Operations Research/Statistics Techniques: a Key to Quantitative Data Mining
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Savvy Survey #16: Data Analysis and Survey Results1 Milton G
AEC409 The Savvy Survey #16: Data Analysis and Survey Results1 Milton G. Newberry, III, Jessica L. O’Leary, and Glenn D. Israel2 Introduction In order to evaluate the effectiveness of a program, an agent or specialist may opt to survey the knowledge or Continuing the Savvy Survey Series, this fact sheet is one of attitudes of the clients attending the program. To capture three focused on working with survey data. In its most raw what participants know or feel at the end of a program, he form, the data collected from surveys do not tell much of a or she could implement a posttest questionnaire. However, story except who completed the survey, partially completed if one is curious about how much information their clients it, or did not respond at all. To truly interpret the data, it learned or how their attitudes changed after participation must be analyzed. Where does one begin the data analysis in a program, then either a pretest/posttest questionnaire process? What computer program(s) can be used to analyze or a pretest/follow-up questionnaire would need to be data? How should the data be analyzed? This publication implemented. It is important to consider realistic expecta- serves to answer these questions. tions when evaluating a program. Participants should not be expected to make a drastic change in behavior within the Extension faculty members often use surveys to explore duration of a program. Therefore, an agent should consider relevant situations when conducting needs and asset implementing a posttest/follow up questionnaire in several assessments, when planning for programs, or when waves in a specific timeframe after the program (e.g., six assessing customer satisfaction. -
Evolution of the Infographic
EVOLUTION OF THE INFOGRAPHIC: Then, now, and future-now. EVOLUTION People have been using images and data to tell stories for ages—long before the days of the Internet, smartphones, and Excel. In fact, the history of infographics pre-dates the web by more than 30,000 years with the earliest forms of these visuals being cave paintings that helped early humans find food, resources, and shelter. But as technology has advanced, so has our ability to tell meaningful stories. Here’s a look into the evolution of modern infographics—where they’ve been, how they’ve evolved, and where they’re headed. Then: Printed, static infographics The 20th Century introduced the infographic—a staple for how we communicate, visualize, and share information today. Early on, these print graphics married illustration and data to communicate information in a revolutionary way. ADVANTAGE Design elements enable people to quickly absorb information previously confined to long paragraphs of text. LIMITATION Static infographics didn’t allow for deeper dives into the data to explore granularities. Hoping to drill down for more detail or context? Tough luck—what you see is what you get. Source: http://www.wired.co.uk/news/archive/2012-01/16/painting- by-numbers-at-london-transport-museum INFOGRAPHICS THROUGH THE AGES DOMO 03 Now: Web-based, interactive infographics While the first wave of modern infographics made complex data more consumable, web-based, interactive infographics made data more explorable. These are everywhere today. ADVANTAGE Everyone looking to make data an asset, from executives to graphic designers, are now building interactive data stories that deliver additional context and value. -
Print Prt489138397779225351.Tif (16 Pages)
U.S. Department ofHo1Deland.se¢urUy U.S. Citizenship and Immigration Services Administrative Appeals Office (AAO) 20 Massachusetts Ave., N.W., MS 2090 Washington, DC 20529-2090 (b)(6) U.S. Citizenship and Immigration Services DATE : APR 1 7 2015 OFFICE: CALIFORNIA SERVICE CENTER FILE: INR E: Petitioner: Benef icia ry: PETITION: Petition for a Nonim migrant Worker Pursuant to Section 101(a)(15)(H)(i)(b) of the Immigration and Nationality Act, 8 U.S.C. § 1101(a)(15)(H)(i)(b) ON BEHALF OF PETITIONER : INSTRUCTIONS: Enclosed please find the decision of the Administrative Appeals Office (AAO) in y our case. This is a n on-pre cedent decision. The AAO does not announce new constructions of law nor establish agency policy through non-precedent decisions. I f you believe the AAO incorrectly applied current law or policy to your case or if you seek to present new facts for consideration, you may file a motion to reconsider or a motion to reopen, respectively. Any motion must be filed on a Notice of Appeal or Motion (Form I-290B) within 33 days of the date of this decision. Please review the Form I-290B instructions at http://www.uscis.gov/forms for the latest information on fee, filing location, and other requirements. See also 8 C.F.R. § 103.5. Do not file a motion directly with the AAO. Ron Rose rg Chief, Administrative Appeals Office www.uscis.gov (b)(6) NON-PRECEDENTDECISION Page2 DISCUSSION: The service center director (hereinafter "director") denied the nonimmigrant visa petition, and the matter is now before the Administrative Appeals Office on appeal. -
Using Survey Data Author: Jen Buckley and Sarah King-Hele Updated: August 2015 Version: 1
ukdataservice.ac.uk Using survey data Author: Jen Buckley and Sarah King-Hele Updated: August 2015 Version: 1 Acknowledgement/Citation These pages are based on the following workbook, funded by the Economic and Social Research Council (ESRC). Williamson, Lee, Mark Brown, Jo Wathan, Vanessa Higgins (2013) Secondary Analysis for Social Scientists; Analysing the fear of crime using the British Crime Survey. Updated version by Sarah King-Hele. Centre for Census and Survey Research We are happy for our materials to be used and copied but request that users should: • link to our original materials instead of re-mounting our materials on your website • cite this as an original source as follows: Buckley, Jen and Sarah King-Hele (2015). Using survey data. UK Data Service, University of Essex and University of Manchester. UK Data Service – Using survey data Contents 1. Introduction 3 2. Before you start 4 2.1. Research topic and questions 4 2.2. Survey data and secondary analysis 5 2.3. Concepts and measurement 6 2.4. Change over time 8 2.5. Worksheets 9 3. Find data 10 3.1. Survey microdata 10 3.2. UK Data Service 12 3.3. Other ways to find data 14 3.4. Evaluating data 15 3.5. Tables and reports 17 3.6. Worksheets 18 4. Get started with survey data 19 4.1. Registration and access conditions 19 4.2. Download 20 4.3. Statistics packages 21 4.4. Survey weights 22 4.5. Worksheets 24 5. Data analysis 25 5.1. Types of variables 25 5.2. Variable distributions 27 5.3. -
Monte Carlo Likelihood Inference for Missing Data Models
MONTE CARLO LIKELIHOOD INFERENCE FOR MISSING DATA MODELS By Yun Ju Sung and Charles J. Geyer University of Washington and University of Minnesota Abbreviated title: Monte Carlo Likelihood Asymptotics We describe a Monte Carlo method to approximate the maximum likeli- hood estimate (MLE), when there are missing data and the observed data likelihood is not available in closed form. This method uses simulated missing data that are independent and identically distributed and independent of the observed data. Our Monte Carlo approximation to the MLE is a consistent and asymptotically normal estimate of the minimizer ¤ of the Kullback- Leibler information, as both a Monte Carlo sample size and an observed data sample size go to in¯nity simultaneously. Plug-in estimates of the asymptotic variance are provided for constructing con¯dence regions for ¤. We give Logit-Normal generalized linear mixed model examples, calculated using an R package that we wrote. AMS 2000 subject classi¯cations. Primary 62F12; secondary 65C05. Key words and phrases. Asymptotic theory, Monte Carlo, maximum likelihood, generalized linear mixed model, empirical process, model misspeci¯cation 1 1. Introduction. Missing data (Little and Rubin, 2002) either arise naturally|data that might have been observed are missing|or are intentionally chosen|a model includes random variables that are not observable (called latent variables or random e®ects). A mixture of normals or a generalized linear mixed model (GLMM) is an example of the latter. In either case, a model is speci¯ed for the complete data (x; y), where x is missing and y is observed, by their joint den- sity f(x; y), also called the complete data likelihood (when considered as a function of ). -
ORMS 1020: Operations Research with GNU Octave
ORMS 1020 Operations Research with GNU Octave Tommi Sottinen [email protected] www.uwasa.fi/ tsottine/or_with_octave/ ∼ October 19, 2011 Contents I Introduction and Preliminaries6 1 Selection of Optimization Problems7 1.1 Product Selection Problem.......................7 1.2 Knapsack Problem........................... 10 1.3 Portfolio Selection Problem*...................... 12 1.4 Exercises and Projects......................... 13 2 Short Introduction to Octave 14 2.1 Installing Octave............................ 14 2.2 Octave as Calculator.......................... 15 2.3 Linear Algebra with Octave...................... 18 2.4 Function and Script Files....................... 28 2.5 Octave Programming: glpk Wrapper................. 32 2.6 Exercises and Projects......................... 37 II Linear Programming 39 3 Linear Programs and Their Optima 40 3.1 Form of Linear Program........................ 40 3.2 Location of Linear Programs’ Optima................ 43 3.3 Solution Possibilities of Linear Programs............... 48 3.4 Karush–Kuhn–Tucker Conditions*.................. 53 3.5 Proofs*................................. 54 3.6 Exercises and Projects......................... 56 0.0 CONTENTS 2 4 Simplex Algorithm 58 4.1 Simplex tableaux and General Idea.................. 59 4.2 Top-Level Algorithm.......................... 62 4.3 Initialization Algorithm........................ 66 4.4 Optimality-Checking Algorithm.................... 68 4.5 Tableau Improvement Algorithm................... 71 4.6 Exercises and Projects........................ -
Operations Research for Resource Planning and -Use in Radiotherapy: a Literature Review Bruno Vieira1,2,4*, Erwin W
Vieira et al. BMC Medical Informatics and Decision Making (2016) 16:149 DOI 10.1186/s12911-016-0390-4 RESEARCH ARTICLE Open Access Operations research for resource planning and -use in radiotherapy: a literature review Bruno Vieira1,2,4*, Erwin W. Hans2,3, Corine van Vliet-Vroegindeweij1, Jeroen van de Kamer1 and Wim van Harten1,4,5 Abstract Background: The delivery of radiotherapy (RT) involves the use of rather expensive resources and multi-disciplinary staff. As the number of cancer patients receiving RT increases, timely delivery becomes increasingly difficult due to the complexities related to, among others, variable patient inflow, complex patient routing, and the joint planning of multiple resources. Operations research (OR) methods have been successfully applied to solve many logistics problems through the development of advanced analytical models for improved decision making. This paper presents the state of the art in the application of OR methods for logistics optimization in RT, at various managerial levels. Methods: A literature search was performed in six databases covering several disciplines, from the medical to the technical field. Papers included in the review were published in peer-reviewed journals from 2000 to 2015. Data extraction includes the subject of research, the OR methods used in the study, the extent of implementation according to a six-stage model and the (potential) impact of the results in practice. Results: From the 33 papers included in the review, 18 addressed problems related to patient scheduling (of which 12 focus on scheduling patients on linear accelerators), 8 focus on strategic decision making, 5 on resource capacity planning, and 2 on patient prioritization. -
Interactive Statistical Graphics/ When Charts Come to Life
Titel Event, Date Author Affiliation Interactive Statistical Graphics When Charts come to Life [email protected] www.theusRus.de Telefónica Germany Interactive Statistical Graphics – When Charts come to Life PSI Graphics One Day Meeting Martin Theus 2 www.theusRus.de What I do not talk about … Interactive Statistical Graphics – When Charts come to Life PSI Graphics One Day Meeting Martin Theus 3 www.theusRus.de … still not what I mean. Interactive Statistical Graphics – When Charts come to Life PSI Graphics One Day Meeting Martin Theus 4 www.theusRus.de Interactive Graphics ≠ Dynamic Graphics • Interactive Graphics … uses various interactions with the plots to change selections and parameters quickly. Interactive Statistical Graphics – When Charts come to Life PSI Graphics One Day Meeting Martin Theus 4 www.theusRus.de Interactive Graphics ≠ Dynamic Graphics • Interactive Graphics … uses various interactions with the plots to change selections and parameters quickly. • Dynamic Graphics … uses animated / rotating plots to visualize high dimensional (continuous) data. Interactive Statistical Graphics – When Charts come to Life PSI Graphics One Day Meeting Martin Theus 4 www.theusRus.de Interactive Graphics ≠ Dynamic Graphics • Interactive Graphics … uses various interactions with the plots to change selections and parameters quickly. • Dynamic Graphics … uses animated / rotating plots to visualize high dimensional (continuous) data. 1973 PRIM-9 Tukey et al. Interactive Statistical Graphics – When Charts come to Life PSI Graphics One Day Meeting Martin Theus 4 www.theusRus.de Interactive Graphics ≠ Dynamic Graphics • Interactive Graphics … uses various interactions with the plots to change selections and parameters quickly. • Dynamic Graphics … uses animated / rotating plots to visualize high dimensional (continuous) data. -
Operations Research in the Natural Resource Industry
Operations Research in the Natural Resource Industry T. Bjørndal∗ • I. Herrero∗∗ • A. Newman§ • C. Romero† • A. Weintraub‡ ∗Portsmouth Business School, University of Portsmouth, Portsmouth, United Kingdom ∗∗Department of Economy and Business, University Pablo de Olavide, Seville, Spain §Division of Economics and Business, Colorado School of Mines, Golden, CO 80401 USA †Department of Forest Economics and Management, Technical University of Madrid, Madrid, Spain ‡Industrial Engineering Department, University of Chile, Santiago, Chile [email protected] • [email protected] • [email protected] • [email protected] • [email protected] Abstract Operations research is becoming increasingly prevalent in the natural resource sector, specif- ically, in agriculture, fisheries, forestry and mining. While there are similar research questions in these areas, e.g., how to harvest and/or extract the resources and how to account for environ- mental impacts, there are also differences, e.g., the length of time associated with a growth and harvesting or extraction cycle, and whether or not the resource is renewable. Research in all four areas is at different levels of advancement in terms of the methodology currently developed and the acceptance of implementable plans and policies. In this paper, we review the most recent and seminal work in all four areas, considering modeling, algorithmic developments, and application. Keywords: operations research, optimization, simulation, stochastic modeling, literature re- view, natural resources, agriculture, fisheries, forestry, mining §Corresponding author 1 1 Introduction Operations research has played an important role in the analysis and decision making of natural resources, specifically, in agriculture, fisheries, forestry and mining, in the last 40 years (Weintraub et al., 2007). -
Questionnaire Analysis Using SPSS
Questionnaire design and analysing the data using SPSS page 1 Questionnaire design. For each decision you make when designing a questionnaire there is likely to be a list of points for and against just as there is for deciding on a questionnaire as the data gathering vehicle in the first place. Before designing the questionnaire the initial driver for its design has to be the research question, what are you trying to find out. After that is established you can address the issues of how best to do it. An early decision will be to choose the method that your survey will be administered by, i.e. how it will you inflict it on your subjects. There are typically two underlying methods for conducting your survey; self-administered and interviewer administered. A self-administered survey is more adaptable in some respects, it can be written e.g. a paper questionnaire or sent by mail, email, or conducted electronically on the internet. Surveys administered by an interviewer can be done in person or over the phone, with the interviewer recording results on paper or directly onto a PC. Deciding on which is the best for you will depend upon your question and the target population. For example, if questions are personal then self-administered surveys can be a good choice. Self-administered surveys reduce the chance of bias sneaking in via the interviewer but at the expense of having the interviewer available to explain the questions. The hints and tips below about questionnaire design draw heavily on two excellent resources. SPSS Survey Tips, SPSS Inc (2008) and Guide to the Design of Questionnaires, The University of Leeds (1996). -
From a to B with Edsger and Friends
C H A P T E R 9 ■ ■ ■ 2 # 2 The shortest distance between two points is under construction. —Noelie Altito It’s time to return to the second problem from the introduction:1 how do you find the shortest route from Kashgar to Ningbo? If you pose this problem to any map software, you’d probably get the answer in less than a second. By now, this probably seems less mysterious than it (maybe) did initially, and you even have tools that could help you write such a program. You know that BFS would find the shortest path if all stretches of road had the same length, and you could use the DAG shortest path algorithm as long as you didn’t have any cycles in your graph. Sadly, the road map of China contains both cycles and roads of unequal length. Luckily, however, this chapter will give you the algorithms you need to solve this problem efficiently! And lest you think all this chapter is good for is writing map software, consider what other contexts the abstraction of shortest paths might be useful. For example, you could use it in any situation where you’d like to efficiently navigate a network, which would include all kinds of routing of packets over the Internet. In fact, the ’net is stuffed with such routing algorithms, all working behind the scenes. But such algorithms are also used in less obviously graph-like navigation, such as having characters move about intelligently in computer games. Or perhaps you’re trying to find the lowest number of moves to solve some form of puzzle? That would be equivalent to finding the shortest path in its state space—the abstract graph representing the puzzle states (nodes) and moves (edges). -
STANDARDS and GUIDELINES for STATISTICAL SURVEYS September 2006
OFFICE OF MANAGEMENT AND BUDGET STANDARDS AND GUIDELINES FOR STATISTICAL SURVEYS September 2006 Table of Contents LIST OF STANDARDS FOR STATISTICAL SURVEYS ....................................................... i INTRODUCTION......................................................................................................................... 1 SECTION 1 DEVELOPMENT OF CONCEPTS, METHODS, AND DESIGN .................. 5 Section 1.1 Survey Planning..................................................................................................... 5 Section 1.2 Survey Design........................................................................................................ 7 Section 1.3 Survey Response Rates.......................................................................................... 8 Section 1.4 Pretesting Survey Systems..................................................................................... 9 SECTION 2 COLLECTION OF DATA................................................................................... 9 Section 2.1 Developing Sampling Frames................................................................................ 9 Section 2.2 Required Notifications to Potential Survey Respondents.................................... 10 Section 2.3 Data Collection Methodology.............................................................................. 11 SECTION 3 PROCESSING AND EDITING OF DATA...................................................... 13 Section 3.1 Data Editing ........................................................................................................