Math 236 – Mathematicians of the Week
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
King Lfred's Version Off the Consolations of Boethius
King _lfred's Version off the Consolations of Boethius HENRY FROWDE, M A. PUBLISHER TO THE UNIVERSITY OF OF_0RD LONDON, EDINBURGH_ AND NEW YORK Kring e__lfred's Version o_/"the Consolations of Boethius _ _ Z)one into c_gfodern English, with an Introduction _ _ _ _ u_aa Litt.D._ Editor _o_.,I_ing .... i .dlfred_ OM Englis.h..ffgerAon2.' !ilo of the ' De Con.d.¢_onz,o,e 2 Oxford : _4t the Claro_don:,.....: PrestO0000 M D CCCC _eee_ Ioee_ J_el eeoee le e_ZNeFED AT THE_.e_EN_N PI_.._S _ee • • oeoo eee • oeee eo6_o eoee • ooeo e_ooo ..:.. ..'.: oe°_ ° leeeo eeoe ee •QQ . :.:.. oOeeo QOO_e 6eeQ aee...._ e • eee TO THE REV. PROFESSOR W. W. SKEAT LITT.D._ D.C.L._ LL.D.:_ PH.D. THIS _800K IS GRATEFULLY DEDICATED PREFACE THE preparationsfor adequately commemoratingthe forthcoming millenary of King Alfred's death have set going a fresh wave of popularinterest in that hero. Lectares have been given, committees formed, sub- scriptions paid and promised, and an excellent book of essays by eminent specialists has been written about Alfred considered under quite a number of aspects. That great King has himself told us that he was not indifferent to the opinion of those that should come after him, and he earnestly desired that that opinion should be a high one. We have by no means for- gotten him, it is true, but yet to verymany intelligent people he is, to use a paradox, a distinctly nebulous character of history. His most undying attributes in the memory of the people are not unconnected with singed cakes and romantic visits in disguise to the Danish viii Preface Danish camp. -
Unaccountable Numbers
Unaccountable Numbers Fabio Acerbi In memoriam Alessandro Lami, a tempi migliori HE AIM of this article is to discuss and amend one of the most intriguing loci corrupti of the Greek mathematical T corpus: the definition of the “unknown” in Diophantus’ Arithmetica. To do so, I first expound in detail the peculiar ter- minology that Diophantus employs in his treatise, as well as the notation associated with it (section 1). Sections 2 and 3 present the textual problem and discuss past attempts to deal with it; special attention will be paid to a paraphrase contained in a let- ter of Michael Psellus. The emendation I propose (section 4) is shown to be supported by a crucial, and hitherto unnoticed, piece of manuscript evidence and by the meaning and usage in non-mathematical writings of an adjective that in Greek math- ematical treatises other than the Arithmetica is a sharply-defined technical term: ἄλογος. Section 5 offers some complements on the Diophantine sign for the “unknown.” 1. Denominations, signs, and abbreviations of mathematical objects in the Arithmetica Diophantus’ Arithmetica is a collection of arithmetical prob- lems:1 to find numbers which satisfy the specific constraints that 1 “Arithmetic” is the ancient denomination of our “number theory.” The discipline explaining how to calculate with particular, possibly non-integer, numbers was called in Late Antiquity “logistic”; the first explicit statement of this separation is found in the sixth-century Neoplatonic philosopher and mathematical commentator Eutocius (In sph. cyl. 2.4, in Archimedis opera III 120.28–30 Heiberg): according to him, dividing the unit does not pertain to arithmetic but to logistic. -
Plato As "Architectof Science"
Plato as "Architectof Science" LEONID ZHMUD ABSTRACT The figureof the cordialhost of the Academy,who invitedthe mostgifted math- ematiciansand cultivatedpure research, whose keen intellectwas able if not to solve the particularproblem then at least to show the methodfor its solution: this figureis quite familiarto studentsof Greekscience. But was the Academy as such a centerof scientificresearch, and did Plato really set for mathemati- cians and astronomersthe problemsthey shouldstudy and methodsthey should use? Oursources tell aboutPlato's friendship or at leastacquaintance with many brilliantmathematicians of his day (Theodorus,Archytas, Theaetetus), but they were neverhis pupils,rather vice versa- he learnedmuch from them and actively used this knowledgein developinghis philosophy.There is no reliableevidence that Eudoxus,Menaechmus, Dinostratus, Theudius, and others, whom many scholarsunite into the groupof so-called"Academic mathematicians," ever were his pupilsor close associates.Our analysis of therelevant passages (Eratosthenes' Platonicus, Sosigenes ap. Simplicius, Proclus' Catalogue of geometers, and Philodemus'History of the Academy,etc.) shows thatthe very tendencyof por- trayingPlato as the architectof sciencegoes back to the earlyAcademy and is bornout of interpretationsof his dialogues. I Plato's relationship to the exact sciences used to be one of the traditional problems in the history of ancient Greek science and philosophy.' From the nineteenth century on it was examined in various aspects, the most significant of which were the historical, philosophical and methodological. In the last century and at the beginning of this century attention was paid peredominantly, although not exclusively, to the first of these aspects, especially to the questions how great Plato's contribution to specific math- ematical research really was, and how reliable our sources are in ascrib- ing to him particular scientific discoveries. -
15 Famous Greek Mathematicians and Their Contributions 1. Euclid
15 Famous Greek Mathematicians and Their Contributions 1. Euclid He was also known as Euclid of Alexandria and referred as the father of geometry deduced the Euclidean geometry. The name has it all, which in Greek means “renowned, glorious”. He worked his entire life in the field of mathematics and made revolutionary contributions to geometry. 2. Pythagoras The famous ‘Pythagoras theorem’, yes the same one we have struggled through in our childhood during our challenging math classes. This genius achieved in his contributions in mathematics and become the father of the theorem of Pythagoras. Born is Samos, Greece and fled off to Egypt and maybe India. This great mathematician is most prominently known for, what else but, for his Pythagoras theorem. 3. Archimedes Archimedes is yet another great talent from the land of the Greek. He thrived for gaining knowledge in mathematical education and made various contributions. He is best known for antiquity and the invention of compound pulleys and screw pump. 4. Thales of Miletus He was the first individual to whom a mathematical discovery was attributed. He’s best known for his work in calculating the heights of pyramids and the distance of the ships from the shore using geometry. 5. Aristotle Aristotle had a diverse knowledge over various areas including mathematics, geology, physics, metaphysics, biology, medicine and psychology. He was a pupil of Plato therefore it’s not a surprise that he had a vast knowledge and made contributions towards Platonism. Tutored Alexander the Great and established a library which aided in the production of hundreds of books. -
Fiboquadratic Sequences and Extensions of the Cassini Identity Raised from the Study of Rithmomachia
Fiboquadratic sequences and extensions of the Cassini identity raised from the study of rithmomachia Tom´asGuardia∗ Douglas Jim´enezy October 17, 2018 To David Eugene Smith, in memoriam. Mathematics Subject Classification: 01A20, 01A35, 11B39 and 97A20. Keywords: pythagoreanism, golden ratio, Boethius, Nicomachus, De Arithmetica, fiboquadratic sequences, Cassini's identity and rithmomachia. Abstract In this paper, we introduce fiboquadratic sequences as a consequence of an extension to infinity of the board of rithmomachia. Fiboquadratic sequences approach the golden ratio and provide extensions of Cassini's Identity. 1 Introduction Pythagoreanism was a philosophical tradition, that left a deep influence over the Greek mathematical thought. Its path can be traced until the Middle Ages, and even to present. Among medieval scholars, which expanded the practice of the pythagoreanism, we find Anicius Manlius Severinus Boethius (480-524 A.D.) whom by a free translation of De Institutione Arithmetica by Nicomachus of Gerasa, preserved the pythagorean teaching inside the first universities. In fact, Boethius' book became the guide of study for excellence during quadriv- ium teaching, almost for 1000 years. The learning of arithmetic during the arXiv:1509.03177v3 [math.HO] 22 Nov 2016 quadrivium, made necessary the practice of calculation and handling of basic mathematical operations. Surely, with the mixing of leisure with this exercise, Boethius' followers thought up a strategy game in which, besides the training of mind calculation, it was used to preserve pythagorean traditions coming from the Greeks and medieval philosophers. Maybe this was the origin of the philoso- phers' game or rithmomachia. Rithmomachia (RM, henceforward) became the ∗Department of Mathematics. -
Hypatia of Alexandria A. W. Richeson National Mathematics Magazine
Hypatia of Alexandria A. W. Richeson National Mathematics Magazine, Vol. 15, No. 2. (Nov., 1940), pp. 74-82. Stable URL: http://links.jstor.org/sici?sici=1539-5588%28194011%2915%3A2%3C74%3AHOA%3E2.0.CO%3B2-I National Mathematics Magazine is currently published by Mathematical Association of America. Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/maa.html. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact [email protected]. http://www.jstor.org Sun Nov 18 09:31:52 2007 Hgmdnism &,d History of Mdtbenzdtics Edited by G. -
Stony Brook University
SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy The official electronic file of this thesis or dissertation is maintained by the University Libraries on behalf of The Graduate School at Stony Brook University. ©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr... Heraclitus and the Work of Awakening A Dissertation Presented by Nicolas Elias Leon Ruiz to The Graduate School in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Philosophy Stony Brook University August 2007 Copyright by Nicolas Elias Leon Ruiz August 2007 Stony Brook University The Graduate School Nicolas Elias Leon Ruiz We, the dissertation committee for the above candidate for the Doctor of Philosophy degree, hereby recommend acceptance of this dissertation. Dr. Peter Manchester – Dissertation Advisor Associate Professor of Philosophy Dr. David Allison – Chairperson of Defense Professor of Philosophy Dr. Eduardo Mendieta Associate Professor of Philosophy Dr. Gregory Shaw Professor of Religious Studies Stonehill College This dissertation is accepted by the Graduate School Lawrence Martin Dean of the Graduate School ii Abstract of the Dissertation Heraclitus and the Work of Awakening by Nicolas Elias Leon Ruiz Doctor of Philosophy in Philosophy Stony Brook University 2007 Heraclitus is regarded as one of the foundational figures of western philosophy. As such, he is typically read as some species of rational thinker: empiricist, materialist, metaphysician, dialectician, phenomenologist, etc. This dissertation argues that all of these views of Heraclitus and his work are based upon profoundly mistaken assumptions. Instead, Heraclitus is shown to be a thoroughly and consistently mystical writer whose work is organized around the recurring theme of awakening. He is thus much more akin to figures such as Buddha, Lao Tzu, and Empedocles than to Aristotle or Hegel. -
Theon of Alexandria and Hypatia
CREATIVE MATH. 12 (2003), 111 - 115 Theon of Alexandria and Hypatia Michael Lambrou Abstract. In this paper we present the story of the most famous ancient female math- ematician, Hypatia, and her father Theon of Alexandria. The mathematician and philosopher Hypatia flourished in Alexandria from the second part of the 4th century until her violent death incurred by a mob in 415. She was the daughter of Theon of Alexandria, a math- ematician and astronomer, who flourished in Alexandria during the second part of the fourth century. Information on Theon’s life is only brief, coming mainly from a note in the Suda (Suida’s Lexicon, written about 1000 AD) stating that he lived in Alexandria in the times of Theodosius I (who reigned AD 379-395) and taught at the Museum. He is, in fact, the Museum’s last attested member. Descriptions of two eclipses he observed in Alexandria included in his commentary to Ptolemy’s Mathematical Syntaxis (Almagest) and elsewhere have been dated as the eclipses that occurred in AD 364, which is consistent with Suda. Although originality in Theon’s works cannot be claimed, he was certainly immensely influential in the preservation, dissemination and editing of clas- sic texts of previous generations. Indeed, with the exception of Vaticanus Graecus 190 all surviving Greek manuscripts of Euclid’s Elements stem from Theon’s edition. A comparison to Vaticanus Graecus 190 reveals that Theon did not actually change the mathematical content of the Elements except in minor points, but rather re-wrote it in Koini and in a form more suitable for the students he taught (some manuscripts refer to Theon’s sinousiai). -
Chapter Two Democritus and the Different Limits to Divisibility
CHAPTER TWO DEMOCRITUS AND THE DIFFERENT LIMITS TO DIVISIBILITY § 0. Introduction In the previous chapter I tried to give an extensive analysis of the reasoning in and behind the first arguments in the history of philosophy in which problems of continuity and infinite divisibility emerged. The impact of these arguments must have been enormous. Designed to show that rationally speaking one was better off with an Eleatic universe without plurality and without motion, Zeno’s paradoxes were a challenge to everyone who wanted to salvage at least those two basic features of the world of common sense. On the other hand, sceptics, for whatever reason weary of common sense, could employ Zeno-style arguments to keep up the pressure. The most notable representative of the latter group is Gorgias, who in his book On not-being or On nature referred to ‘Zeno’s argument’, presumably in a demonstration that what is without body and does not have parts, is not. It is possible that this followed an earlier argument of his that whatever is one, must be without body.1 We recognize here what Aristotle calls Zeno’s principle, that what does not have bulk or size, is not. Also in the following we meet familiar Zenonian themes: Further, if it moves and shifts [as] one, what is, is divided, not being continuous, and there [it is] not something. Hence, if it moves everywhere, it is divided everywhere. But if that is the case, then everywhere it is not. For it is there deprived of being, he says, where it is divided, instead of ‘void’ using ‘being divided’.2 Gorgias is talking here about the situation that there is motion within what is. -
6 X 10. Three Lines .P65
Cambridge University Press 978-0-521-83746-0 - Archytas of Tarentum: Pythagorean, Philosopher and Mathematician King Carl A. Huffman Excerpt More information part one Introductory essays © Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-83746-0 - Archytas of Tarentum: Pythagorean, Philosopher and Mathematician King Carl A. Huffman Excerpt More information chapter i Life, writings and reception sources (The original texts and translations of the testimonia for Archytas’ life are found in Part Three, Section One) Archytas did not live the life of a philosophical recluse. He was the leader of one of the most powerful Greek city-states in the first half of the fourth century bc. Unfortunately he is similar to most important Greek intellec- tuals of the fifth and fourth centuries bc, in that we have extremely little reliable information about his activities. This dearth of information is all the more frustrating since we know that Aristoxenus wrote a biography of Archytas, not long after his death (A9). Two themes bulk large in the bits of evidence that do survive from that biography and from other evidence for Archytas’ life. First, there is Archytas’ connection to Plato, which, as we will see, was more controversial in antiquity than in most modern scholarship. The Platonic Seventh Letter, whose authenticity continues to be debated, portrays Archytas as saving Plato from likely death, when Plato was visit- ing the tyrant Dionysius II at Syracuse in 361 bc. Second, for Aristoxenus, Archytas is the paradigm of a successful leader. Elected general (strat¯egos) repeatedly, he was never defeated in battle; as a virtuous, kindly and demo- cratic ruler, he played a significant role in the great prosperity of his native Tarentum, located on the heel of southern Italy. -
Thales of Miletus Sources and Interpretations Miletli Thales Kaynaklar Ve Yorumlar
Thales of Miletus Sources and Interpretations Miletli Thales Kaynaklar ve Yorumlar David Pierce October , Matematics Department Mimar Sinan Fine Arts University Istanbul http://mat.msgsu.edu.tr/~dpierce/ Preface Here are notes of what I have been able to find or figure out about Thales of Miletus. They may be useful for anybody interested in Thales. They are not an essay, though they may lead to one. I focus mainly on the ancient sources that we have, and on the mathematics of Thales. I began this work in preparation to give one of several - minute talks at the Thales Meeting (Thales Buluşması) at the ruins of Miletus, now Milet, September , . The talks were in Turkish; the audience were from the general popu- lation. I chose for my title “Thales as the originator of the concept of proof” (Kanıt kavramının öncüsü olarak Thales). An English draft is in an appendix. The Thales Meeting was arranged by the Tourism Research Society (Turizm Araştırmaları Derneği, TURAD) and the office of the mayor of Didim. Part of Aydın province, the district of Didim encompasses the ancient cities of Priene and Miletus, along with the temple of Didyma. The temple was linked to Miletus, and Herodotus refers to it under the name of the family of priests, the Branchidae. I first visited Priene, Didyma, and Miletus in , when teaching at the Nesin Mathematics Village in Şirince, Selçuk, İzmir. The district of Selçuk contains also the ruins of Eph- esus, home town of Heraclitus. In , I drafted my Miletus talk in the Math Village. Since then, I have edited and added to these notes. -
The Works of Archimedes: Translation and Commentary Volume 1: the Two Books on the Sphere and the Cylinder
Book Review The Works of Archimedes: Translation and Commentary Volume 1: The Two Books On the Sphere and the Cylinder Reviewed by Alexander Jones The Works of Archimedes: Translation and He was the sub- Commentary. Volume 1: The Two Books On the ject of a biogra- Sphere and the Cylinder phy—now lost Edited and translated by Reviel Netz alas!—and stories Cambridge University Press, 2004 about him are told Hardcover x + 376 pp., $130.00 by ancient histo- ISBN 0-521-66160-9 rians and other writers who gen- Ancient Greek mathematics is associated in erally took little most people’s minds with two names: Euclid and interest in scien- Archimedes. The lasting fame of these men does tific matters. The not rest on the same basis. We remember Euclid as stories of Archi- the author of a famous book, the Elements, which medes’ inven- for more than two millennia served as the funda- tions; his solution mental introduction to ruler-and-compass geome- of the “crown try and number theory. About Euclid the man we problem”; the ma- know practically nothing, except that he lived be- chines by which, fore about 200 B.C. and may have worked in Alexan- as an old man, he dria. He wrote works on more advanced mathe- defended his native city, Syracuse, from the be- matics than the Elements, but none of these have sieging Roman fleet in 212 B.C.; and his death—still survived, though we have several fairly basic books doing geometry—at the hands of a Roman soldier on mathematical sciences (optics, astronomy, har- when Syracuse at last fell have never lost their ap- monic theory) under his name.