Truth Table Definitions of Logical Connectives
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dialetheists' Lies About the Liar
PRINCIPIA 22(1): 59–85 (2018) doi: 10.5007/1808-1711.2018v22n1p59 Published by NEL — Epistemology and Logic Research Group, Federal University of Santa Catarina (UFSC), Brazil. DIALETHEISTS’LIES ABOUT THE LIAR JONAS R. BECKER ARENHART Departamento de Filosofia, Universidade Federal de Santa Catarina, BRAZIL [email protected] EDERSON SAFRA MELO Departamento de Filosofia, Universidade Federal do Maranhão, BRAZIL [email protected] Abstract. Liar-like paradoxes are typically arguments that, by using very intuitive resources of natural language, end up in contradiction. Consistent solutions to those paradoxes usually have difficulties either because they restrict the expressive power of the language, orelse because they fall prey to extended versions of the paradox. Dialetheists, like Graham Priest, propose that we should take the Liar at face value and accept the contradictory conclusion as true. A logical treatment of such contradictions is also put forward, with the Logic of Para- dox (LP), which should account for the manifestations of the Liar. In this paper we shall argue that such a formal approach, as advanced by Priest, is unsatisfactory. In order to make contradictions acceptable, Priest has to distinguish between two kinds of contradictions, in- ternal and external, corresponding, respectively, to the conclusions of the simple and of the extended Liar. Given that, we argue that while the natural interpretation of LP was intended to account for true and false sentences, dealing with internal contradictions, it lacks the re- sources to tame external contradictions. Also, the negation sign of LP is unable to represent internal contradictions adequately, precisely because of its allowance of sentences that may be true and false. -
Chapter 18 Negation
Chapter 18 Negation Jong-Bok Kim Kyung Hee University, Seoul Each language has a way to express (sentential) negation that reverses the truth value of a certain sentence, but employs language-particular expressions and gram- matical strategies. There are four main types of negatives in expressing sentential negation: the adverbial negative, the morphological negative, the negative auxil- iary verb, and the preverbal negative. This chapter discusses HPSG analyses for these four strategies in marking sentential negation. 1 Modes of expressing negation There are four main types of negative markers in expressing negation in lan- guages: the morphological negative, the negative auxiliary verb, the adverbial negative, and the clitic-like preverbal negative (see Dahl 1979; Payne 1985; Zanut- tini 2001; Dryer 2005).1 Each of these types is illustrated in the following: (1) a. Ali elmalar-i ser-me-di-;. (Turkish) Ali apples-ACC like-NEG-PST-3SG ‘Ali didn’t like apples.’ b. sensayng-nim-i o-ci anh-usi-ess-ta. (Korean) teacher-HON-NOM come-CONN NEG-HON-PST-DECL ‘The teacher didn’t come.’ c. Dominique (n’) écrivait pas de lettre. (French) Dominique NEG wrote NEG of letter ‘Dominique did not write a letter.’ 1The term negator or negative marker is a cover term for any linguistic expression functioning as sentential negation. Jong-Bok Kim. 2021. Negation. In Stefan Müller, Anne Abeillé, Robert D. Borsley & Jean- Pierre Koenig (eds.), Head-Driven Phrase Structure Grammar: The handbook. Prepublished version. Berlin: Language Science Press. [Pre- liminary page numbering] Jong-Bok Kim d. Gianni non legge articoli di sintassi. (Italian) Gianni NEG reads articles of syntax ‘Gianni doesn’t read syntax articles.’ As shown in (1a), languages like Turkish have typical examples of morphological negatives where negation is expressed by an inflectional category realized on the verb by affixation. -
Automated Unbounded Verification of Stateful Cryptographic Protocols
Automated Unbounded Verification of Stateful Cryptographic Protocols with Exclusive OR Jannik Dreier Lucca Hirschi Sasaˇ Radomirovic´ Ralf Sasse Universite´ de Lorraine Department of School of Department of CNRS, Inria, LORIA Computer Science Science and Engineering Computer Science F-54000 Nancy ETH Zurich University of Dundee ETH Zurich France Switzerland UK Switzerland [email protected] [email protected] [email protected] [email protected] Abstract—Exclusive-or (XOR) operations are common in cryp- on widening the scope of automated protocol verification tographic protocols, in particular in RFID protocols and elec- by extending the class of properties that can be verified to tronic payment protocols. Although there are numerous appli- include, e.g., equivalence properties [19], [24], [27], [51], cations, due to the inherent complexity of faithful models of XOR, there is only limited tool support for the verification of [14], extending the adversary model with complex forms of cryptographic protocols using XOR. compromise [13], or extending the expressiveness of protocols, The TAMARIN prover is a state-of-the-art verification tool e.g., by allowing different sessions to update a global, mutable for cryptographic protocols in the symbolic model. In this state [6], [43]. paper, we improve the underlying theory and the tool to deal with an equational theory modeling XOR operations. The XOR Perhaps most significant is the support for user-specified theory can be freely combined with all equational theories equational theories allowing for the modeling of particular previously supported, including user-defined equational theories. cryptographic primitives [21], [37], [48], [24], [35]. -
A Symmetric Lambda-Calculus Corresponding to the Negation
A Symmetric Lambda-Calculus Corresponding to the Negation-Free Bilateral Natural Deduction Tatsuya Abe Software Technology and Artificial Intelligence Research Laboratory, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba, 275-0016, Japan [email protected] Daisuke Kimura Department of Information Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan [email protected] Abstract Filinski constructed a symmetric lambda-calculus consisting of expressions and continuations which are symmetric, and functions which have duality. In his calculus, functions can be encoded to expressions and continuations using primitive operators. That is, the duality of functions is not derived in the calculus but adopted as a principle of the calculus. In this paper, we propose a simple symmetric lambda-calculus corresponding to the negation-free natural deduction based bilateralism in proof-theoretic semantics. In our calculus, continuation types are represented as not negations of formulae but formulae with negative polarity. Function types are represented as the implication and but-not connectives in intuitionistic and paraconsistent logics, respectively. Our calculus is not only simple but also powerful as it includes a call-value calculus corresponding to the call-by-value dual calculus invented by Wadler. We show that mutual transformations between expressions and continuations are definable in our calculus to justify the duality of functions. We also show that every typable function has dual types. Thus, the duality of function is derived from bilateralism. 2012 ACM Subject Classification Theory of computation → Logic; Theory of computation → Type theory Keywords and phrases symmetric lambda-calculus, formulae-as-types, duality, bilateralism, natural deduction, proof-theoretic semantics, but-not connective, continuation, call-by-value Acknowledgements The author thanks Yosuke Fukuda, Tasuku Hiraishi, Kentaro Kikuchi, and Takeshi Tsukada for the fruitful discussions, which clarified contributions of the present paper. -
Journal of Linguistics Negation, 'Presupposition'
Journal of Linguistics http://journals.cambridge.org/LIN Additional services for Journal of Linguistics: Email alerts: Click here Subscriptions: Click here Commercial reprints: Click here Terms of use : Click here Negation, ‘presupposition’ and the semantics/pragmatics distinction ROBYN CARSTON Journal of Linguistics / Volume 34 / Issue 02 / September 1998, pp 309 350 DOI: null, Published online: 08 September 2000 Link to this article: http://journals.cambridge.org/abstract_S0022226798007063 How to cite this article: ROBYN CARSTON (1998). Negation, ‘presupposition’ and the semantics/pragmatics distinction. Journal of Linguistics, 34, pp 309350 Request Permissions : Click here Downloaded from http://journals.cambridge.org/LIN, IP address: 144.82.107.34 on 12 Oct 2012 J. Linguistics (), –. Printed in the United Kingdom # Cambridge University Press Negation, ‘presupposition’ and the semantics/pragmatics distinction1 ROBYN CARSTON Department of Phonetics and Linguistics, University College London (Received February ; revised April ) A cognitive pragmatic approach is taken to some long-standing problem cases of negation, the so-called presupposition denial cases. It is argued that a full account of the processes and levels of representation involved in their interpretation typically requires the sequential pragmatic derivation of two different propositions expressed. The first is one in which the presupposition is preserved and, following the rejection of this, the second involves the echoic (metalinguistic) use of material falling in the scope of the negation. The semantic base for these processes is the standard anti- presuppositionalist wide-scope negation. A different view, developed by Burton- Roberts (a, b), takes presupposition to be a semantic relation encoded in natural language and so argues for a negation operator that does not cancel presuppositions. -
Expressive Completeness
Truth-Functional Completeness 1. A set of truth-functional operators is said to be truth-functionally complete (or expressively adequate) just in case one can take any truth-function whatsoever, and construct a formula using only operators from that set, which represents that truth-function. In what follows, we will discuss how to establish the truth-functional completeness of various sets of truth-functional operators. 2. Let us suppose that we have an arbitrary n-place truth-function. Its truth table representation will have 2n rows, some true and some false. Here, for example, is the truth table representation of some 3- place truth function, which we shall call $: Φ ψ χ $ T T T T T T F T T F T F T F F T F T T F F T F T F F T F F F F T This truth-function $ is true on 5 rows (the first, second, fourth, sixth, and eighth), and false on the remaining 3 (the third, fifth, and seventh). 3. Now consider the following procedure: For every row on which this function is true, construct the conjunctive representation of that row – the extended conjunction consisting of all the atomic sentences that are true on that row and the negations of all the atomic sentences that are false on that row. In the example above, the conjunctive representations of the true rows are as follows (ignoring some extraneous parentheses): Row 1: (P&Q&R) Row 2: (P&Q&~R) Row 4: (P&~Q&~R) Row 6: (~P&Q&~R) Row 8: (~P&~Q&~R) And now think about the formula that is disjunction of all these extended conjunctions, a formula that basically is a disjunction of all the rows that are true, which in this case would be [(Row 1) v (Row 2) v (Row 4) v (Row6) v (Row 8)] Or, [(P&Q&R) v (P&Q&~R) v (P&~Q&~R) v (P&~Q&~R) v (~P&Q&~R) v (~P&~Q&~R)] 4. -
CS 50010 Module 1
CS 50010 Module 1 Ben Harsha Apr 12, 2017 Course details ● Course is split into 2 modules ○ Module 1 (this one): Covers basic data structures and algorithms, along with math review. ○ Module 2: Probability, Statistics, Crypto ● Goal for module 1: Review basics needed for CS and specifically Information Security ○ Review topics you may not have seen in awhile ○ Cover relevant topics you may not have seen before IMPORTANT This course cannot be used on a plan of study except for the IS Professional Masters program Administrative details ● Office: HAAS G60 ● Office Hours: 1:00-2:00pm in my office ○ Can also email for an appointment, I’ll be in there often ● Course website ○ cs.purdue.edu/homes/bharsha/cs50010.html ○ Contains syllabus, homeworks, and projects Grading ● Module 1 and module are each 50% of the grade for CS 50010 ● Module 1 ○ 55% final ○ 20% projects ○ 20% assignments ○ 5% participation Boolean Logic ● Variables/Symbols: Can only be used to represent 1 or 0 ● Operations: ○ Negation ○ Conjunction (AND) ○ Disjunction (OR) ○ Exclusive or (XOR) ○ Implication ○ Double Implication ● Truth Tables: Can be defined for all of these functions Operations ● Negation (¬p, p, pC, not p) - inverts the symbol. 1 becomes 0, 0 becomes 1 ● Conjunction (p ∧ q, p && q, p and q) - true when both p and q are true. False otherwise ● Disjunction (p v q, p || q, p or q) - True if at least one of p or q is true ● Exclusive Or (p xor q, p ⊻ q, p ⊕ q) - True if exactly one of p or q is true ● Implication (p → q) - True if p is false or q is true (q v ¬p) ● -
Expressing Negation
Expressing Negation William A. Ladusaw University of California, Santa Cruz Introduction* My focus in this paper is the syntax-semantics interface for the interpretation of negation in languages which show negative concord, as illustrated in the sentences in (1)-(4). (1) Nobody said nothing to nobody. [NS English] ‘Nobody said anything to anyone.’ (2) Maria didn’t say nothing to nobody. [NS English] ‘Maria didn’t say anything to anyone.’ (3) Mario non ha parlato di niente con nessuno. [Italian] ‘Mario hasn’t spoken with anyone about anything.’ (4) No m’ha telefonat ningú. [Catalan] ‘Nobody has telephoned me.’ Negative concord (NC) is the indication at multiple points in a clause of the fact that the clause is to be interpreted as semantically negated. In a widely spoken and even more widely understood nonstandard dialect of English, sentences (1) and (2) are interpreted as synonymous with those given as glosses, which are also well-formed in the dialect. The examples in (3) from Italian and (4) from Catalan illustrate the same phenomenon. The occurrence in these sentences of two or three different words, any one of which when correctly positioned would be sufficient to negate a clause, does not guarantee that their interpretation involves two or three independent expressions of negation. These clauses express only one negation, which is, on one view, simply redundantly indicated in two or three different places; each of the italicized terms in these sentences might be seen as having an equal claim to the function of expressing negation. However closer inspection indicates that this is not the correct view. -
Deduction (I) Tautologies, Contradictions And
D (I) T, & L L October , Tautologies, contradictions and contingencies Consider the truth table of the following formula: p (p ∨ p) () If you look at the final column, you will notice that the truth value of the whole formula depends on the way a truth value is assigned to p: the whole formula is true if p is true and false if p is false. Contrast the truth table of (p ∨ p) in () with the truth table of (p ∨ ¬p) below: p ¬p (p ∨ ¬p) () If you look at the final column, you will notice that the truth value of the whole formula does not depend on the way a truth value is assigned to p. The formula is always true because of the meaning of the connectives. Finally, consider the truth table table of (p ∧ ¬p): p ¬p (p ∧ ¬p) () This time the formula is always false no matter what truth value p has. Tautology A statement is called a tautology if the final column in its truth table contains only ’s. Contradiction A statement is called a contradiction if the final column in its truth table contains only ’s. Contingency A statement is called a contingency or contingent if the final column in its truth table contains both ’s and ’s. Let’s consider some examples from the book. Can you figure out which of the following sentences are tautologies, which are contradictions and which contingencies? Hint: the answer is the same for all the formulas with a single row. () a. (p ∨ ¬p), (p → p), (p → (q → p)), ¬(p ∧ ¬p) b. -
Propositional Logic (PDF)
Mathematics for Computer Science Proving Validity 6.042J/18.062J Instead of truth tables, The Logic of can try to prove valid formulas symbolically using Propositions axioms and deduction rules Albert R Meyer February 14, 2014 propositional logic.1 Albert R Meyer February 14, 2014 propositional logic.2 Proving Validity Algebra for Equivalence The text describes a for example, bunch of algebraic rules to the distributive law prove that propositional P AND (Q OR R) ≡ formulas are equivalent (P AND Q) OR (P AND R) Albert R Meyer February 14, 2014 propositional logic.3 Albert R Meyer February 14, 2014 propositional logic.4 1 Algebra for Equivalence Algebra for Equivalence for example, The set of rules for ≡ in DeMorgan’s law the text are complete: ≡ NOT(P AND Q) ≡ if two formulas are , these rules can prove it. NOT(P) OR NOT(Q) Albert R Meyer February 14, 2014 propositional logic.5 Albert R Meyer February 14, 2014 propositional logic.6 A Proof System A Proof System Another approach is to Lukasiewicz’ proof system is a start with some valid particularly elegant example of this idea. formulas (axioms) and deduce more valid formulas using proof rules Albert R Meyer February 14, 2014 propositional logic.7 Albert R Meyer February 14, 2014 propositional logic.8 2 A Proof System Lukasiewicz’ Proof System Lukasiewicz’ proof system is a Axioms: particularly elegant example of 1) (¬P → P) → P this idea. It covers formulas 2) P → (¬P → Q) whose only logical operators are 3) (P → Q) → ((Q → R) → (P → R)) IMPLIES (→) and NOT. The only rule: modus ponens Albert R Meyer February 14, 2014 propositional logic.9 Albert R Meyer February 14, 2014 propositional logic.10 Lukasiewicz’ Proof System Lukasiewicz’ Proof System Prove formulas by starting with Prove formulas by starting with axioms and repeatedly applying axioms and repeatedly applying the inference rule. -
Sets, Propositional Logic, Predicates, and Quantifiers
COMP 182 Algorithmic Thinking Sets, Propositional Logic, Luay Nakhleh Computer Science Predicates, and Quantifiers Rice University !1 Reading Material ❖ Chapter 1, Sections 1, 4, 5 ❖ Chapter 2, Sections 1, 2 !2 ❖ Mathematics is about statements that are either true or false. ❖ Such statements are called propositions. ❖ We use logic to describe them, and proof techniques to prove whether they are true or false. !3 Propositions ❖ 5>7 ❖ The square root of 2 is irrational. ❖ A graph is bipartite if and only if it doesn’t have a cycle of odd length. ❖ For n>1, the sum of the numbers 1,2,3,…,n is n2. !4 Propositions? ❖ E=mc2 ❖ The sun rises from the East every day. ❖ All species on Earth evolved from a common ancestor. ❖ God does not exist. ❖ Everyone eventually dies. !5 ❖ And some of you might already be wondering: “If I wanted to study mathematics, I would have majored in Math. I came here to study computer science.” !6 ❖ Computer Science is mathematics, but we almost exclusively focus on aspects of mathematics that relate to computation (that can be implemented in software and/or hardware). !7 ❖Logic is the language of computer science and, mathematics is the computer scientist’s most essential toolbox. !8 Examples of “CS-relevant” Math ❖ Algorithm A correctly solves problem P. ❖ Algorithm A has a worst-case running time of O(n3). ❖ Problem P has no solution. ❖ Using comparison between two elements as the basic operation, we cannot sort a list of n elements in less than O(n log n) time. ❖ Problem A is NP-Complete. -
Least Sensitive (Most Robust) Fuzzy “Exclusive Or” Operations
Need for Fuzzy . A Crisp \Exclusive Or" . Need for the Least . Least Sensitive For t-Norms and t- . Definition of a Fuzzy . (Most Robust) Main Result Interpretation of the . Fuzzy \Exclusive Or" Fuzzy \Exclusive Or" . Operations Home Page Title Page 1 2 Jesus E. Hernandez and Jaime Nava JJ II 1Department of Electrical and J I Computer Engineering 2Department of Computer Science Page1 of 13 University of Texas at El Paso Go Back El Paso, TX 79968 [email protected] Full Screen [email protected] Close Quit Need for Fuzzy . 1. Need for Fuzzy \Exclusive Or" Operations A Crisp \Exclusive Or" . Need for the Least . • One of the main objectives of fuzzy logic is to formalize For t-Norms and t- . commonsense and expert reasoning. Definition of a Fuzzy . • People use logical connectives like \and" and \or". Main Result • Commonsense \or" can mean both \inclusive or" and Interpretation of the . \exclusive or". Fuzzy \Exclusive Or" . Home Page • Example: A vending machine can produce either a coke or a diet coke, but not both. Title Page • In mathematics and computer science, \inclusive or" JJ II is the one most frequently used as a basic operation. J I • Fact: \Exclusive or" is also used in commonsense and Page2 of 13 expert reasoning. Go Back • Thus: There is a practical need for a fuzzy version. Full Screen • Comment: \exclusive or" is actively used in computer Close design and in quantum computing algorithms Quit Need for Fuzzy . 2. A Crisp \Exclusive Or" Operation: A Reminder A Crisp \Exclusive Or" . Need for the Least .