Operational Neural Networks Serkan Kiranyaz1, Turker Ince2, Alexandros Iosifidis3 and Moncef Gabbouj4 1 Electrical Engineering, College of Engineering, Qatar University, Qatar; e-mail:
[email protected] 2 Electrical & Electronics Engineering Department, Izmir University of Economics, Turkey; e-mail:
[email protected] 3 Department of Engineering, Aarhus University, Denmark; e-mail:
[email protected] 4 Department of Signal Processing, Tampere University of Technology, Finland; e-mail:
[email protected] network architectures based on the data at hand, either progressively Abstract— Feed-forward, fully-connected Artificial Neural [4], [5] or by following extremely laborious search strategies [6]- Networks (ANNs) or the so-called Multi-Layer Perceptrons [10], the resulting network architectures may still exhibit a varying (MLPs) are well-known universal approximators. However, or entirely unsatisfactory performance levels especially when facing their learning performance varies significantly depending on the with highly complex and nonlinear problems. This is mainly due to function or the solution space that they attempt to approximate. the fact that all such traditional neural networks employ a This is mainly because of their homogenous configuration based homogenous network structure consisting of only a crude model of solely on the linear neuron model. Therefore, while they learn the biological neurons. This neuron model is capable of performing very well those problems with a monotonous, relatively simple only the linear transformation (i.e., linear weighted sum) [12] while and linearly separable solution space, they may entirely fail to the biological neurons or neural systems in general are built from a do so when the solution space is highly nonlinear and complex.