Vol. 1. London: British chiefly from the classes of ornithology, entomology and con- Museum. chology, and arranged on the principles of Cuvier and other Walker F. 1865. List of the species of lepidopterous insects modern zoologists. London: Baldwin, Cradock and Joy & W. in the collections of the British Museum. Vol. 31. London: Wood, pls. 135–182 + text. British Museum. Talbot G. 1919. Review of a monograph of ‘Castniinae’. Westwood JO. 1877. A monograph of the lepidopterous genus Novitates Zoologicae 26: 28–35. Castnia and some allied groups. Transactions of the Linnean Vinciguerra R. 2011a. Observations on the genus Athis Society of London 1: 55–207. Hübner, [1819] and description of a new species from Peru Winter WD. 2000. Basic techniques for observing and study- (Lepidoptera, Castniidae). Biodiversity Journal 2: 97–102. ing moths and butterflies. Memoirs of the Lepidopterists’ Vinciguerra R. 2011b. Notes on the distribution of Castnia Society 5: 1–444.

© 2014 The Linnean Society of London, Zoological Journal of the Linnean Society, 2014, 170, 362–399