Importance Sampling in the Heath-Jarrow-Morton Framework

Total Page:16

File Type:pdf, Size:1020Kb

Importance Sampling in the Heath-Jarrow-Morton Framework Importance Sampling in the Heath-Jarrow-Morton Framework PAUL GLASSERMAN, PHILIP HEIDELBERGER, AND PERWEZ SHAHABUDDIN PAUL This article develops a variance-reduction tech- measuring the risks in derivatives portfo- GLASSERMAN is a nique for pricing derivatives by simulation in high- lios. The more realistic — and thus more professor at the Grad- dimensional multifactor models. A premise of this complex — the pricing model used, the uate School of Busi- ness at Columbia work is that the greatest gains in simulation effi- more likely that Monte Carlo will be the University in New ciency come from taking advantage of the structure only viable numerical method for working York. of both the cash flows of a security and the model with the model. The applicability of simu- in which it is priced. For this to be feasible in prac- lation is relatively insensitive to model PHILIP tice requires automating the identification and use details and — in sharp contrast with deter- HEIDELBERGER is a research staff member of relevant structure. ministic numerical methods — to model at the IBM Research dimension. The relevant notion of dimen- Division in Yorktown We exploit model and payoff structure through a sion can vary from one setting to another, Heights, New York. combination of importance sampling and stratified but in general increasing the number of sampling. The importance sampling applies a underlying assets, the number of factors, or PERWEZ change of drift to the underlying factors; we select the number of time steps all increase SHAHABUDDIN is an associate professor the drift by first solving an optimization problem. dimension. Multifactor models of the evo- in the IEOR depart- We then identify a particularly effective direction lution of the yield curve are a particularly ment at Columbia for stratified sampling (which may be thought of as important class of high-dimensional prob- University. an approximate numerical integration) by solving lems often requiring simulation. an eigenvector problem. The main limitation of Monte Carlo simulation is that it is rather slow; put a dif- Examples illustrate that the combination of the ferent way, the results obtained from Monte methods can produce enormous variance reduction Carlo in a short amount of computing time even in high-dimensional multifactor models. The can be very imprecise. Because numerical method introduces some computational overhead in results obtained through Monte Carlo are solving the optimization and eigenvector problems; statistical estimates, their precision is best to address this, we propose and evaluate approxi- measured through their standard error, mate solution procedures, which enhance the appli- which is ordinarily the ratio of a standard cability of the method. deviation per observation to the square root of the number of observations. It follows that there are two ways of onte Carlo simulation has increasing precision: reducing the numera- become an essential tool for tor, or increasing the denominator. Given a pricing and hedging complex fixed time allocated for computing a price, Mderivative securities and for increasing the number of observations 32 IMPORTANCE SAMPLING IN THE HEATH-JARROW-MORTON FRAMEWORK FALL 1999 entails using a faster machine or finding programming eigenvector problem. The calculation of these quanti- speed-ups; such opportunities are fairly quickly ties is a “preprocessing” step of the method (executed exhausted. This leaves the numerator of the standard before any paths are simulated) that systematically iden- error as the main opportunity for improvements. Vari- tifies structure to be exploited by the variance-reduc- ance-reduction techniques attempt to improve the tion methods. precision of Monte Carlo estimates by reducing the In GHS we give a theoretical analysis of this standard deviation (and thus variance) per observation. method based, in part, on scaling the randomness in The literature on Monte Carlo simulation offers the underlying model by a parameter e and investigat- a broad range of methods for attempting to reduce vari- ing asymptotics as eÆ0. Asymptotic optimality prop- ance. The effectiveness of these methods varies widely erties of the method are established in GHS. We test- across applications. In practice, the most commonly ed the method on three types of examples: Asian used methods are the simplest ones, particularly anti- options, a stochastic volatility model, and the Cox- thetic variates and control variates. These can be very Ingersoll-Ross short rate model. Our numerical results effective in some cases, and provide almost no benefit indicate substantial potential for variance reduction in others. Some of the most powerful methods — using the method. importance sampling is a good example — get much The purpose of this article is to develop and less use, in part because they are more difficult to work investigate the use of the method in a much more ambi- with, but also because if used improperly they can give tious class of models — multifactor models of the entire disastrous results. This situation can leave users of term structure of interest rates of the Heath-Jarrow- Monte Carlo in a quandary, not knowing what meth- Morton [1992] type. Using, for example, quarterly rates ods to use in what settings. with a twenty-year horizon makes the state vector for A premise of our work is that the greatest gains such a model eighty-dimensional. Simulating this vector from the use of variance-reduction techniques rely on for m steps in a d-factor model corresponds to sampling exploiting the special structure of a problem or model. in an md-dimensional space, easily making the dimen- The identification of special structure should be auto- sion very large. mated to the extent possible so that each application The preprocessing phase of our method selects a does not require a separate investigation. This perspec- drift for the model — tailored to the factor structure tive is particularly relevant to importance sampling, and the payoff of the instrument to be priced — that which seeks to improve precision by focusing simula- drives the evolution of the forward curve to the most tion effort on the most important regions of the space important region. “Importance” is measured by the from which samples are drawn. Which regions are most product of the discounted payoff from a path and the important depends critically on the underlying model probability density of the path. To further reduce vari- and also on the form of the payoff of the particular ance, we stratify linear combinations of the input ran- security to be priced. The use of importance sampling dom variables, the choice of linear combination also thus requires adaptation to each payoff and each model; tailored to the factor structure and the payoff. The for this to be feasible in practice requires that the adap- complexity of the HJM setting necessitates some sim- tation be automated. plification in the implementation of the preprocessing In Glasserman, Heidelberger, and Shahabuddin calculations, so in addition to investigating the use of [1999] (henceforth GHS), we propose and analyze a the basic method from GHS, we propose and evaluate variance-reduction technique that combines impor- some approximations. tance sampling (based on a change of drift in the under- We test the methods in pricing caps and swap- lying stochastic processes) with stratified sampling. As tions (important for fast calibration), yield spread general methods for variance reduction, these are both options, and flex caps. Our numerical results support the reasonably standard; the innovation in GHS [1999] lies viability of the method in the HJM setting. in the approach used to select the change of drift and the directions along which to stratify. I. OVERVIEW OF THE METHOD In the most general version of the method, the new drift is computed by solving an optimization The general simulation method in GHS [1999], problem, and the stratification direction solves an based on combining importance sampling and strati- FALL 1999 THE JOURNAL OF DERIVATIVES 33 fied sampling, applies to the estimation of an expres- Expectations of functions of X^ may be viewed as sion of the form E[G(Z)] where Z has the standard n- integrals with respect to this density. dimensional normal distribution, and G takes non- More specifically, suppose (1) and (2) give the negative values. G is the discounted payoff of a dynamics of all relevant state variables, including the derivative security, and Z the vector of stochastic value of whatever asset is chosen as numeraire, under the inputs to the simulation. martingale measure associated with the chosen numeraire. (Later, we specialize to the case where Xt The Setting records the forward curve at time t, the numeraire is the money market account, and the martingale measure is Although it is not required for the method, it is the usual risk-neutral measure.) useful to frame the general setting as one of simulating By including enough information in the state a vector diffusion process of the form vector Xt, we can ordinarily make the discounted payoff of a derivative security a deterministic func- ^ dXt = m(Xt, t)dt + s(Xt, t)dWt (1) tion of the path of Xt (or its approximation Xina simulation). The price of the derivative security is the expectation of this discounted payoff. But the where Xt and m(Xt, t) are k-vectors; s(Xt, t) is a k ¥ d path of X^ is itself some deterministic function of the matrix; and Wt is a d-dimensional standard Brownian motion. Processes of this form are commonly simulat- n-dimensional random vector Z, so by letting G ed through a discrete-time approximation (an Euler denote the composition of these two functions we scheme) of the form may denote by G(Z) the discounted payoff of the derivative security associated with input Z. The price of the derivative is XXXitXitZˆˆˆ( ˆ ,) ˆ( ˆ ,) iii++11=+msDD + i i(2) ^ ^ af==ÚEGZ[ ( )]n Gz ()n () zdz (3) where m and s are discrete approximations to the con- R tinuous coefficients; Dt is the simulation time step; and Pricing by Monte Carlo may be viewed as a way of esti- mating such an integral.
Recommended publications
  • Lecture 15: Approximate Inference: Monte Carlo Methods
    10-708: Probabilistic Graphical Models 10-708, Spring 2017 Lecture 15: Approximate Inference: Monte Carlo methods Lecturer: Eric P. Xing Name: Yuan Liu(yuanl4), Yikang Li(yikangl) 1 Introduction We have already learned some exact inference methods in the previous lectures, such as the elimination algo- rithm, message-passing algorithm and the junction tree algorithms. However, there are many probabilistic models of practical interest for which exact inference is intractable. One important class of inference algo- rithms is based on deterministic approximation schemes and includes methods such as variational methods. This lecture will include an alternative very general and widely used framework for approximate inference based on stochastic simulation through sampling, also known as the Monte Carlo methods. The purpose of the Monte Carlo method is to find the expectation of some function f(x) with respect to a probability distribution p(x). Here, the components of x might comprise of discrete or continuous variables, or some combination of the two. Z hfi = f(x)p(x)dx The general idea behind sampling methods is to obtain a set of examples x(t)(where t = 1; :::; N) drawn from the distribution p(x). This allows the expectation (1) to be approximated by a finite sum N 1 X f^ = f(x(t)) N t=1 If the samples x(t) is i.i.d, it is clear that hf^i = hfi, and the variance of the estimator is h(f − hfi)2i=N. Monte Carlo methods work by drawing samples from the desired distribution, which can be accomplished even when it it not possible to write out the pdf.
    [Show full text]
  • Estimating Standard Errors for Importance Sampling Estimators with Multiple Markov Chains
    Estimating standard errors for importance sampling estimators with multiple Markov chains Vivekananda Roy1, Aixin Tan2, and James M. Flegal3 1Department of Statistics, Iowa State University 2Department of Statistics and Actuarial Science, University of Iowa 3Department of Statistics, University of California, Riverside Aug 10, 2016 Abstract The naive importance sampling estimator, based on samples from a single importance density, can be numerically unstable. Instead, we consider generalized importance sampling estimators where samples from more than one probability distribution are combined. We study this problem in the Markov chain Monte Carlo context, where independent samples are replaced with Markov chain samples. If the chains converge to their respective target distributions at a polynomial rate, then under two finite moment conditions, we show a central limit theorem holds for the generalized estimators. Further, we develop an easy to implement method to calculate valid asymptotic standard errors based on batch means. We also provide a batch means estimator for calculating asymptotically valid standard errors of Geyer’s (1994) reverse logistic estimator. We illustrate the method via three examples. In particular, the generalized importance sampling estimator is used for Bayesian spatial modeling of binary data and to perform empirical Bayes variable selection where the batch means estimator enables standard error calculations in high-dimensional settings. arXiv:1509.06310v2 [math.ST] 11 Aug 2016 Key words and phrases: Bayes factors, Markov chain Monte Carlo, polynomial ergodicity, ratios of normalizing constants, reverse logistic estimator. 1 Introduction Let π(x) = ν(x)=m be a probability density function (pdf) on X with respect to a measure µ(·). R Suppose f : X ! R is a π integrable function and we want to estimate Eπf := X f(x)π(x)µ(dx).
    [Show full text]
  • Distilling Importance Sampling
    Distilling Importance Sampling Dennis Prangle1 1School of Mathematics, University of Bristol, United Kingdom Abstract in almost any setting, including in the presence of strong posterior dependence or discrete random variables. How- ever it only achieves a representative weighted sample at a Many complicated Bayesian posteriors are difficult feasible cost if the proposal is a reasonable approximation to approximate by either sampling or optimisation to the target distribution. methods. Therefore we propose a novel approach combining features of both. We use a flexible para- An alternative to Monte Carlo is to use optimisation to meterised family of densities, such as a normal- find the best approximation to the posterior from a family of ising flow. Given a density from this family approx- distributions. Typically this is done in the framework of vari- imating the posterior, we use importance sampling ational inference (VI). VI is computationally efficient but to produce a weighted sample from a more accur- has the drawback that it often produces poor approximations ate posterior approximation. This sample is then to the posterior distribution e.g. through over-concentration used in optimisation to update the parameters of [Turner et al., 2008, Yao et al., 2018]. the approximate density, which we view as dis- A recent improvement in VI is due to the development of tilling the importance sampling results. We iterate a range of flexible and computationally tractable distribu- these steps and gradually improve the quality of the tional families using normalising flows [Dinh et al., 2016, posterior approximation. We illustrate our method Papamakarios et al., 2019a]. These transform a simple base in two challenging examples: a queueing model random distribution to a complex distribution, using a se- and a stochastic differential equation model.
    [Show full text]
  • Importance Sampling & Sequential Importance Sampling
    Importance Sampling & Sequential Importance Sampling Arnaud Doucet Departments of Statistics & Computer Science University of British Columbia A.D. () 1 / 40 Each distribution πn (dx1:n) = πn (x1:n) dx1:n is known up to a normalizing constant, i.e. γn (x1:n) πn (x1:n) = Zn We want to estimate expectations of test functions ϕ : En R n ! Eπn (ϕn) = ϕn (x1:n) πn (dx1:n) Z and/or the normalizing constants Zn. We want to do this sequentially; i.e. …rst π1 and/or Z1 at time 1 then π2 and/or Z2 at time 2 and so on. Generic Problem Consider a sequence of probability distributions πn n 1 de…ned on a f g sequence of (measurable) spaces (En, n) n 1 where E1 = E, f F g 1 = and En = En 1 E, n = n 1 . F F F F F A.D. () 2 / 40 We want to estimate expectations of test functions ϕ : En R n ! Eπn (ϕn) = ϕn (x1:n) πn (dx1:n) Z and/or the normalizing constants Zn. We want to do this sequentially; i.e. …rst π1 and/or Z1 at time 1 then π2 and/or Z2 at time 2 and so on. Generic Problem Consider a sequence of probability distributions πn n 1 de…ned on a f g sequence of (measurable) spaces (En, n) n 1 where E1 = E, f F g 1 = and En = En 1 E, n = n 1 . F F F F F Each distribution πn (dx1:n) = πn (x1:n) dx1:n is known up to a normalizing constant, i.e.
    [Show full text]
  • Blackimportance Sampling and Its Optimality for Stochastic
    Electronic Journal of Statistics ISSN: 1935-7524 Importance Sampling and its Optimality for Stochastic Simulation Models Yen-Chi Chen and Youngjun Choe University of Washington, Department of Statistics Seattle, WA 98195 e-mail: [email protected]∗ University of Washington, Department of Industrial and Systems Engineering Seattle, WA 98195 e-mail: [email protected]∗ Abstract: We consider the problem of estimating an expected outcome from a stochastic simulation model. Our goal is to develop a theoretical framework on importance sampling for such estimation. By investigating the variance of an importance sampling estimator, we propose a two-stage procedure that involves a regression stage and a sampling stage to construct the final estimator. We introduce a parametric and a nonparametric regres- sion estimator in the first stage and study how the allocation between the two stages affects the performance of the final estimator. We analyze the variance reduction rates and derive oracle properties of both methods. We evaluate the empirical performances of the methods using two numerical examples and a case study on wind turbine reliability evaluation. MSC 2010 subject classifications: Primary 62G20; secondary 62G86, 62H30. Keywords and phrases: nonparametric estimation, stochastic simulation model, oracle property, variance reduction, Monte Carlo. 1. Introduction The 2011 Fisher lecture (Wu, 2015) features the landscape change in engineer- ing, where computer simulation experiments are replacing physical experiments thanks to the advance of modeling and computing technologies. An insight from the lecture highlights that traditional principles for physical experiments do not necessarily apply to virtual experiments on a computer. The virtual environ- ment calls for new modeling and analysis frameworks distinguished from those arXiv:1710.00473v2 [stat.ME] 25 Sep 2019 developed under the constraint of physical environment.
    [Show full text]
  • Importance Sampling: Intrinsic Dimension And
    Submitted to Statistical Science Importance Sampling: Intrinsic Dimension and Computational Cost S. Agapiou∗, O. Papaspiliopoulos† D. Sanz-Alonso‡ and A. M. Stuart§ Abstract. The basic idea of importance sampling is to use independent samples from a proposal measure in order to approximate expectations with respect to a target measure. It is key to understand how many samples are required in order to guarantee accurate approximations. Intuitively, some notion of distance between the target and the proposal should determine the computational cost of the method. A major challenge is to quantify this distance in terms of parameters or statistics that are pertinent for the practitioner. The subject has attracted substantial interest from within a variety of communities. The objective of this paper is to overview and unify the resulting literature by creating an overarching framework. A general theory is presented, with a focus on the use of importance sampling in Bayesian inverse problems and filtering. 1. INTRODUCTION 1.1 Our Purpose Our purpose in this paper is to overview various ways of measuring the com- putational cost of importance sampling, to link them to one another through transparent mathematical reasoning, and to create cohesion in the vast pub- lished literature on this subject. In addressing these issues we will study impor- tance sampling in a general abstract setting, and then in the particular cases of arXiv:1511.06196v3 [stat.CO] 14 Jan 2017 Bayesian inversion and filtering. These two application settings are particularly important as there are many pressing scientific, technological and societal prob- lems which can be formulated via inversion or filtering.
    [Show full text]
  • Importance Sampling
    Deep Learning Srihari Importance Sampling Sargur N. Srihari [email protected] 1 Deep Learning Srihari Topics in Monte Carlo Methods 1. Sampling and Monte Carlo Methods 2. Importance Sampling 3. Markov Chain Monte Carlo Methods 4. Gibbs Sampling 5. Mixing between separated modes 2 Deep Learning Srihari Importance Sampling: Choice of p(x) • Sum of integrand to be computed: Discrete case Continuous case s = p(x)f(x) = E ⎡f(x)⎤ s = p(x)f(x)dx = E ⎡f(x)⎤ ∑ p ⎣ ⎦ ∫ p ⎣ ⎦ x • An important step is deciding which part of the integrand has the role of the probability p(x) – from which we sample x(1),..x(n) • And which part has role of f (x) whose expected value (under the probability distribution) is estimated as 1 n sˆ f( (i)) n = ∑ x n i=1 Deep Learning Decomposition of Integrand Srihari • In the equation s = ∑ p(x)f(x) s = ∫ p(x)f(x)dx x • There is no unique decomposition because. p(x) f (x) can be rewritten as p(x)f(x) p(x)f(x) = q(x) q( ) x – where we now sample from q and average p(x)f(x) q( ) x s = p(x)f(x)dx – In many cases the problem ∫ is specified naturally as expectation of f (x) given distribution p(x) • But it may not be optimal in no of samples required Deep LearningDifficulty of sampling from p(x) Srihari • Principal reason for sampling p(x) is evaluating expectation of some f (x) E[f ] = f(x)p(x)dx ∫ • Given samples x(i), i=1,..,n, from p(x), the finite sum approximation is 1 n fˆ = f (x (i) ) n∑ i=1 • But drawing samples p(x) may be impractical 5 Deep Learning Srihari Using a proposal distribution Rejection sampling uses
    [Show full text]
  • Uniformly Efficient Importance Sampling for the Tail Distribution Of
    MATHEMATICS OF OPERATIONS RESEARCH Vol. 33, No. 1, February 2008, pp. 36–50 informs ® issn 0364-765X eissn 1526-5471 08 3301 0036 doi 10.1287/moor.1070.0276 © 2008 INFORMS Uniformly Efficient Importance Sampling for the Tail Distribution of Sums of Random Variables Paul Glasserman Columbia University, New York, New York 10027 [email protected], http://www2.gsb.columbia.edu/faculty/pglasserman/ .org/. Sandeep Juneja ms Tata Institute of Fundamental Research, Mumbai, India 400005 author(s). or [email protected], http://www.tcs.tifr.res.in/~sandeepj/ .inf the Successful efficient rare-event simulation typically involves using importance sampling tailored to a specific rare event. However, in applications one may be interested in simultaneous estimation of many probabilities or even an entire distribution. to nals In this paper, we address this issue in a simple but fundamental setting. Specifically, we consider the problem of efficient estimation of the probabilities PSn ≥ na for large n, for all a lying in an interval , where Sn denotes the sum of n tesy independent, identically distributed light-tailed random variables. Importance sampling based on exponential twisting is known to produce asymptotically efficient estimates when reduces to a single point. We show, however, that this procedure fails http://jour cour to be asymptotically efficient throughout when contains more than one point. We analyze the best performance that can at a be achieved using a discrete mixture of exponentially twisted distributions, and then present a method using a continuous le mixture. We show that a continuous mixture of exponentially twisted probabilities and a discrete mixture with a sufficiently as large number of components produce asymptotically efficient estimates for all a ∈ simultaneously.
    [Show full text]
  • Advances in Importance Sampling Arxiv:2102.05407V2 [Stat.CO]
    Advances in Importance Sampling V´ıctorElvira? and Luca Martinoy ? School of Mathematics, University of Edinburgh (United Kingdom) y Universidad Rey Juan Carlos de Madrid (Spain) Abstract Importance sampling (IS) is a Monte Carlo technique for the approximation of intractable distributions and integrals with respect to them. The origin of IS dates from the early 1950s. In the last decades, the rise of the Bayesian paradigm and the increase of the available computational resources have propelled the interest in this theoretically sound methodology. In this paper, we first describe the basic IS algorithm and then revisit the recent advances in this methodology. We pay particular attention to two sophisticated lines. First, we focus on multiple IS (MIS), the case where more than one proposal is available. Second, we describe adaptive IS (AIS), the generic methodology for adapting one or more proposals. Keywords: Monte Carlo methods, computational statistics, importance sampling. 1 Problem Statement In many problems of science and engineering intractable integrals must be approximated. Let us denote an integral of interest Z I(f) = E [f(x)] = f(x)π(x)dx; (1) πe e dx dx 1 where f : R ! R, and πe(x) is a distribution of the r.v. X 2 R . Note that although Eq. (1) involves a distribution, more generic integrals could be targeted with the techniques described below. The integrals of this form appear often in the Bayesian framework, where a set of observations are available in y 2 Rdy , and the goal is in inferring some hidden parameters and/or latent arXiv:2102.05407v2 [stat.CO] 23 Apr 2021 variables x 2 Rdy that are connected to the observations through a probabilistic model [61].
    [Show full text]
  • Sampling and Monte Carlo Integration
    Sampling and Monte Carlo Integration Michael Gutmann Probabilistic Modelling and Reasoning (INFR11134) School of Informatics, University of Edinburgh Spring semester 2018 Recap Learning and inference often involves intractable integrals, e.g. I Marginalisation Z p(x) = p(x, y)dy y I Expectations Z E [g(x) | yo] = g(x)p(x|yo)dx for some function g. I For unobserved variables, likelihood and gradient of the log lik Z L(θ) = p(D; θ) = p(u, D; θdu), u ∇θ`(θ) = Ep(u|D;θ) [∇θ log p(u, D; θ)] Notation: Ep(x) is sometimes used to indicate that the expectation is taken with respect to p(x). Michael Gutmann Sampling and Monte Carlo Integration 2 / 41 Recap Learning and inference often involves intractable integrals, e.g. I For unnormalised models with intractable partition functions p˜(D; θ) L(θ) = R x p˜(x; θ)dx ∇θ`(θ) ∝ m(D; θ) − Ep(x;θ) [m(x; θ)] I Combined case of unnormalised models with intractable partition functions and unobserved variables. I Evaluation of intractable integrals can sometimes be avoided by using other learning criteria (e.g. score matching). I Here: methods to approximate integrals like those above using sampling. Michael Gutmann Sampling and Monte Carlo Integration 3 / 41 Program 1. Monte Carlo integration 2. Sampling Michael Gutmann Sampling and Monte Carlo Integration 4 / 41 Program 1. Monte Carlo integration Approximating expectations by averages Importance sampling 2. Sampling Michael Gutmann Sampling and Monte Carlo Integration 5 / 41 Averages with iid samples I Tutorial 7: For Gaussians, the sample average is an estimate (MLE) of the mean (expectation) E[x] 1 n x¯ = X x ≈ [x] n i E i=1 I Gaussianity not needed: assume xi are iid observations of x ∼ p(x).
    [Show full text]
  • Monte Carlo Integration
    A Monte Carlo Integration HE techniques developed in this dissertation are all Monte Carlo methods. Monte Carlo T methods are numerical techniques which rely on random sampling to approximate their results. Monte Carlo integration applies this process to the numerical estimation of integrals. In this appendix we review the fundamental concepts of Monte Carlo integration upon which our methods are based. From this discussion we will see why Monte Carlo methods are a particularly attractive choice for the multidimensional integration problems common in computer graphics. Good references for Monte Carlo integration in the context of computer graphics include Pharr and Humphreys[2004], Dutré et al.[2006], and Veach[1997]. The term “Monte Carlo methods” originated at the Los Alamos National Laboratory in the late 1940s during the development of the atomic bomb [Metropolis and Ulam, 1949]. Not surprisingly, the development of these methods also corresponds with the invention of the first electronic computers, which greatly accelerated the computation of repetitive numerical tasks. Metropolis[1987] provides a detailed account of the origins of the Monte Carlo method. Las Vegas algorithms are another class of method which rely on randomization to compute their results. However, in contrast to Las Vegas algorithms, which always produce the exact or correct solution, the accuracy of Monte Carlo methods can only be analyzed from a statistical viewpoint. Because of this, we first review some basic principles from probability theory before formally describing Monte Carlo integration. 149 150 A.1 Probability Background In order to define Monte Carlo integration, we start by reviewing some basic ideas from probability.
    [Show full text]
  • 9 Importance Sampling 3 9.1 Basic Importance Sampling
    Contents 9 Importance sampling 3 9.1 Basic importance sampling . 4 9.2 Self-normalized importance sampling . 8 9.3 Importance sampling diagnostics . 11 9.4 Example: PERT . 13 9.5 Importance sampling versus acceptance-rejection . 17 9.6 Exponential tilting . 18 9.7 Modes and Hessians . 19 9.8 General variables and stochastic processes . 21 9.9 Example: exit probabilities . 23 9.10 Control variates in importance sampling . 25 9.11 Mixture importance sampling . 27 9.12 Multiple importance sampling . 31 9.13 Positivisation . 33 9.14 What-if simulations . 35 End notes . 37 Exercises . 40 1 2 Contents © Art Owen 2009{2013,2018 do not distribute or post electronically without author's permission 9 Importance sampling In many applications we want to compute µ = E(f(X)) where f(x) is nearly zero outside a region A for which P(X 2 A) is small. The set A may have small volume, or it may be in the tail of the X distribution. A plain Monte Carlo sample from the distribution of X could fail to have even one point inside the region A. Problems of this type arise in high energy physics, Bayesian inference, rare event simulation for finance and insurance, and rendering in computer graphics among other areas. It is clear intuitively that we must get some samples from the interesting or important region. We do this by sampling from a distribution that over- weights the important region, hence the name importance sampling. Having oversampled the important region, we have to adjust our estimate somehow to account for having sampled from this other distribution.
    [Show full text]