Deciphering the Enigma of Wave-Particle Duality
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Union of Quantum Field Theory and Non-Equilibrium Thermodynamics
The Union of Quantum Field Theory and Non-equilibrium Thermodynamics Thesis by Anthony Bartolotta In Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 24, 2018 ii c 2018 Anthony Bartolotta ORCID: 0000-0003-4971-9545 All rights reserved iii Acknowledgments My time as a graduate student at Caltech has been a journey for me, both professionally and personally. This journey would not have been possible without the support of many individuals. First, I would like to thank my advisors, Sean Carroll and Mark Wise. Without their support, this thesis would not have been written. Despite entering Caltech with weaker technical skills than many of my fellow graduate students, Mark took me on as a student and gave me my first project. Mark also granted me the freedom to pursue my own interests, which proved instrumental in my decision to work on non-equilibrium thermodynamics. I am deeply grateful for being provided this priviledge and for his con- tinued input on my research direction. Sean has been an incredibly effective research advisor, despite being a newcomer to the field of non-equilibrium thermodynamics. Sean was the organizing force behind our first paper on this topic and connected me with other scientists in the broader community; at every step Sean has tried to smoothly transition me from the world of particle physics to that of non-equilibrium thermody- namics. My research would not have been nearly as fruitful without his support. I would also like to thank the other two members of my thesis and candidacy com- mittees, John Preskill and Keith Schwab. -
Path Integral and Asset Pricing
Path Integral and Asset Pricing Zura Kakushadze§†1 § Quantigicr Solutions LLC 1127 High Ridge Road #135, Stamford, CT 06905 2 † Free University of Tbilisi, Business School & School of Physics 240, David Agmashenebeli Alley, Tbilisi, 0159, Georgia (October 6, 2014; revised: February 20, 2015) Abstract We give a pragmatic/pedagogical discussion of using Euclidean path in- tegral in asset pricing. We then illustrate the path integral approach on short-rate models. By understanding the change of path integral measure in the Vasicek/Hull-White model, we can apply the same techniques to “less- tractable” models such as the Black-Karasinski model. We give explicit for- mulas for computing the bond pricing function in such models in the analog of quantum mechanical “semiclassical” approximation. We also outline how to apply perturbative quantum mechanical techniques beyond the “semiclas- sical” approximation, which are facilitated by Feynman diagrams. arXiv:1410.1611v4 [q-fin.MF] 10 Aug 2016 1 Zura Kakushadze, Ph.D., is the President of Quantigicr Solutions LLC, and a Full Professor at Free University of Tbilisi. Email: [email protected] 2 DISCLAIMER: This address is used by the corresponding author for no purpose other than to indicate his professional affiliation as is customary in publications. In particular, the contents of this paper are not intended as an investment, legal, tax or any other such advice, and in no way represent views of Quantigic Solutions LLC, the website www.quantigic.com or any of their other affiliates. 1 Introduction In his seminal paper on path integral formulation of quantum mechanics, Feynman (1948) humbly states: “The formulation is mathematically equivalent to the more usual formulations. -
Critical Notice: the Quantum Revolution in Philosophy (Richard Healey; Oxford University Press, 2017)
Critical notice: The Quantum Revolution in Philosophy (Richard Healey; Oxford University Press, 2017) DAVID WALLACE Richard Healey’s The Quantum Revolution in Philosophy is a terrific book, and yet I disagree with nearly all its main substantive conclusions. The purpose of this review is to say why the book is well worth your time if you have any interest in the interpretation of quantum theory or in the general philosophy of science, and yet why in the end I think Healey’s ambitious project fails to achieve its full goals. The quantum measurement problem is the central problem in philosophy of quantum mechanics, and arguably the most important issue in philosophy of physics more generally; not coincidentally, it has seen some of the field’s best work, and some of its most effective engagement with physics. Yet the debate in the field largely now appears deadlocked: the last few years have seen developments in our understanding of many of the proposed solutions, but not much movement in the overall dialectic. This is perhaps clearest with a little distance: metaphysicians who need to refer to quantum mechanics increasingly tend to talk of “the three main interpretations” (they mean: de Broglie and Bohm’s hidden variable theory; Ghirardi, Rimini and Weber’s (‘GRW’) dynamical-collapse theory; Everett’s many- universes theory) and couch their discussions so as to be, as much as possible, equally valid for any of those three. It is not infrequent for philosophers of physics to use the familiar framework of underdetermination of theory by evidence to discuss the measurement problem. -
Electron Diffraction V2.1
Electron Diffraction v2.1 Background. This experiment demonstrates the wave-like nature of an electron as first postulated by Louis de Brogile in 1924. All particles including electrons have a wavelength inversely related to momentum: l = h/p. (1) It was well known at the time that the light could be diffracted by a periodic grating, where the grating period is of the order of the electromagnetic wavelength. If an electron has wave properties, then there might be a suitable physical grating to diffract it. Max von Laue had first suggested that periodic planes of atoms in a solid could serve as a grating. X- ray reflection experiments of Lawrence Bragg confirmed this and gave an estimate of the inter- Davisson and Germer in 1927 atomic spacing. Planes of atoms in a solid can also provide the appropriate grating spacing to cause electron diffraction. In a Nobel Prize winning experiment at Bell Labs in New Jersey, Clinton Davisson and Lester Germer used crystalline nickel to diffract electrons and prove their existence as waves. An independent experiment was done around the same time by George Thomson in Scotland. This was foundational work for the transmission electron microscope (TEM). The present experiment uses an ultra-thin polycrystalline graphite layer in place of nickel as the diffraction grating. Graphite forms as single planes of carbon atoms in a hexagonal arrangement shown in Figure 1. Vertical planes are not chemically bonded to adjacent planes. Instead they are more loosely held by the electrostatic van der Waals force but the atoms are remain aligned vertically. -
1 the Principle of Wave–Particle Duality: an Overview
3 1 The Principle of Wave–Particle Duality: An Overview 1.1 Introduction In the year 1900, physics entered a period of deep crisis as a number of peculiar phenomena, for which no classical explanation was possible, began to appear one after the other, starting with the famous problem of blackbody radiation. By 1923, when the “dust had settled,” it became apparent that these peculiarities had a common explanation. They revealed a novel fundamental principle of nature that wascompletelyatoddswiththeframeworkofclassicalphysics:thecelebrated principle of wave–particle duality, which can be phrased as follows. The principle of wave–particle duality: All physical entities have a dual character; they are waves and particles at the same time. Everything we used to regard as being exclusively a wave has, at the same time, a corpuscular character, while everything we thought of as strictly a particle behaves also as a wave. The relations between these two classically irreconcilable points of view—particle versus wave—are , h, E = hf p = (1.1) or, equivalently, E h f = ,= . (1.2) h p In expressions (1.1) we start off with what we traditionally considered to be solely a wave—an electromagnetic (EM) wave, for example—and we associate its wave characteristics f and (frequency and wavelength) with the corpuscular charac- teristics E and p (energy and momentum) of the corresponding particle. Conversely, in expressions (1.2), we begin with what we once regarded as purely a particle—say, an electron—and we associate its corpuscular characteristics E and p with the wave characteristics f and of the corresponding wave. -
INDUSTRIAL STRENGTH by MICHAEL RIORDAN
THE INDUSTRIAL STRENGTH by MICHAEL RIORDAN ORE THAN A DECADE before J. J. Thomson discovered the elec- tron, Thomas Edison stumbled across a curious effect, patented Mit, and quickly forgot about it. Testing various carbon filaments for electric light bulbs in 1883, he noticed a tiny current trickling in a single di- rection across a partially evacuated tube into which he had inserted a metal plate. Two decades later, British entrepreneur John Ambrose Fleming applied this effect to invent the “oscillation valve,” or vacuum diode—a two-termi- nal device that converts alternating current into direct. In the early 1900s such rectifiers served as critical elements in radio receivers, converting radio waves into the direct current signals needed to drive earphones. In 1906 the American inventor Lee de Forest happened to insert another elec- trode into one of these valves. To his delight, he discovered he could influ- ence the current flowing through this contraption by changing the voltage on this third electrode. The first vacuum-tube amplifier, it served initially as an improved rectifier. De Forest promptly dubbed his triode the audion and ap- plied for a patent. Much of the rest of his life would be spent in forming a se- ries of shaky companies to exploit this invention—and in an endless series of legal disputes over the rights to its use. These pioneers of electronics understood only vaguely—if at all—that individual subatomic particles were streaming through their devices. For them, electricity was still the fluid (or fluids) that the classical electrodynamicists of the nineteenth century thought to be related to stresses and disturbances in the luminiferous æther. -
The Path Integral Approach to Quantum Mechanics Lecture Notes for Quantum Mechanics IV
The Path Integral approach to Quantum Mechanics Lecture Notes for Quantum Mechanics IV Riccardo Rattazzi May 25, 2009 2 Contents 1 The path integral formalism 5 1.1 Introducingthepathintegrals. 5 1.1.1 Thedoubleslitexperiment . 5 1.1.2 An intuitive approach to the path integral formalism . .. 6 1.1.3 Thepathintegralformulation. 8 1.1.4 From the Schr¨oedinger approach to the path integral . .. 12 1.2 Thepropertiesofthepathintegrals . 14 1.2.1 Pathintegralsandstateevolution . 14 1.2.2 The path integral computation for a free particle . 17 1.3 Pathintegralsasdeterminants . 19 1.3.1 Gaussianintegrals . 19 1.3.2 GaussianPathIntegrals . 20 1.3.3 O(ℏ) corrections to Gaussian approximation . 22 1.3.4 Quadratic lagrangians and the harmonic oscillator . .. 23 1.4 Operatormatrixelements . 27 1.4.1 Thetime-orderedproductofoperators . 27 2 Functional and Euclidean methods 31 2.1 Functionalmethod .......................... 31 2.2 EuclideanPathIntegral . 32 2.2.1 Statisticalmechanics. 34 2.3 Perturbationtheory . .. .. .. .. .. .. .. .. .. .. 35 2.3.1 Euclidean n-pointcorrelators . 35 2.3.2 Thermal n-pointcorrelators. 36 2.3.3 Euclidean correlators by functional derivatives . ... 38 0 0 2.3.4 Computing KE[J] and Z [J] ................ 39 2.3.5 Free n-pointcorrelators . 41 2.3.6 The anharmonic oscillator and Feynman diagrams . 43 3 The semiclassical approximation 49 3.1 Thesemiclassicalpropagator . 50 3.1.1 VanVleck-Pauli-Morette formula . 54 3.1.2 MathematicalAppendix1 . 56 3.1.3 MathematicalAppendix2 . 56 3.2 Thefixedenergypropagator. 57 3.2.1 General properties of the fixed energy propagator . 57 3.2.2 Semiclassical computation of K(E)............. 61 3.2.3 Two applications: reflection and tunneling through a barrier 64 3 4 CONTENTS 3.2.4 On the phase of the prefactor of K(xf ,tf ; xi,ti) .... -
Quantum Fluctuation
F EATURE Kavli IPMU Principal Investigator Eiichiro Komatsu Research Area: Theoretical Physics Quantum Fluctuation The 20th century has seen the remarkable is not well known to the public. This ingredient development of the Standard Model of elementary is not contained in the name of ΛCDM, but is particles and elds. The last piece, the Higgs particle, an indispensable part of the Standard Model of was discovered in 2012. In the 21st century, we are cosmology. It is the idea that our ultimate origin is witnessing the similarly remarkable development the quantum mechanical uctuation generated in of the Standard Model of cosmology. In his 2008 the early Universe. However remarkable it may sound, book on“ Cosmology” Steven Weinberg, who led this idea is consistent with all the observational data the development of particle physics, wrote“: This that have been collected so far for the Universe. new excitement in cosmology came as if on cue Furthermore, the evidence supporting this idea keeps for elementary particle physicists. By the 1980s the accumulating and is strengthened as we collect more Standard Model of elementary particles and elds data! It is likely that all the structures we see today in had become well established. Although signicant the Universe, such as galaxies, stars, planets, and lives, theoretical and experimental work continued, there ultimately originated from the quantum uctuation was now little contact between experiment and new in the early Universe. theoretical ideas, and without this contact, particle physics lost much of its liveliness. Cosmology now Borrowing energy from the vacuum offered the excitement that particle physicists had experienced in the 1960s and 1970s.” In quantum mechanics, we can borrow energy The Standard Model of cosmology is known from the vacuum if we promise to return it as the“ ΛCDM model”. -
Quantum Interference of Molecules--Probing the Wave Nature of Matter
Anu Venugopalan is on the faculty of the School of Basic and Applied Sciences, GGS Indraprastha University, Delhi. Her primary research interests are in the areas of Foundations of Quantum mechanics, Quantum Optics and Quantum Information. Address for Correspondence: University School of Basic and Applied Sciences, GGS Indraprastha University Kashmere Gate, Delhi - 11 0 453 e-mail: [email protected] arXiv:1211.3493v1 [physics.pop-ph] 15 Nov 2012 1 Quantum Interference of Molecules - Probing the Wave Nature of Matter Anu Venugopalan November 16, 2012 Abstract The double slit interference experiment has been famously described by Richard Feynman as containing the ”only mystery of quantum mechanics”. The history of quantum mechanics is intimately linked with the discovery of the dual nature of matter and radiation. While the double slit experiment for light is easily undert- sood in terms of its wave nature, the very same experiment for particles like the electron is somewhat more difficult to comprehend. By the 1920s it was firmly established that electrons have a wave nature. However, for a very long time, most discussions pertaining to interference experiments for particles were merely gedanken experiments. It took almost six decades after the establishment of its wave nature to carry out a ’double slit interference’ experiment for electrons. This set the stage for interference experiments with larger particles. In the last decade there has been spectacular progress in matter-wave interefernce experiments. To- day, molecules with over a hundred atoms can be made to interfere. In the following we discuss some of these exciting developments which probe new regimes of Nature, bringing us closer to the heart of quantum mechanics and its hidden mysteries. -
Electronic Zero-Point Fluctuation Forces Inside Circuit Components Arxiv
Electronic zero-point fluctuation forces inside circuit components Ephraim Shahmoon1 and Ulf Leonhardt2 1Department of Physics, Harvard University, Cambridge MA 02138, USA 2Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 761001, Israel May 1, 2018 One of the most intriguing manifestations of quantum zero-point fluctuations are the van der Waals and Casimir forces, often associated with vacuum fluc- tuations of the electromagnetic field. Here we study generalized fluctuation potentials acting on internal degrees of freedom of components in electrical circuits. These electronic Casimir-like potentials are induced by the zero-point current fluctuations of any general conductive circuit. For realistic examples of an electromechanical capacitor and a superconducting qubit, our results re- veal the possibility of tunable forces between the capacitor plates, or the level shifts of the qubit, respectively. Our analysis suggests an alternative route to- wards the exploration of Casimir-like fluctuation potentials, namely, by char- acterizing and measuring them as a function of parameters of the environ- ment. Such tunable potentials may be useful for future nanoelectromechanical and quantum technologies. arXiv:1612.03250v2 [quant-ph] 29 Apr 2018 Introduction Understanding the role of quantum phenomena in electrical circuits has opened numerous pos- sibilities in quantum information and optics (1, 2). In this article we show how conceptually simple systems, such as linear electrical circuits, provide a new direction in the study and appli- cation of quantum fluctuation phenomena, in analogy to the van der Waals (vdW) and Casimir forces (3, 4, 5). A key element of the ensuing discussion is the generalization of the familiar Casimir force in three aspects; namely, the source of the quantum fluctuations, the physical effect they entail and, most importantly, how the effect is measured and manipulated. -
Quantum Fluctuations of Vector Fields and the Primordial Curvature Perturbation in the Universe
Quantum Fluctuations of Vector Fields and the Primordial Curvature Perturbation in the Universe Mindaugas Karčiauskas MSc, BSc December 2009 This thesis is submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy. No part of this thesis has been previously submitted for the award of a higher degree. arXiv:1009.1779v1 [astro-ph.CO] 9 Sep 2010 “What he [a scientist] is really seeking is to learn something new that has a cer- tain fundamental kind of significance: a hitherto unknown lawfulness in the order of nature, which exhibits unity in a broad range of phenomena. Thus, he wishes to find in the reality in which he lives a cer- tain oneness and totality, or wholeness, constituting a kind of harmony that is felt to be beautiful. In this respect, the scientist is perhaps not basically differ- ent from the artist, the architect, the music composer, etc., who all want to create this sort of thing in their work.” David Bohm Acknowledgments This thesis is a culmination of more than three years spend in England as a PhD student, which signify not only my scientific achievements but also people I met and moments experienced together. Although written by me, these pages include contributions from all these people without whom this would be just a collection of blank paper. Some of contributions are too subtle to put into words, but each of them is essential and invaluable. It is impossible to name everyone, so I sincerely apologize those whose name is not mentioned here. First and foremost I want to say thank you to Milda Beišyt˙e. -
On Heisenberg Uncertainty Relationship, Its Extension, and the Quantum Issue of Wave-Particle Duality
Int. J. Mol. Sci. 2010, 11, 4124-4139; doi:10.3390/ijms11104124 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article On Heisenberg Uncertainty Relationship, Its Extension, and the Quantum Issue of Wave-Particle Duality Mihai V. Putz 1,2 1 Laboratory of Computational and Structural Physical Chemistry, Chemistry Department, West University of Timişoara, Pestalozzi Street No.16, Timişoara, RO-300115, Romania; E-Mail: [email protected] or [email protected]; Tel.: ++40-256-592-633; Fax: ++40-256-592-620; Web: www.mvputz.iqstorm.ro 2 Theoretical Physics Institute, Free University Berlin, Arnimallee 14, 14195 Berlin, Germany Received: 11 August 2010; in revised form: 27 September 2010 / Accepted: 17 October 2010 / Published: 22 October 2010 Abstract: Within the path integral Feynman formulation of quantum mechanics, the fundamental Heisenberg Uncertainty Relationship (HUR) is analyzed in terms of the quantum fluctuation influence on coordinate and momentum estimations. While introducing specific particle and wave representations, as well as their ratio, in quantifying the wave-to-particle quantum information, the basic HUR is recovered in a close analytical manner for a large range of observable particle-wave Copenhagen duality, although with the dominant wave manifestation, while registering its progressive modification with the factor 1 n2 , in terms of magnitude n0,1 of the quantum fluctuation, for the free quantum evolution around the exact wave-particle equivalence. The practical implications of the present particle-to-wave ratio as well as of the free-evolution quantum picture are discussed for experimental implementation, broken symmetry and the electronic localization function.