Ten Key Issues in Modern Flow Chemistry Jens Wegner, Sascha Ceylan and Andreas Kirschning*

Total Page:16

File Type:pdf, Size:1020Kb

Ten Key Issues in Modern Flow Chemistry Jens Wegner, Sascha Ceylan and Andreas Kirschning* View Article Online / Journal Homepage / Table of Contents for this issue ChemComm Dynamic Article Links Cite this: Chem. Commun., 2011, 47, 4583–4592 www.rsc.org/chemcomm HIGHLIGHT Ten key issues in modern flow chemistry Jens Wegner, Sascha Ceylan and Andreas Kirschning* DOI: 10.1039/c0cc05060a Ten essentials of synthesis in the flow mode, a new enabling technology in organic chemistry, are highlighted as flashlighted providing an insight into current and future issues and developments in this field. Why flow? An effort to today. We all work with standardised chemical and biotechnological production.2 provide a brief introduction glassware, use somewhat sophisticated Several advantages have been recognised ways of stirring and after a battle of at such as facile automation, secured For chemists from Liebig’s time being least two decades we accept that micro- reproducibility, improved safety and transferred into a common synthetic wave radiation can beneficially be added process reliability. Indeed, with continu- laboratory of the 20th century, most to the portfolio of classical heating ous flow processes constant reaction equipment would look very familiar devices.1 Indeed chemists have mainly parameters (temperature, time, amount been focused on the chemistry occurring of reagents and solvents, efficient mixing, Institute of Organic Chemistry and Center of inside the flasks or reaction vessels and etc.) can easily be assured. Over the past Biomolecular Drug Research (BMWZ), they have done so in a very elaborated 15 years, miniaturisation has entered the Leibniz Universita¨t Hannover, and successful manner. Despite their field of flow chemistry and modern Schneiderberg 1b, 30167 Hannover, Germany. many advantages continuous flow developments commonly deal with E-mail: [email protected]; Fax: +49 (0)511 7623011; processes have commonly flourished micro- and microfluidic (or mesofluidic) Tel: +49 (0)511 7624614 only in the industrial environment of flow devices (see issue 1 below).3 With Jens Wegner (left) was born in 1982 in Nordhorn, Germany. He studied chemistry at the Leibniz University Hannover where he received his diploma degree in 2008. He is currently performing Published on 15 March 2011. Downloaded by Technische Informationsbibliothek (TIB) 26/10/2017 08:50:51. his doctoral studies at Hannover under the supervision of Prof. Andreas Kirschning with the aid of a scholarship by the Fonds der Chemischen Industrie. In 2010 he spent several months in the group of Prof. S. V. Ley at Cambridge University (UK). His research is focussed on the development of an inductively heated micro flow system for organic synthesis. A key aspect of his work is the implementation of a multi- step reaction and an immobilised catalyst into micro flow systems. Sascha Ceylan (right) was born in Augsburg, Germany, in 1981 and studied chemistry at Leibniz University Hannover and at Jens Wegner, Andreas Kirschning and Sascha Ceylan Imperial College London under the guidance of Prof. A. G. M. Barrett (UK). He received his diploma degree in 2007 and thereafter began his doctoral studies in Hannover under the supervision of Prof. A. Kirschning. Following a research stay at the University of Hong Kong (Prof. P. Toy) he received his PhD early 2011. His scientific interest focuses on developing micro flow systems, especially inductively heated reactors, and investigations on palladium catalysed Umpolung reactions. Andreas Kirschning studied chemistry at the University of Hamburg and Southampton University (UK). In Hamburg, he joined the group of Prof. E. Schaumann and received his PhD in 1989 working in the field of organosilicon chemistry. After a postdoctoral stay at the University of Washington (Seattle, USA) with Prof. H. G. Floss, supported by a Feodor-Lynen scholarship of the Alexander-von Humboldt foundation, he started his independent research at the Clausthal University of Technology in 1991, where he finished his habilitation in 1996. In 2000 he moved to the Leibniz University Hannover and became a director of the institute of organic chemistry. He is one of the editors of RO¨MPP online, Natural Products Reports and The Beilstein Journal of Organic Chemistry. His research interests cover structure elucidation as well as the total synthesis and mutasynthesis of natural products, biomedical biopolymers, and synthetic technology (solid-phase assisted synthesis, microreactors, inductive heating). This journal is c The Royal Society of Chemistry 2011 Chem. Commun., 2011, 47, 4583–4592 4583 View Article Online respect to heat and mass transfer, Undoubtedly, flow chemistry will not Issue 1: size matters—micro efficient mixing as well as precise completely or generally change the way versus minifluidic parameter control miniaturised flow chemists are performing synthesis in the devices have proven very beneficial for future, despite the fact that the field (or mesofluidic) reactors performing chemistry that is difficult to experiences a dramatic increase in interest Common miniaturised bench-sized flow conduct under batch conditions e.g. with both in academia and industry. But flow devices rely on reactors that have highly reactive reagents or synthesis via chemistry will become a common enabling channels or tubes sized between 10 mm unstable intermediates (see issue 4 technology for performing synthesis in the to a few mm in inner diameter. The below). Furthermore, continuous flow laboratory.5 It is beyond the scope of this dimension categorises whether a micro reactors are generally smaller than account to provide an exhaustive overview or minifluidic (or mesofluidic) flow reactor batch reactors but in an ideal setup and over the rapidly expanding field of flow is at hand (Fig. 1).6 under optimised conditions these bench chemistry. By specifically covering TEN This scale range is sufficiently broad to sized reactors are able to produce ISSUES of importance, we rather wish allow synthesis of approximately 10 mg more product in a given time than an to address the latest trends and what we to an annual production rate of several analogous batch reactor (see issue 2 believe are the most important topics to be tens of tons of material of a desired below).4 Particularly, chemical engineers considered now and in the near future in compound. Today microfluidic devices and process chemists have stressed that flow chemistry and bring that to the are mainly found in academic labora- optimised reaction parameters developed attention of the broad readership of tories and in analytical and diagnostic in a bench-sized micro- or minifluidic Chemical Communications.Wedosoina applications. Mesofluidic devices are also (or mesofluidic) flow device can be trans- purely highlight format and at the same of academic interest, particularly when ferred directly to large scale production time are fully aware that our perspective is combined with functionalised fixed bed without the need for substantial further based on our own experience in this field materials but have also become popular optimisation which is in stark contrast that we gained over the past ten years, thus in the industrial context.7 The heat trans- to upscaling batch processes (see issue 10 likely leaving out some other important fer capacity, which is a very important below). topics of concern. issue for chemical engineers, is heavily influenced by channel size since it determines the heat transfer area per unit volume. For micro reactors parameters are commonly between 5000–50 000 m2 mÀ3 while for mini reactors the common values are between 100–10 000 m2 mÀ3. Thus, high heat transfer capacities are achieved with small diameter channels favouring micro over mini flow reactors. But high pressure drops, a limited flow capacity and a tendency to block, are common problems with micro reactors. Published on 15 March 2011. Downloaded by Technische Informationsbibliothek (TIB) 26/10/2017 08:50:51. They are also often fabricated in a manner which makes cleaning and dismantling difficult or impossible. Practically, micro reactors also suffer from the fact that it is very difficult to utilise them for the production of substantial amounts of material. Technically it is Fig. 1 Micro versus mini (meso) flow reactors. difficult to overcome this problem even when massive parallelisation is achieved. However, the scale of micro flow reactors makes them ideal tools for process development experiments. An illustrative and telling example for advantageously utilising microreactors in practice was recently disclosed by Jensen et al.8 The authors set out to rapidly find the ideal parameters for a Heck reaction by designing a self-optimising flow system (Scheme 1). It was known that product 3 readily reacts with an excess of aryl chloride 1 to yield diarylated dihydro Scheme 1 Self-optimising microfluidic flow system using an inline HPLC analysis. furan 4. The analytical ‘‘feedback’’ 4584 Chem. Commun., 2011, 47, 4583–4592 This journal is c The Royal Society of Chemistry 2011 View Article Online system based on HPLC allowed them to time. Under optimised conditions a flow rates heating through the walls of a monitor and to individually change the reactor can be operated continuously as preheated reactor has to be very rapid. flow rates of the two components being long as starting materials are available If ‘‘flash’’ heating can be guaranteed and pumped into the microreactor and their and are pumped through the reactor. pressure resistant microstructured flow initial concentrations in the reaction E.g. Hessel and Lo¨we provided an reactors are chosen the reaction tempera- mixture. Within a short time, optimised illustrative example of an industrial ture can be set well above the boiling conditions at 90 1C were found batch process, the oxidation of ethanol point of the solvent even up to super- (3 : 4 = 5 : 1, reaction time 5.5 min) to acetic acid using hydrogen peroxide, critical conditions thus leading to very which led to a yield of 3 of 82%. and compared the relevant parameters short reaction times.10 Importantly, the authors showed that with the respective miniaturised flow Several strategies have been pursued these conditions could directly be used process (Fig.
Recommended publications
  • Design and Engineering of Microreactor and Smart-Scaled Flow Processes
    Editorial Special Issue : Design and engineering of microreactor and smart-scaled flow processes Citation for published version (APA): Hessel, V. (2015). Editorial Special Issue : Design and engineering of microreactor and smart-scaled flow processes. Processes, 3(1), 19-22. https://doi.org/10.3390/pr3010019 DOI: 10.3390/pr3010019 Document status and date: Published: 01/01/2015 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • Tr2013 03 Flow Chemistry.Pdf
    What is flow chemistry? Flow chemistry is a process in which a reaction is run Continuously in a flowing stream rather than in batch production Comparison between traditional chemistry and flow chemistry Reaction Stoichiometry: In traditional chemistry this is defined by the concentration of chemical reagents and their volumetric ratio. In flow chemistry this is defined by The concentration of the chemical reagents and the ratio of their flow rate Residence time: In traditional chemistry this is determined by how long a vessel is kept at given temperature. In flow the volumetric residence time is used given by the ratio of the volume of the reactor and the overall flow rate What is residence time? Residence time of a reagent is defined as the amount of time that the reaction is cooled or heated. Residence time = reactor volume/flow rate Continuous flow reactors: a perspective Advantages: 1. Improved thermal management 2. Mixing control 3. Application of the extreme reaction conditions Principles of green chemistry: 1. Prevention of waste O NH HO 2 OH N Solvent -free O reaction temp : 65 oC reaction time : 5.1 min yield : 91% Green chem., 2012, 14, 38-54 2. Atom economy O OH toluene reaction temp : 240 oC pressure : 100 bar yield : 95% O H O O O MeCN O H O reaction temp : 60 oC Green chem., 2012, 14, 38-54 O O N N N N O N O O N O H N electon-withdrawing group O CCl3 Cl O Smallest unit of benzylimidate NaOH (3.4 eq) N N BnOH (7.8 eq) N N o Cl N Cl 0 to 50 C, 2.5 h O N O 81% Org.
    [Show full text]
  • The Fundamentals Behind the Use of Flow Reactors in Electrochemistry
    The fundamentals behind the use of flow reactors in electrochemistry Citation for published version (APA): Noël, T., Cao, Y., & Laudadio, G. (2019). The fundamentals behind the use of flow reactors in electrochemistry. Accounts of Chemical Research, 52(10), 2858-2869. https://doi.org/10.1021/acs.accounts.9b00412 DOI: 10.1021/acs.accounts.9b00412 Document status and date: Published: 01/10/2019 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • Towards More Efficient, Greener Syntheses Through Flow Chemistry
    Towards More Efficient, Greener Syntheses through Flow Chemistry The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Lummiss, Justin A.M. et al. “Towards More Efficient, Greener Syntheses through Flow Chemistry.” The Chemical Record 17, 7 (February 2017): 667–680 © 2017 Wiley-Verlag As Published https://doi.org/10.1002/tcr.201600139 Publisher Wiley Blackwell Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/114543 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ PERSONAL ACCOUNT Alternatively, entire flow systems with specialized attachments Towards More Efficient, can be purchased from various commercial suppliers.[4b] Greener Syntheses Through Flow Chemistry Justin A.M. Lummiss,[a] Peter D. Morse,[a] Rachel L. Beingessner,[a] and Timothy F. Jamison*[a] Abstract: Technological advances have an important role in the design of greener synthetic processes. In this Personal Account, we describe a wide range of thermal, photochemical, catalytic, and biphasic chemical transformations examined by our group. Each of these demonstrate how the merits of a continuous flow synthesis platform can align with some of the goals put forth by the Twelve Principles of Green Chemistry. In particular, we illustrate the potential for improved reaction efficiency in terms of atom economy, product yield and reaction rates, the ability to design synthetic process with chemical and solvent waste reduction in mind as well as highlight the benefits of the real- time monitoring capabilities in flow for highly controlled synthetic output.
    [Show full text]
  • Flow Chemistry
    Flow chemistry Flow chemistry is also known as continuous flow or plug flow chemistry. It involves a chemical reaction run in a continuous flow stream. The process offers potential for the efficient manufacture of chemical products. Recent breakthroughs using Vapourtec systems are in production of Tamoxifen (Breast Cancer) and Artemisinin (Malaria). Reactants are first pu mped into a mixing device. Flow continues through a temperature controlled reactor until the reaction is complete. The reactor can be a simple pipe, tube or complex micro-structured device. The mixing device and reactor are maintained at the temperature to promote the desired reaction. The reactants may also be exposed to an electrical flux or a photon flux to promote an electrochemical or photochemical reaction. Click here for examples of flow chemistry performed in Vapourtec systems Flow chemistry differs from conventional batch chemistry by having the following important features: Flow of reagents In Flow chemistry reagents are pumped under pressure and flow continuously through the reactor. This contrasts with batch reactors where all reagents are loaded into a vessel at the start https://www.vapourtec.com Control of reaction time Reaction time is determined by the time the reagents take to flow through the reactor. This period is called the residence time. Control of stoichiometry Reaction stoichiometry is controlled by the relative flow rates of the reactants. The concentration of one reagent relative to another can be increased simply by pumping that reagent at a higher rate of flow. Heat transfer Flow reactors have excellent heat transfer when compared with batch reactors. This feature is due to the much greater surface area to volume ratio of flow reactors over batch reactors.
    [Show full text]
  • 1 Flow Photochemistry – a Green Technology with a Bright Future
    1 1 Flow Photochemistry – a Green Technology with a Bright Future Michael Oelgemöller, Tyler Goodine, and Padmakana Malakar 1.1 Introduction to Synthetic Organic Photochemistry According to the International Union of Pure and Applied Chemistry (IUPAC), photochemistry is “the branch of chemistry concerned with the chemical effects of ultraviolet, visible, or infrared radiation” [1]. Owing to the multidisciplinary nature of light, photochemistry thus finds widespread applications in the fields of analytical, environmental, food, inorganic, material, medicinal, organic, phar- maceutical, polymer, and physical chemistry [2, 3]. In terms of organic synthesis, light energy is utilized to activate molecules within their chromophoric groups. For multichromophoric substrates, this activation can be selectively achieved [4]. The amount of energy required for activation corresponds to the wavelength of the light as expressed in the Planck relation (Equation 1.1) [5]: E = h × v = h × c∕ = h × c × ̃ (1.1) where E is the energy of light; h,thePlanckconstant;v, the frequency; c,the velocity of light; , the wavelength; and ̃, the wavenumber. The excited state reached can undergo a multitude of energy- as well as electron-transfer processes, which are commonly shown in a Jablonski diagram [6]. Deactivation processes are common and include fluorescence, phospho- rescence, or internal conversion. Alternatively, the excited state energy can be utilized for chemical changes. Owing to the different structural and physic- ochemical properties of excited states, photochemical reactions can differ significantly from thermal reactions. There are three main photochemical pro- cesses (Scheme 1.1) [1]: direct excitation, photosensitization, and photoinduced electron transfer reactions. In the first case, light is absorbed by the substrate anditssubsequentexcitedstatecanundergoachemicaltransformationeither on its own or by reaction with another (ground-state) molecule.
    [Show full text]
  • Flow Chemistry in Contemporary Chemical Sciences: a Real Variety of Its Applications
    molecules Review Flow Chemistry in Contemporary Chemical Sciences: A Real Variety of Its Applications Marek Trojanowicz 1,2 1 Laboratory of Nuclear Analytical Methods, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03–195 Warsaw, Poland; [email protected] 2 Department of Chemistry, University of Warsaw, Pasteura 1, 02–093 Warsaw, Poland Academic Editor: Pawel Ko´scielniak Received: 17 February 2020; Accepted: 16 March 2020; Published: 21 March 2020 Abstract: Flow chemistry is an area of contemporary chemistry exploiting the hydrodynamic conditions of flowing liquids to provide particular environments for chemical reactions. These particular conditions of enhanced and strictly regulated transport of reagents, improved interface contacts, intensification of heat transfer, and safe operation with hazardous chemicals can be utilized in chemical synthesis, both for mechanization and automation of analytical procedures, and for the investigation of the kinetics of ultrafast reactions. Such methods are developed for more than half a century. In the field of chemical synthesis, they are used mostly in pharmaceutical chemistry for efficient syntheses of small amounts of active substances. In analytical chemistry, flow measuring systems are designed for environmental applications and industrial monitoring, as well as medical and pharmaceutical analysis, providing essential enhancement of the yield of analyses and precision of analytical determinations. The main concept of this review is to show the overlapping of development trends in the design of instrumentation and various ways of the utilization of specificity of chemical operations under flow conditions, especially for synthetic and analytical purposes, with a simultaneous presentation of the still rather limited correspondence between these two main areas of flow chemistry.
    [Show full text]
  • Flow Chemistry Presented by 22-23 MAY 2019 Prof
    Graz, Austria Das Weitzer FLOW A 2 day course presented by Prof. C Oliver Kappe & Dr Will Watson CHEMISTRY A 1 day Masterclass in Flow Chemistry presented by 22-23 MAY 2019 Prof. C Oliver Kappe NEW Flow Chemistry MASTERCLASS 24 MAY 2019 www.scientificupdate.com | [email protected] FLOW CHEMISTRY Multiple attendees discounts UP TO 15% 22-23 May 2019 Graz, Austria, Das Weitzer available INTRODUCTION COURSE OUTLINE Flow chemistry has been used in 1. Introduction to Flow Chemistry 4. High-Temperature / petrochemical and bulk chemical and Microreactors Pressure Flow Chemistry production for over 100 years but a. General references a. Flow chemistry in high-T/p process has only really been taken up b. Basic principles/advantages of windows (Novel Process Windows), in the pharmaceutical and fine microreactor technology: definitions, translating microwave protocols to chemical industries over the last mixing efficiency, flow regimes, heat flow, flow microwave chemistry 10 years or so. and mass transfer 5. Physical and Analytical Aspects This course aims to give an c. Equipment review: microreactors, of Flow Chemistry introduction to the subject and an mesofluidic/tubular reactors, cartridge- a. Handling solids in flow systems overview of the current state of the based systems b. Inline / online reaction monitoring art. A variety of chemical reactions d. Operative principles in flow: residence c. Regulatory aspects related to the in flow and how to translate a time, flow rate, back pressure, yield development of flow processes conventional reaction in to a flow 2. Microreactor Chemistry Concepts / Problem Session 2 – Group Work process will be described. Examples 6.
    [Show full text]
  • Applications, Benefits and Challenges of Flow Chemistry
    flow chemistry Krist V. Gernaey Applications, benefits and challenges of flow chemistry ALEKSANDAR MITIC, SØREN HEINTZ, ROLF H. RINGBORG, VIJAyA BODLA, JOHN M WOODLEy, KRIST V. GERNAEy* *Corresponding author 1. Technical University of Denmark (DTU), Department of Chemical and Biochemical Engineering, Søltofts Plads, Building 229, 2800 Kgs. Lyngby, Denmark KEyWORDS MICRO-CHEMICAL PROCESSING IN ORGANIC SyNTHESIS Flow chemistry; Organic Synthesis; Biocatalysis; Process Organic synthesis can be performed in continuous mode by Analytical Technology (PAT); Microreactor Technology. using mini- and micro-structured flow devices. Small scale continuous flow technology has many potential advantages, such as: rapid heat and mass transfer, increased safety, easy ABSTRACT scale-up/scale-out, fast process characterization, potential for real-time release, operation with unstable reaction Organic synthesis (incorporating both chemo-catalysis species, and so on (9, 10). Due to such advantages and biocatalysis) is essential for the production of a wide integration of these small scale devices in plant architectures range of small-molecule pharmaceuticals. However, has become more common in the last two decades (11). It is traditional production processes are mainly based on important to note here that not all chemical reactions are batch and semi-batch operating modes, which have suited to such small-scale equipment. For example, disadvantages from an economic, environmental according to Roberge et al. (12), chemical reactions with a and manufacturing perspective. A potential solution 4 half-life higher than 10 min should preferably be operated in to resolve these issues is to use flow chemistry in such batch manufacturing mode. However, it has been processes, preferably with applications of micro- and demonstrated that some of these reactions too could be mini-sized equipment.
    [Show full text]
  • Chemical Reaction Engineering, Process Design and Scale-Up Issues at the Frontier of Synthesis: Flow Chemistry Ilenia Rossetti *, Matteo Compagnoni Dip
    Review Chemical reaction engineering, process design and scale-up issues at the frontier of synthesis: flow chemistry Ilenia Rossetti *, Matteo Compagnoni Dip. Chimica, Università degli Studi di Milano, INSTM Unit Milano-Università and CNR-ISTM, via Golgi 19, 20133 Milano, Italy; e-Mail: [email protected] * Author to whom correspondence should be addressed; e-Mail: [email protected]; Tel.: +39-02-50314059; Fax: +39-02-50314300. Abstract: Flow chemistry has been proposed in modern organic chemistry as a mean for process intensification, to improve the control over reaction performance and to achieve higher yield. However, many open issues can be evidenced regarding the true possibility of scale-up, as well as currently lacking information for process design and economical evaluation. This review proposes some recent examples of flow synthesis deepening in particular the scale-up and engineering issues. Required information is evidenced, as well as some transport and kinetic data required for the practical implementation of the results. Keywords: Flow chemistry; Chemical reaction engineering; Microreactors; Process design; Reactor scale-up. 1. Introduction Flow chemistry and microreactors technology are emerging and fascinating topics, which put in contact Chemical Engineering, Organic Synthesis and Green Chemistry. Therefore, in itself flow chemistry is a consistently interdisciplinary topic, needing a fine tuning between fluid-dynamics, heat and mass transfer, chemical reactivity and reactors design [1]. Batch processes are commonly used in fine, specialty and pharmaceutical chemistry due to their versatility, flexible production planning and scheduling. They may also be preferable due to regulatory problems, where traceability imposes to easily recall specific batches of products.
    [Show full text]
  • Syrris Flow Chemistry Publications
    Syrris Flow Chemistry Publications Syrris Ltd Version: 2.2 Author: ACM / NS Date: 26/01/2016 Disclosure This document is confidential and is the property of Syrris Ltd. No attempt should be made to copy this document in any way without prior consent. © 2012 Syrris Ltd all rights reserved 2016 The effect of dissolution kinetics on flotation response of apatite with sodium oleate. Daniela Horta, Marisa Bezerra de Mello Monte, Laurindo de Salles Leal Filho. International Journal of Mineral Processing, 2016, 146 (10) 97 – 104. Single-stage micro-scale extraction: Studies with single microbore tubes and scale-up Mayur Darekar, K.K. Singh, S. Mukhopadhyay, K.T. Shenoy Separation and Purification Technology, 2016, 158, 160 – 170. Intensified Eu(III) extraction using ionic liquids in small channels Qi Li, Panagiota Angeli Chemical Engineering Science, 2016, 143, 276 – 286. Iron-Catalyzed Amination of Sulfides and Sulfoxides with Azides in Photochemical Continuous Flow Synthesis Hélène Lebel*, Henri Piras, Marie Borduy Catalysis, 2016, 6, 1109 – 1112. Flow chemistry vs. flow analysis Marek Trojanowicz Talanta, 2016, 146, 621 – 640. Combining a flow reactor with spray dryer to allow the preparation of food-grade quality sodium 2- polyhydroxyalkyl-1,3-thiazolidine-4-carboxylates with a low environmental impact Olalla Novo, Mercè Balcells, Ramon Canela-Garayo, Jordi Eras RSC Advance, 2016, 8, 6651 - 6657 2015 The Use of Flow Chemistry for Two-Phase Dibromocyclopropanation of Alkenes Runa B. Østby Yngve H. Stenstrøm Terje Didriksen Journal of Flow Chemistry, 2015 Solution styrene polymerization in a millireactor Luna Fullin, Edoardo Melloni, Ardson dos S. Vianna Jr. Chemical Engineering and Processing: Process Intensification, 2015, 98, 1–12 Multistep Continuous - Flow Synthesis of Condensed Benzothiazoles.
    [Show full text]
  • Fine Chemical Syntheses Under Flow Using Siliacat Catalysts Catalysis Science & Technology
    Volume 6 Number 13 7 July 2016 Pages 4657–5220 Catalysis Science & Technology www.rsc.org/catalysis Themed issue: Flow Chemistry in Catalysis ISSN 2044-4753 PERSPECTIVE François Béland, Mario Pagliaro et al. Fine chemical syntheses under flow using SiliaCat catalysts Catalysis Science & Technology PERSPECTIVE Fine chemical syntheses under flow using SiliaCat catalysts Cite this: Catal. Sci. Technol.,2016, 6,4678 Rosaria Ciriminna,a Valerica Pandarus,b François Béland*b and Mario Pagliaro*a After reviewing selected recent applications from diverse laboratories, we show how mesoporous Received 7th January 2016, organosilica-entrapped catalysts of the SiliaCat series have been successfully used for clean manufacturing Accepted 4th March 2016 of APIs in a number of different reactions carried out under laminar flow in microreactors. The advantages and disadvantages linked to these catalysts in terms of technical and economical sustainability are DOI: 10.1039/c6cy00038j highlighted. Insight into the scale-up of this technique and related catalytic technologies from the lab scale www.rsc.org/catalysis to industrial production concludes the study. Introduction for C–C bond-forming reactions being “invariably converted to nanoparticles after the first run”.6 Roughly >70% of all organic reactions may be carried out un- With the purpose to provide a critical evaluation of the ad- der flow in microreactors with significant economic, environ- vantages and disadvantages linked to SiliaCat catalysts under mental and technical advantages.1 Yet, “the price for this is a flow, in this study we refer to selected recent examples ap- demanding and laborious reinvention of chemistry beyond plied to the synthesis of fine chemicals and APIs showing the green chemistry needs”.1 Obviously, one would need to their technical, economical and environmental sustainability minimize such reinvention efforts.
    [Show full text]