The Isotope Analysis of Ice Cores from Vostok Station (Antarctica), to the Depth of 950 M

Total Page:16

File Type:pdf, Size:1020Kb

The Isotope Analysis of Ice Cores from Vostok Station (Antarctica), to the Depth of 950 M The isotope analysis of ice cores from Vostok station (Antarctica), to the depth of 950 m N. I. Barkov, E. S. Korotkevich, F. G. Gordienko and V. M. Kotlyakov Abstract. Interpretation of the results of oxygen isotope analysis of ice cores obtained from the borehole at Vostok station is carried out. The borehole reached the depth of 950 m. To interpret the age of the samples the model of ice deformation with non-uniform strain rates by Nye was used. The series of samples represented 46 500 years. It is shown that the isotope profile of the Vostok borehole is mainly formed under the influence of a climatic agent and is not complicated by the proper effect of glacial cover. At the beginning of the Holocene, climatic warming occurred in Central Antarctica between 15 000 and 11 000 years ago; isotope shift made up 5%0, which is in keeping with a temperature increase of about 5°C. Four cold periods are distinguished during the period between 46 500 and 15 00 years ago. They are separated by three warmer periods. Mean 8(I80) makes up -58.6°/oo in cold periods and -56.8%o in 'warm' periods. During the last 11 000 years mean S(lsO) equals -53.8%o- The main result of the study is that for the last 50 000 years the basic temperature changes occurred synchronously in polar areas of both hemispheres. Analyse isotopique des carottes de glace obtenues à la station Vostok (Antarctique) jusqu'à une profondeur de 950 m Résumé. On présente les résultats de l'analyse de la composition isotopique (oxygène) des carottes de glace obtenues à la station Vostok jusqu'à une profondeur de 950 m. Pour obtenir l'âge des échantillons, on utilise le modèle de déformation de la glace de Nye (taux de déformation non uniforme). La série d'échantillons représente 46 500 ans. On montre que le profil isotopique obtenu est principalement dû au facteur climatique et n'est pas perturbé par l'effet propre de la couverture de glace. Au début de l'Holocène le réchauffement climatique dans l'Antarctique central s'est produit entre 15 000 et 10 000 ans avant la période actuelle; la variation isotopique est de 5°/oo, ce qui suggère un réchauffement de l'ordre de 5°C. De — 46 500 à - 15 000 ans on distingue quatre périodes froides. Elles sont séparées par trois 18 périodes plus chaudes. Les S( 0) moyens sont de l'ordre de -58.6%0 dans les périodes froides et de -56.8°/oo dans les périodes 'chaudes'. Durant les 11 000 dernières années, la moyenne est de — 53.8%o- La principale conclusion de cette étude est que pour les derniers 50 000 ans les principaux changements de température se sont produits simultanément dans les régions polaires des deux hémisphères. This paper contains the results of isotope analyses of ice samples from the borehole at Vostok station, drilled in 1972-1973. The drilling reached the depth of 950 m. For the entire borehole a good core, 12 cm in diameter, was obtained. The measurements were carried out in 1972 and 1975 with laboratory equipment of the Moscow University. The samples, delivered to the laboratory in solid state, were analysed for lsO-variations with mass spectrometers MI-1305 (in 1972) and MI-1309 (in 1975). The samples were melted at room temperature immediately before the analyses. For the isotope analyses the methods by Cohn and Urey (1938) were used with some changes. All 180-values are expressed in form of deviations S(lsO) in °/oo relative to 'standard mean ocean water' (SMOW). The measured accuracy for not fewer than three measurements on each sample reached ± 3%0. The selection of samples from the Vostok borehole, their transport to Leningrad and delivery to the laboratory was fulfilled by the Soviet Antarctic Expedition under the guidance of N. I. Barkov and E. S. Korotkevich. Laboratory studies and interpretation of the results were carried out under the leadership of V. M. Kotlyakov and F. G. Gordienko. 382 The isotope analysis of ice cores from Vostok 383 The results of the isotope analysis of the upper 507 m of the Vostok borehole core have already been published (Barkov et ah, 1974, 1975). In the first series of experiments small samples measuring 5-50 cm vertically were used. They correspond to 2-20 years of ice accumulation, but very often the samples contained sediments of 3-4 years. In the second series of experiments each sample was 0.5-5 m long, i.e. it covered 20-200 years, which produced reliable mean data and excluded accidental results. The samples of the second series were obtained from another borehole drilled at Vostok station near the first one ; they contained the core from the depth of 500 m as well. A number of analyses from the upper 500 m were repeated because the quality of samples from the second borehole was higher. The results differed insignificantly from the earlier ones presented in the above-mentioned papers. The accumulation rate, necessary to calculate the age of the ice, was obtained from data on stake observations for the last 10 years, and also from results of isotope analyses of ice samples, 2-5 mm thick. The latter were obtained in entire sequences from five horizons. During preparation of the samples utmost care was taken to prevent isotopic exchange between the samples and ambient water vapour. Some scatter of the data might be caused by inadequate methods of sample selection from the core. The layers, only a few millimetres thick, were scraped along the whole core, then they were melted and mixed. It could be that this scraping was not ideal and the amount of ice from different areas varied slightly. According to the series of samples taken from the horizons at depths of 48, 82 and 160 m, accumulation made up 2.9 cm of ice per year for the last 5000 years. Surveys by one of the authors at Vostok station showed, that in this area snow accumulation is missing once in 5-6 years. If we take into account such omissions, the mean thickness of an annual layer equals 2.4 cm of ice or 2.2 g/cm2 per year, which is similar to the present-day accumulation rate of atmospheric precipitations. In order to interpret the age of the' data, we used the model of ice deformation with non-uniform strain rates proposed by Nye (Dansgaard and Johnsen, 1969). Two variants of conditions on the glacier bed were considered : freezing of the ice to the bedrock or exceeding the temperature of the pressure melting point. They have already been analysed by Dansgaard et al. (1971) while interpreting the data on the Camp Century borehole. Nye's model presupposes constancy in time of parameters influencing ice dynamics. Of course this assumption is rather rough and will require more refined models for the determination of the age of the ice. We used the above-mentioned model mainly because it had been applied to an interpretation of isotopic data from the Camp Century borehole. The use of the same methods to determine the age of the ice permits the data to be compared in a more consistent way. With the model used, the age of the core from Vostok station (T) can be expressed in a first approximation by T _ (2H - h)r lp2ff - h 2ajj 2y — h where aK is the thickness of the primary layer of annual accumulation; H is the thickness of the ice cover (3450 m, the upper 100 m make a firn layer); h = 400 m is the height above the bed above which the horizontal component of the strain rate becomes constant; y is the height of the level of the core sample above the bed ; and 384 N. i. Barkov eta/. T is the time unit, here equal to one year. The error of this age determination is estimated to be +5 per cent. It is well known that the shape of isotope profiles determined by data from deep boreholes in the ice depends on climatic changes (primarily on temperature conditions) and on variability of the absolute height of the surface of glacier covers, which is not constant in time. The absolute height of the Greenland and West Antarctica ice sheets was, evidently, greater during Wisconsin glaciation than it is now. In the area of Camp Century the glacial cover was 1200-1300 m higher than the present one. This is also confirmed by results of the analysis of ice samples from this borehole for gas content (Raynaud and Lorius, 1973). In the area of Byrd station the ice cap surface was 400-600 m higher during the Wisconsin stage than it is now. The bigger height of the surface caused lower temperature of precipitation deposited on the ice cap, which, in its turn, brought about the formation of glacier ice of lighter isotopic composition. This reason may be called the 'glaciologicaP agent in formation of isotope profiles of glacial cover in contrast to proper climatic factors. What is the contribution of the glaciological agent to the formation of the isotope profile of the Vostok borehole? Reconstructions of the Antarctic ice sheet for the stages of the Wisconsin and the maximum glaciations (see Voronov, 1960) show considerable fluctuations of its height in West Antarctica and peripheral areas of East Antarctica up to 1500-2000 m. Proceeding from the general laws of ice deformation and possible variability of the shape and thickness of the Antarctic ice sheet accompanying its larger dimensions, we may conclude, that the height of the surface in the area of Vostok station, which is not far from the ice divide of the East Antarctic dome, grew up by 100 m in the Wisconsin and changed by not more than 300 m in the period of the Quaternary maximum.
Recommended publications
  • The Antarctic Treaty System And
    The Antarctic Treaty System and Law During the first half of the 20th century a series of territorial claims were made to parts of Antarctica, including New Zealand's claim to the Ross Dependency in 1923. These claims created significant international political tension over Antarctica which was compounded by military activities in the region by several nations during the Second World War. These tensions were eased by the International Geophysical Year (IGY) of 1957-58, the first substantial multi-national programme of scientific research in Antarctica. The IGY was pivotal not only in recognising the scientific value of Antarctica, but also in promoting co- operation among nations active in the region. The outstanding success of the IGY led to a series of negotiations to find a solution to the political disputes surrounding the continent. The outcome to these negotiations was the Antarctic Treaty. The Antarctic Treaty The Antarctic Treaty was signed in Washington on 1 December 1959 by the twelve nations that had been active during the IGY (Argentina, Australia, Belgium, Chile, France, Japan, New Zealand, Norway, South Africa, United Kingdom, United States and USSR). It entered into force on 23 June 1961. The Treaty, which applies to all land and ice-shelves south of 60° South latitude, is remarkably short for an international agreement – just 14 articles long. The twelve nations that adopted the Treaty in 1959 recognised that "it is in the interests of all mankind that Antarctica shall continue forever to be used exclusively for peaceful purposes and shall not become the scene or object of international discord".
    [Show full text]
  • Arctic and Antarctic Research Institute” Russian Antarctic Expedition
    FEDERAL SERVICE OF RUSSIA FOR HYDROMETEOROLOGY AND ENVIRONMENTAL MONITORING State Institution “Arctic and Antarctic Research Institute” Russian Antarctic Expedition QUARTERLY BULLETIN ʋ2 (51) April - June 2010 STATE OF ANTARCTIC ENVIRONMENT Operational data of Russian Antarctic stations St. Petersburg 2010 FEDERAL SERVICE OF RUSSIA FOR HYDROMETEOROLOGY AND ENVIRONMENTAL MONITORING State Institution “Arctic and Antarctic Research Institute” Russian Antarctic Expedition QUARTERLY BULLETIN ʋ2 (51) April - June 2010 STATE OF ANTARCTIC ENVIRONMENT Operational data of Russian Antarctic stations Edited by V.V. Lukin St. Petersburg 2010 Editor-in-Chief - M.O. Krichak (Russian Antarctic Expedition –RAE) Authors and contributors Section 1 M. O. Krichak (RAE), Section 2 Ye. I. Aleksandrov (Department of Meteorology) Section 3 G. Ye. Ryabkov (Department of Long-Range Weather Forecasting) Section 4 A. I. Korotkov (Department of Ice Regime and Forecasting) Section 5 Ye. Ye. Sibir (Department of Meteorology) Section 6 I. V. Moskvin, Yu.G.Turbin (Department of Geophysics) Section 7 V. V. Lukin (RAE) Section 8 B. R. Mavlyudov (RAS IG) Section 9 V. L. Martyanov (RAE) Translated by I.I. Solovieva http://www.aari.aq/, Antarctic Research and Russian Antarctic Expedition, Reports and Glossaries, Quarterly Bulletin. Acknowledgements: Russian Antarctic Expedition is grateful to all AARI staff for participation and help in preparing this Bulletin. For more information about the contents of this publication, please, contact Arctic and Antarctic Research Institute of Roshydromet Russian Antarctic Expedition Bering St., 38, St. Petersburg 199397 Russia Phone: (812) 352 15 41; 337 31 04 Fax: (812) 337 31 86 E-mail: [email protected] CONTENTS PREFACE……………………….…………………………………….………………………….1 1. DATA OF AEROMETEOROLOGICAL OBSERVATIONS AT THE RUSSIAN ANTARCTIC STATIONS…………………………………….…………………………3 2.
    [Show full text]
  • Office of Polar Programs
    DEVELOPMENT AND IMPLEMENTATION OF SURFACE TRAVERSE CAPABILITIES IN ANTARCTICA COMPREHENSIVE ENVIRONMENTAL EVALUATION DRAFT (15 January 2004) FINAL (30 August 2004) National Science Foundation 4201 Wilson Boulevard Arlington, Virginia 22230 DEVELOPMENT AND IMPLEMENTATION OF SURFACE TRAVERSE CAPABILITIES IN ANTARCTICA FINAL COMPREHENSIVE ENVIRONMENTAL EVALUATION TABLE OF CONTENTS 1.0 INTRODUCTION....................................................................................................................1-1 1.1 Purpose.......................................................................................................................................1-1 1.2 Comprehensive Environmental Evaluation (CEE) Process .......................................................1-1 1.3 Document Organization .............................................................................................................1-2 2.0 BACKGROUND OF SURFACE TRAVERSES IN ANTARCTICA..................................2-1 2.1 Introduction ................................................................................................................................2-1 2.2 Re-supply Traverses...................................................................................................................2-1 2.3 Scientific Traverses and Surface-Based Surveys .......................................................................2-5 3.0 ALTERNATIVES ....................................................................................................................3-1
    [Show full text]
  • Antarctic Peninsula
    Hucke-Gaete, R, Torres, D. & Vallejos, V. 1997c. Entanglement of Antarctic fur seals, Arctocephalus gazella, by marine debris at Cape Shirreff and San Telmo Islets, Livingston Island, Antarctica: 1998-1997. Serie Científica Instituto Antártico Chileno 47: 123-135. Hucke-Gaete, R., Osman, L.P., Moreno, C.A. & Torres, D. 2004. Examining natural population growth from near extinction: the case of the Antarctic fur seal at the South Shetlands, Antarctica. Polar Biology 27 (5): 304–311 Huckstadt, L., Costa, D. P., McDonald, B. I., Tremblay, Y., Crocker, D. E., Goebel, M. E. & Fedak, M. E. 2006. Habitat Selection and Foraging Behavior of Southern Elephant Seals in the Western Antarctic Peninsula. American Geophysical Union, Fall Meeting 2006, abstract #OS33A-1684. INACH (Instituto Antártico Chileno) 2010. Chilean Antarctic Program of Scientific Research 2009-2010. Chilean Antarctic Institute Research Projects Department. Santiago, Chile. Kawaguchi, S., Nicol, S., Taki, K. & Naganobu, M. 2006. Fishing ground selection in the Antarctic krill fishery: Trends in patterns across years, seasons and nations. CCAMLR Science, 13: 117–141. Krause, D. J., Goebel, M. E., Marshall, G. J., & Abernathy, K. (2015). Novel foraging strategies observed in a growing leopard seal (Hydrurga leptonyx) population at Livingston Island, Antarctic Peninsula. Animal Biotelemetry, 3:24. Krause, D.J., Goebel, M.E., Marshall. G.J. & Abernathy, K. In Press. Summer diving and haul-out behavior of leopard seals (Hydrurga leptonyx) near mesopredator breeding colonies at Livingston Island, Antarctic Peninsula. Marine Mammal Science.Leppe, M., Fernandoy, F., Palma-Heldt, S. & Moisan, P 2004. Flora mesozoica en los depósitos morrénicos de cabo Shirreff, isla Livingston, Shetland del Sur, Península Antártica, in Actas del 10º Congreso Geológico Chileno.
    [Show full text]
  • Asynchronous Antarctic and Greenland Ice-Volume Contributions to the Last Interglacial Sea-Level Highstand
    ARTICLE https://doi.org/10.1038/s41467-019-12874-3 OPEN Asynchronous Antarctic and Greenland ice-volume contributions to the last interglacial sea-level highstand Eelco J. Rohling 1,2,7*, Fiona D. Hibbert 1,7*, Katharine M. Grant1, Eirik V. Galaasen 3, Nil Irvalı 3, Helga F. Kleiven 3, Gianluca Marino1,4, Ulysses Ninnemann3, Andrew P. Roberts1, Yair Rosenthal5, Hartmut Schulz6, Felicity H. Williams 1 & Jimin Yu 1 1234567890():,; The last interglacial (LIG; ~130 to ~118 thousand years ago, ka) was the last time global sea level rose well above the present level. Greenland Ice Sheet (GrIS) contributions were insufficient to explain the highstand, so that substantial Antarctic Ice Sheet (AIS) reduction is implied. However, the nature and drivers of GrIS and AIS reductions remain enigmatic, even though they may be critical for understanding future sea-level rise. Here we complement existing records with new data, and reveal that the LIG contained an AIS-derived highstand from ~129.5 to ~125 ka, a lowstand centred on 125–124 ka, and joint AIS + GrIS contributions from ~123.5 to ~118 ka. Moreover, a dual substructure within the first highstand suggests temporal variability in the AIS contributions. Implied rates of sea-level rise are high (up to several meters per century; m c−1), and lend credibility to high rates inferred by ice modelling under certain ice-shelf instability parameterisations. 1 Research School of Earth Sciences, The Australian National University, Canberra, ACT 2601, Australia. 2 Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton SO14 3ZH, UK. 3 Department of Earth Science and Bjerknes Centre for Climate Research, University of Bergen, Allegaten 41, 5007 Bergen, Norway.
    [Show full text]
  • A NEWS BULLETIN Published Quarterly by the NEW ZEALAND ANTARCTIC SOCIETY (INC)
    A NEWS BULLETIN published quarterly by the NEW ZEALAND ANTARCTIC SOCIETY (INC) An English-born Post Office technician, Robin Hodgson, wearing a borrowed kilt, plays his pipes to huskies on the sea ice below Scott Base. So far he has had a cool response to his music from his New Zealand colleagues, and a noisy reception f r o m a l l 2 0 h u s k i e s . , „ _ . Antarctic Division photo Registered at Post Ollice Headquarters. Wellington. New Zealand, as a magazine. II '1.7 ^ I -!^I*"JTr -.*><\\>! »7^7 mm SOUTH GEORGIA, SOUTH SANDWICH Is- . C I R C L E / SOUTH ORKNEY Is x \ /o Orcadas arg Sanae s a Noydiazarevskaya ussr FALKLAND Is /6Signyl.uK , .60"W / SOUTH AMERICA tf Borga / S A A - S O U T H « A WEDDELL SHETLAND^fU / I s / Halley Bav3 MINING MAU0 LAN0 ENOERBY J /SEA uk'/COATS Ld / LAND T> ANTARCTIC ••?l\W Dr^hnaya^^General Belgrano arg / V ^ M a w s o n \ MAC ROBERTSON LAND\ '■ aust \ /PENINSULA' *\4- (see map betowi jrV^ Sobldl ARG 90-w {■ — Siple USA j. Amundsen-Scott / queen MARY LAND {Mirny ELLSWORTH" LAND 1, 1 1 °Vostok ussr MARIE BYRD L LAND WILKES LAND ouiiiv_. , ROSS|NZJ Y/lnda^Z / SEA I#V/VICTORIA .TERRE , **•»./ LAND \ /"AOELIE-V Leningradskaya .V USSR,-'' \ --- — -"'BALLENYIj ANTARCTIC PENINSULA 1 Tenitnte Matianzo arg 2 Esptrarua arg 3 Almirarrta Brown arc 4PttrtlAHG 5 Otcipcion arg 6 Vtcecomodoro Marambio arg * ANTARCTICA 7 Arturo Prat chile 8 Bernardo O'Higgins chile 1000 Miles 9 Prasid«fTtB Frei chile s 1000 Kilometres 10 Stonington I.
    [Show full text]
  • Polartrec Teacher Joins Hunt for Old Ice in Antarctica
    NEWSLETTER OF THE NATIONAL ICE CORE LABORATORY — SCIENCE MANAGEMENT OFFICE Vol. 5 Issue 1 • SPRING 2010 PolarTREC Teacher Joins Hunt for Old Eric Cravens: Ice in Antarctica Farewell & By Jacquelyn (Jackie) Hams, PolarTREC Teacher Thanks! Courtesy: PolarTREC ... page 2 WAIS Divide Ice Core Images Now Available from AGDC ... page 3 WAIS Divide Ice Dave Marchant and Jackie Hams Core Update Photo: PolarTREC ... page 3 WHEN I APPLIED to the PolarTREC I actually left for Antarctica. I was originally program (http://www.polartrec.com/), I was selected by the CReSIS (Center for Remote asked where I would prefer to go given the Sensing of Ice Sheets) project, which has options of the Arctic, Antarctica, or either. I headquarters at the University of Kansas. I checked the Antarctica box only, despite the met and spent a few days visiting the team at Drilling for Old Ice fact that I may have decreased my chances of the University of Kansas and had dinner at the being selected. Antarctica was my preference Principal Investigator’s home with other team ... page 5 for many reasons. As a teacher I felt that members. We were all pleased with the match Antarctica represented the last frontier to study and looked forward to working together. the geologic history of the planet because the continent is uninhabited, not polluted, and In the late summer of 2008, I was informed that NEEM Reaches restricted to pure research. Over the last few the project was cancelled and that I would be Eemian and years I have noticed that my students were assigned to another research team.
    [Show full text]
  • Seabirds of Human Settlements in Antarctica: a Case Study of the Mirny Station
    CZECH POLAR REPORTS 11 (1): 98-113, 2021 Seabirds of human settlements in Antarctica: A case study of the Mirny Station Sergey Golubev Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Nekouzskii raion, Yaroslavl oblast, 152742, Russia Abstract Antarctica is free of urbanisation, however, 40 year-round and 32 seasonal Antarctic stations operate there. The effects of such human settlements on Antarctic wildlife are insufficiently studied. The main aim of this study was to determine the organization of the bird population of the Mirny Station. The birds were observed on the coast of the Davis Sea in the Mirny (East Antarctica) from January 8, 2012 to January 7, 2013 and from January 9, 2015 to January 9, 2016. The observations were carried out mainly on the Radio and Komsomolsky nunataks (an area of about 0.5 km²). The duration of observations varied from 1 to 8 hours per day. From 1956 to 2016, 13 non-breeding bird species (orders Sphenisciformes, Procellariiformes, Charadriiformes) were recorded in the Mirny. The South polar skuas (Catharacta maccormicki) and Adélie penguins (Pygoscelis adeliae) form the basis of the bird population. South polar skuas are most frequently recorded at the station. Less common are Brown skuas (Catharacta antarctica lonnbergi) and Adélie penguins. Adélie penguins, Wilson's storm petrels (Oceanites oceanicus), South polar and Brown skuas are seasonal residents, the other species are visitors. Adélie penguins, Emperor (Aptenodytes forsteri), Macaroni (Eudyptes chrysolophus) and Chinstrap penguins (Pygoscelis antarctica), Wilson's storm petrels, South polar and Brown skuas interacted with the station environment, using it for com- fortable behavior, feeding, molting, shelter from bad weather conditions, and possible breeding.
    [Show full text]
  • Joint Conference of the History EG and Humanities and Social Sciences
    Joint conference of the History EG and Humanities and Social Sciences EG "Antarctic Wilderness: Perspectives from History, the Humanities and the Social Sciences" Colorado State University, Fort Collins (USA), 20 - 23 May 2015 A joint conference of the History Expert Group and the Humanities and Social Sciences Expert Group on "Antarctic Wilderness: Perspectives from History, the Humanities and the Social Sciences" was held at Colorado State University in Fort Collins (USA) on 20-23 May 2015. On Wednesday (20 May) we started with an excursion to the Rocky Mountain National Park close to Estes. A hike of two hours took us along a former golf course that had been remodelled as a natural plain, and served as a fitting site for a discussion with park staff on “comparative wilderness” given the different connotations of that term in isolated Antarctica and comparatively accessible Colorado. After our return to Fort Collins we met a group of members of APECS (Association of Polar Early Career Scientists), with whom we had a tour through the New Belgium Brewery. The evening concluded with a screening of the film “Nightfall on Gaia” by the anthropologist Juan Francisco Salazar (Australia), which provides an insight into current social interactions on King George Island and connections to the natural and political complexities of the sixth continent. The conference itself was opened by on Thursday (21 May) by Diana Wall, head of the School of Global Environmental Sustainability at the Colorado State University (CSU). Andres Zarankin (Brazil) opened the first session on narratives and counter narratives from Antarctica with his talk on sealers, marginality, and official narratives in Antarctic history.
    [Show full text]
  • INAUGURAL SEASON 2020-2021 Antarctica | Greenland & Iceland
    EXPEDITION CRUISES INAUGURAL SEASON 2020-2021 Antarctica | Svalbard | Greenland & Iceland | Norway & Russia | Northwest Passage | North, Central & South America | Europe new Alaska & Canada Content 2020-21 ––––––––––––––––––––––––––––––––––––––––– We take you far beyond the ordinary 6-7 ––––––––––––––––––––––––––––––––––––––––– Our Expedition Fleet 8-9 ––––––––––––––––––––––––––––––––––––––––– The future is green 10-11 ––––––––––––––––––––––––––––––––––––––––– Antarctica 12-15 ––––––––––––––––––––––––––––––––––––––––– Greenland & Iceland 16-19 ––––––––––––––––––––––––––––––––––––––––– Russia 19 ––––––––––––––––––––––––––––––––––––––––– Svalbard 20-23 ––––––––––––––––––––––––––––––––––––––––– Norway 24-25 ––––––––––––––––––––––––––––––––––––––––– Northwest Passage 26-27 ––––––––––––––––––––––––––––––––––––––––– Alaska & Canada 28-29 ––––––––––––––––––––––––––––––––––––––––– North & Central America 30 ––––––––––––––––––––––––––––––––––––––––– South America 31 ––––––––––––––––––––––––––––––––––––––––– Europe 32 ––––––––––––––––––––––––––––––––––––––––– Extend your stay 32-33 ––––––––––––––––––––––––––––––––––––––––– Terms and conditions 34-37 ––––––––––––––––––––––––––––––––––––––––– 2 “Ever since Hurtigruten started sailing polar waters back in 1893, we have been on a constant look out for new worlds to explore.” © HURTIGRUTEN Hurtigruten is an exploration company in the truest sense of the word; our mission is to bring adventurers to remote natural beauty around the world. Our experience in the feld is unparalleled, and we draw on our unique
    [Show full text]
  • Daily Program Friday, 24.02.2017 – Embarkation Ushuaia
    DAILY PROGRAM FRIDAY, 24.02.2017 – EMBARKATION USHUAIA RESTAURANT TIMINGS TEA,COFFEE & COOKIES 15:00 – 17:30 PANORAMA LOUNGE, DECK 7 BUFFET DINNER 18:00 – 21:00 RESTAURANT, DECK 4 15:00 Check-In 21:30 Captain’s Cocktails. Our Expedition Jackets and Check in is on deck 3 and 4. Captain Raymond Martinsen Rubber Boots will be available Suites can check in on deck 7. would like to welcome you on for collection over the coming board and present his officers days. 15:00-17:30 Medical Forms and the Expedition Team. At Please deliver your medical the same time we'll give some We may have the opportunity forms to the Doctor in the information regarding our to stamp your passport at an lobby on deck 4. voyage, in the Panorama Antarctic base during our Lounge, deck 7. voyage. If you would NOT like 15:00-17:30 If you would like a stamp, please see to learn more about our FRAM goes paperless! On Reception, Deck 4. voyage then why not come your first day you will receive and meet some of the the Daily program in printed Most of the time we will use Expedition Team members in version. From tomorrow on our PolarCirkle boats for the Panorama Lounge on deck you will find the daily landings. For organizational 7. information on your cabin’s TV purposes we are going to screen as well as in all public separate you into groups of Approx. 17:30 Mandatory spaces. By doing so we avoid approximately 30 passengers.
    [Show full text]
  • The Antarctic Sun, December 25, 2005
    December 25, 2005 Scientists seek to label whale species By Steven Profaizer Sun staff Patches of pure white splashed on an inky black body. Two-meter-tall dorsal fin slicing through the water’s surface. An attraction at SeaWorld. A pack hunter with cunning intelligence and stunning power. The killer whale, or orca, is one of the most universally known animals in the world. They are also one of the most wide- spread mammals, second only to humans, and inhabit all of the world’s oceans. Yet scientists are still working to deter- mine how many species of killer whales exist. Only one species is currently rec- ognized, but many people, including researcher Robert Pitman, believe there may be two additional species among the estimated 20,000 to 80,000 killer whales that inhabit Antarctic waters. Pitman is far from the first to believe this: Soviet 5 Union whalers in the early 1980s first Deep Freeze turns 0 observed the killer whales’ differences in diet, preferred habitat and coloring. He By Emily Stone does, however, hope to be part of the team Sun staff that finally solves the mystery. Al Hisey spent one of his first nights at McMurdo Station by accident. Pitman, of the National Oceanic and It was 1955, and he was ferrying supplies by tractor from Navy ships across the Atmospheric Administration, led a team sea ice of McMurdo Sound to the spot on Ross Island where the station was being to Antarctica last year on a two-week mis- built. During one of the first trips, there was a major break in the ice between the sion that used sophisticated technology to fledgling station and the ships.
    [Show full text]