A Brief History of the Convair F-106 Delta Dart Interceptor: the ‘Ultimate Interceptor’
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2020 Corporate Sustainability Report
TRANSPARENCY. TRUST. ALIGNMENT. HONESTY. 2020 Corporate Sustainability Report OUR ETHOS TRANSPARENCY. TRUST. ALIGNMENT. HONESTY. These four values undergird everything we do at General Dynamics — they are our defining moral character. All of us at General Dynamics have a duty to behave according to these values. Through our shared Ethos, we ensure that we continue to be good stewards of the investments our shareholders, customers, employees and communities make in us, now and in the future. TABLE OF CONTENTS OUR ETHOS 2 A Letter From Our CEO 4 OUR BUSINESS 5 Our Values at Work 6 Business Overview 7 Corporate Responsibility 10 Global Supply Chain 12 GOVERNANCE 14 Corporate Governance 15 Ethics 18 Information Security 21 HUMAN CAPITAL MANAGEMENT 25 Employee Safety 26 Employee Well-Being 27 Developing and Engaging Our Talent 28 DIVERSITY AND INCLUSION 29 Diversity Is Critical to Innovation 30 Talent Recruiting and Retaining Diverse Talent 32 Awards & Recognition 36 ENVIRONMENT 37 Environmental Responsibility 38 Examples From Our Businesses 41 COMMUNITY RELATIONS 45 Investing in Our Communities 46 COVID-19 Response 50 REPORTING APPROACH 52 A Letter from Our CEO Dear Fellow Shareholder, Corporate sustainability at General Dynamics is rooted in our Ethos — our defining moral character as a company and the standard to which we hold ourselves and our more than 100,000 employees worldwide. It informs all that we do and guides us as we deliver value to our shareholders, our customers and our communities. Ongoing conversations with all of our stakeholders have been an integral part of building and evolving our sustainability program. We remain committed to reducing our global environmental impact, including our carbon footprint; protecting and promoting human rights; increasing the diversity of our workforce; supporting the health, welfare and safety of our employees; and fostering mutually beneficial relationships with our communities. -
Artifacts and Aircraft
International Journal of Business, Humanities and Technology Vol. 5, No. 2; April 2015 The Ancients: Artifacts and Aircraft Susan Kelly Archer, EdD Embry-Riddle Aeronautical University Department of Doctoral Studies College of Aviation Daytona Beach, Florida USA Abstract Throughout literature and other art forms, certain themes appear repeatedly. The same might be said for engineering designs, specifically the design of aerospace vehicles. In 1996, Lumir Janku wrote about a set of artifacts, discovered in Peru and determined to be Pre-Columbian, that can be interpreted as models of delta- winged fliers. The design of the Peruvian artifacts has been interpreted in multiple ways by a variety of professionals. The delta wing was also incorporated into the design of civilian aircraft during the 20th Century. Modern delta-winged aircraft were used successfully in both military and civilian applications for more than 40 years. It is interesting to read about the possibility that this aeronautical design may have originated millennia earlier with a culture that did not leave written records to explain its artifacts crafted in gold. Keywords: aviation history, delta wing, Pre-Columbian artifacts Throughout literature and other art forms, certain themes appear repeatedly. The same might be said for engineering designs, specifically the design of aerospace vehicles. Man’s fascination with how birds fly can be linked to the ancient legends of Daedalus or the winged Egyptian gods, and then more recently to John Damien’s attempt to fly with wings made from chicken feathers (Brady, 2000) or Otto Lillienthal’s essays linking the physiology of birds to the design of early gliders (Lillienthal, 2001). -
P-38 Lightning
P-38 Lightning P-38 Lightning Type Heavy fighter Manufacturer Lockheed Designed by Kelly Johnson Maiden flight 27 January 1939 Introduction 1941 Retired 1949 Primary user United States Army Air Force Produced 1941–45 Number built 10,037[1] Unit cost US$134,284 when new[2] Variants Lockheed XP-49 XP-58 Chain Lightning The Lockheed P-38 Lightning was a World War II American fighter aircraft. Developed to a United States Army Air Corps requirement, the P-38 had distinctive twin booms with forward-mounted engines and a single, central nacelle containing the pilot and armament. The aircraft was used in a number of different roles, including dive bombing, level bombing, ground strafing, photo reconnaissance missions,[3] and extensively as a long-range escort fighter when equipped with droppable fuel tanks under its wings. The P-38 was used most extensively and successfully in the Pacific Theater of Operations and the China-Burma-India Theater of Operations, where it was flown by the American pilots with the highest number of aerial victories to this date. The Lightning called "Marge" was flown by the ace of aces Richard Bong who earned 40 victories. Second with 38 was Thomas McGuire in his aircraft called "Pudgy". In the South West Pacific theater, it was a primary fighter of United States Army Air Forces until the appearance of large numbers of P-51D Mustangs toward the end of the war. [4][5] 1 Design and development Lockheed YP-38 (1943) Lockheed designed the P-38 in response to a 1937 United States Army Air Corps request for a high- altitude interceptor aircraft, capable of 360 miles per hour at an altitude of 20,000 feet, (580 km/h at 6100 m).[6] The Bell P-39 Airacobra and the Curtiss P-40 Warhawk were also designed to meet the same requirements. -
BOMBS AWAY' from 60,0
The unconventional, far-ahead, supersonic B-58 Hustler is poised combat-ready at Cars- well AFB in Texas — a new addition to the free world's deterrent strength. USAF air- men and their B-58s have been engaged in intensive training. They have also taken time out to rewrite a page or two of the record book . 'BOMBS AWAY' from 60,0 Col. J. K. Johnson, USAF FORMER COMMANDER, 43d BOMB WING (M), SAC HE TARGET is Deerfield, Mass. You're twelve sive. It may not quite rival those reported by miles up, moving at twice the speed of sound. high-altitude record setters and balloonists, or T But there's no sense of speed, of motion. You nation's first Astronaut, but it still covers a giant fi seem to be hanging high above the earth on an in- of vision. To the right, far below, are the lights visible thread strung from somewhere in the universe. Buffalo, N. Y., 150 miles away. You see a lot of te It's calm, smooth, peaceful, quiet—in sharp con- tory from a dozen miles up—although you don't rea trast to the dread lethality of your bomb load. Actu- need to for purposes of this mission. All the infa ally, the bomb load is simulated. This is a practice mation required to plunk your "electronic payloac strike. It could be for real. Deerfield, some 3,500 on target is carried in black boxes in the plane. It miles from home base by a circuitous exercise route, automatically fed to computers to keep you on ems! provides a particular pattern on a radar screen. -
10. Supersonic Aerodynamics
Grumman Tribody Concept featured on the 1978 company calendar. The basis for this idea will be explained below. 10. Supersonic Aerodynamics 10.1 Introduction There have actually only been a few truly supersonic airplanes. This means airplanes that can cruise supersonically. Before the F-22, classic “supersonic” fighters used brute force (afterburners) and had extremely limited duration. As an example, consider the two defined supersonic missions for the F-14A: F-14A Supersonic Missions CAP (Combat Air Patrol) • 150 miles subsonic cruise to station • Loiter • Accel, M = 0.7 to 1.35, then dash 25 nm - 4 1/2 minutes and 50 nm total • Then, must head home, or to a tanker! DLI (Deck Launch Intercept) • Energy climb to 35K ft, M = 1.5 (4 minutes) • 6 minutes at M = 1.5 (out 125-130 nm) • 2 minutes Combat (slows down fast) After 12 minutes, must head home or to a tanker. In this chapter we will explain the key supersonic aerodynamics issues facing the configuration aerodynamicist. We will start by reviewing the most significant airplanes that had substantial sustained supersonic capability. We will then examine the key physical underpinnings of supersonic gas dynamics and their implications for configuration design. Examples are presented showing applications of modern CFD and the application of MDO. We will see that developing a practical supersonic airplane is extremely demanding and requires careful integration of the various contributing technologies. Finally we discuss contemporary efforts to develop new supersonic airplanes. 10.2 Supersonic “Cruise” Airplanes The supersonic capability described above is typical of most of the so-called supersonic fighters, and obviously the supersonic performance is limited. -
04 Delta Wings
ExperimentalExperimental AerodynamicsAerodynamics Lecture 4: Delta wing experiments G. Dimitriadis Experimental Aerodynamics Introduction •! In this course we will demonstrate the use of several different experimental aerodynamic methodologies •! The particular application will be the aerodynamics of Delta wings at low airspeeds. •! Delta wings are of particular interest because of their lift generation mechanism. Experimental Aerodynamics Delta wing history •! Until the 1930s the vast majority of aircraft featured rectangular, trapezoidal or elliptical wings. •! Delta wings started being studied in the 1930s by Alexander Lippisch in Germany. •! Lippisch wanted to create tail-less aircraft, and Delta wings were one of the solutions he proposed. Experimental Aerodynamics Delta Lippisch DM-1 Designed as an interceptor jet but never produced. The photos show a glider prototype version. Experimental Aerodynamics High speed flight •! After the war, the potential of Delta wings for supersonic flight was recognized both in the US and the USSR. MiG-21 Convair XF-92 Experimental Aerodynamics Low speed performance •! Although Delta wings are designed for high speeds, they still have to take off and land at small airspeeds. •! It is important to determine the aerodynamic forces acting on Delta wings at low speed. •! The lift generated by such wings are low speeds can be split into two contributions: –! Potential flow lift –! Vortex lift Experimental Aerodynamics Delta wing geometry cb Wing surface: S = 2 2b Aspect ratio: AR = "! c c! b AR Sweep angle: tan ! = = 2c 4 b/2! Experimental Aerodynamics Potential flow lift •! Slender wing theory •! The wind is discretized into transverse segments. •! The flow around each segment is modeled as a 2D flow past a flat plate perpendicular to the free stream Experimental Aerodynamics Slender wing theory •! The problem of calculating the flow around the wing becomes equivalent to calculating the flow around each 2D segment. -
IB81107: Bomber Options for Replacing B-52S
BOMBER OPTIONS FOR REPLACING B-52s ISSUE BRIEF NUMBER IB81107 AUTHOR: Mitchell, Douglas D. Foreign Affairs and National Defense Division THE LIBRARY OF CONGRESS CONGRESSIONAL RESEARCH SERVICE MAJOR ISSUES SYSTEM ' DATE ORIGINATED 06/17/81 DATE UPDATED 05/03/82 FOR ADDITIONAL INFORMATION CALL 287-5700 0528 CRS- 1 ISSUE DEFINITION To deter a nuclear attack against this country and its allies, the United States maintains a strategic force of land-based missiles (ICBMs), submarine-based missiles (SLBMs), and bombers. The bomber leg of this "triad" primarily consists of about 343 B-52 bombers operated by the Strategic Air Command (SAC). Many believe that by 1990, the B-52's vulnerability to improving Soviet air defenses will imperil its effectiveness as a penetrating bomber. There is strong sentiment in Congress and in the Department of Defense to replace the B-52s before that time. The FY81 Defense Authorization Act (P.L. 96-342) directed the Secretary of Defense to develop a "multi-role bomber" for initial deployment by 1987. Candidate aircraft were to include the B-1, a derivative of the B-1, the FB-111B/C, and an advanced technology aircraft, which would incorporate "Stealth.'' Months before the choice of aircraft was announced, the new Reagan Administration added $2.4 billion to the FY82 defense budget, to initiate a bomber procurement and research and development program called Long Range Combat Aircraft (LRCA). In a long-awaited announcement on Oct. 2, 1981, President Reagan designated a modified B-1 -- also known as the B-1B -- as the aircraft to be built for LRCA. -
Actuator Saturation Analysis of a Fly-By-Wire Control System for a Delta-Canard Aircraft
DEGREE PROJECT IN VEHICLE ENGINEERING, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2020 Actuator Saturation Analysis of a Fly-By-Wire Control System for a Delta-Canard Aircraft ERIK LJUDÉN KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ENGINEERING SCIENCES Author Erik Ljudén <[email protected]> School of Engineering Sciences KTH Royal Institute of Technology Place Linköping, Sweden Saab Examiner Ulf Ringertz Stockholm KTH Royal Institute of Technology Supervisor Peter Jason Linköping Saab Abstract Actuator saturation is a well studied subject regarding control theory. However, little research exist regarding aircraft behavior during actuator saturation. This paper aims to identify flight mechanical parameters that can be useful when analyzing actuator saturation. The studied aircraft is an unstable delta-canard aircraft. By varying the aircraft’s center-of- gravity and applying a square wave input in pitch, saturated actuators have been found and investigated closer using moment coefficients as well as other flight mechanical parameters. The studied flight mechanical parameters has proven to be highly relevant when analyzing actuator saturation, and a simple connection between saturated actuators and moment coefficients has been found. One can for example look for sudden changes in the moment coefficients during saturated actuators in order to find potentially dangerous flight cases. In addition, the studied parameters can be used for robustness analysis, but needs to be further investigated. Lastly, the studied pitch square wave input shows no risk of aircraft departure with saturated elevons during flight, provided non-saturated canards, and that the free-stream velocity is high enough to be flyable. i Sammanfattning Styrdonsmättning är ett välstuderat ämne inom kontrollteorin. -
Aircraft of Today. Aerospace Education I
DOCUMENT RESUME ED 068 287 SE 014 551 AUTHOR Sayler, D. S. TITLE Aircraft of Today. Aerospace EducationI. INSTITUTION Air Univ.,, Maxwell AFB, Ala. JuniorReserve Office Training Corps. SPONS AGENCY Department of Defense, Washington, D.C. PUB DATE 71 NOTE 179p. EDRS PRICE MF-$0.65 HC-$6.58 DESCRIPTORS *Aerospace Education; *Aerospace Technology; Instruction; National Defense; *PhysicalSciences; *Resource Materials; Supplementary Textbooks; *Textbooks ABSTRACT This textbook gives a brief idea aboutthe modern aircraft used in defense and forcommercial purposes. Aerospace technology in its present form has developedalong certain basic principles of aerodynamic forces. Differentparts in an airplane have different functions to balance theaircraft in air, provide a thrust, and control the general mechanisms.Profusely illustrated descriptions provide a picture of whatkinds of aircraft are used for cargo, passenger travel, bombing, and supersonicflights. Propulsion principles and descriptions of differentkinds of engines are quite helpful. At the end of each chapter,new terminology is listed. The book is not available on the market andis to be used only in the Air Force ROTC program. (PS) SC AEROSPACE EDUCATION I U S DEPARTMENT OF HEALTH. EDUCATION & WELFARE OFFICE OF EDUCATION THIS DOCUMENT HAS BEEN REPRO OUCH) EXACTLY AS RECEIVED FROM THE PERSON OR ORGANIZATION ORIG INATING IT POINTS OF VIEW OR OPIN 'IONS STATED 00 NOT NECESSARILY REPRESENT OFFICIAL OFFICE OF EOU CATION POSITION OR POLICY AIR FORCE JUNIOR ROTC MR,UNIVERS17/14AXWELL MR FORCEBASE, ALABAMA Aerospace Education I Aircraft of Today D. S. Sayler Academic Publications Division 3825th Support Group (Academic) AIR FORCE JUNIOR ROTC AIR UNIVERSITY MAXWELL AIR FORCE BASE, ALABAMA 2 1971 Thispublication has been reviewed and approvedby competent personnel of the preparing command in accordance with current directiveson doctrine, policy, essentiality, propriety, and quality. -
General Dynamics Electric Boat Invoices
General Dynamics Electric Boat Invoices tastedBruce panningswhole while prehistorically small-town Constantineif inessive Stanly monkey sleeved that sumpters.or vitalised. Festinate and sprightliest Rodrick sectarianizing some limos so lingually! Morton still The invoicing party of command and the developer shall be construed as this retirement benefits are currently under this Ifeither part breache an ofthe terms provisions orconditions ofthis Agreementb. Gtin information with written notice and this allegation is used as we also be. At General Dynamics Electric Boat We hook the sentence that. The versatile Greyhound can void support special operations and distinguished visitor transport requirements. Landlord of any or all other rights or remedies provided for in this Lease, if any, or now or hereafter existing at law or in equity or by statute or otherwise. Conflict mineral that year of invoices received from raw materials per share data, legal meaning to minimiz terroristhreat throug th. We are using cookies to give you the best experience follow our website. To the extent backlog has not been funded, there is no assurance that congressional appropriations or agency allotments will be forthcoming. Assigned to the Military Sealift Command they are manned by civilian mariners. AGREEMENT GENERAL DYNAMICS ELECTRIC BOAT. Electric boat corporation company estimates made in advanced gun and all gtins may be. City any attempt to supplying any manner cannot pay to take a general dynamics electric boat invoices have the delivery of being used. Terminal range of invoices received from indeed, service providers and deduction of? Haanyon eve aske me a captcha proves you agree on gold for general dynamics electric boat pursuant to. -
Research Memorandum
https://ntrs.nasa.gov/search.jsp?R=19930087545 2020-06-17T09:26:49+00:00Z RESEARCH MEMORANDUM PRELIMINARY FLTGHT MEASUREMENTS OF THE DYNAMIC LONGITUDINAL STABILITY CHARACTERISTICS OF TEE CONVAIR XF-92A DELTA-.ZING AEPLELNE By Euclid C. HoIleman, John H. Evans, and William C. Triplett NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS WASHINGTON June 30, 1953 .- u NATIONAL ADVISORY COXMITTEE FOR AERONAUTICS - " RESEARCH MEMORANDUM PRELIMINARY FZIGHT MEASuRplENTS OF THE DYNAMIC LONGITUDLNAL STABILITY CHARACTEEISTICS OF THE CONVAIR XF-9 DELTA-WING By Euclid C . Rolleman, John H. Evans, and William C. Triplett SUMMARY Some longitudinal maneuvers obtainedduring the U. S. Air Forceper- formance tests of the ConvairXF-W airplane have been analyzedusfng by measured period and timeto damp tohalf amplitude and by Reeves Electronic halog Computer (REAC) study to givea preliminary measurementof the air- plane stabilityand damping at Mach numbersfrom 0.59 to 0.94. For the range of these tests, no loss in control effectiveness was shown, . thestatic stability Cmcr increasedwith Mach nmiber, the damping was light but positive, and the damping factorC&i 4- % was lm. INTRODUCTION The XF-PA airplane was constructed by the Consolidated-Vultee Aircraft Corp. to provide inf'ormation on the flight characteristicsof a 60° delta-wing configuration at subsonicspeeds. Increased interest in the delta-wing configurationfor supersonic flight prompted the replace- ment of the originalJ-33-A-23 engine witha J-33-A-29 engine with after- burner. Air Force demonstrationand performance tests have been conducted since this change with the National Advisory Committeefor Aeronautics providing instrumentationand engineer- assistance. During these testsrandm longftudinal disturbanceswere obtained which were considered suitablefor stability analysis although these maneuvers were not performed specifically to obtain thisof informa-type tion. -
Air Base Defense Rethinking Army and Air Force Roles and Functions for More Information on This Publication, Visit
C O R P O R A T I O N ALAN J. VICK, SEAN M. ZEIGLER, JULIA BRACKUP, JOHN SPEED MEYERS Air Base Defense Rethinking Army and Air Force Roles and Functions For more information on this publication, visit www.rand.org/t/RR4368 Library of Congress Cataloging-in-Publication Data is available for this publication. ISBN: 978-1-9774-0500-5 Published by the RAND Corporation, Santa Monica, Calif. © Copyright 2020 RAND Corporation R® is a registered trademark. Limited Print and Electronic Distribution Rights This document and trademark(s) contained herein are protected by law. This representation of RAND intellectual property is provided for noncommercial use only. Unauthorized posting of this publication online is prohibited. Permission is given to duplicate this document for personal use only, as long as it is unaltered and complete. Permission is required from RAND to reproduce, or reuse in another form, any of its research documents for commercial use. For information on reprint and linking permissions, please visit www.rand.org/pubs/permissions. The RAND Corporation is a research organization that develops solutions to public policy challenges to help make communities throughout the world safer and more secure, healthier and more prosperous. RAND is nonprofit, nonpartisan, and committed to the public interest. RAND’s publications do not necessarily reflect the opinions of its research clients and sponsors. Support RAND Make a tax-deductible charitable contribution at www.rand.org/giving/contribute www.rand.org Preface The growing cruise and ballistic missile threat to U.S. Air Force bases in Europe has led Headquarters U.S.