INORGANIC SYNTHESES Volume XXI
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Unusual Ring Opening of Hexamethyl Dewar Benzene in Its Reaction with Triosmium Carbonyl Cluster
Organometallics 2003, 22, 2361-2363 2361 Unusual Ring Opening of Hexamethyl Dewar Benzene in Its Reaction with Triosmium Carbonyl Cluster Wen-Yann Yeh* and Yu-Chiao Liu Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan 804 Shie-Ming Peng and Gene-Hsiang Lee Department of Chemistry, National Taiwan University, Taipei, Taiwan 106 Received April 15, 2003 6 Summary: Os3(CO)10(NCMe)2 catalyzes the transforma- HMDB produces the HMB complex [(η -C6Me6)Fe- 11 tion of hexamethyl Dewar benzene (HMDB) to hexameth- (CO)2]2. In rare cases the HMDB moiety has lost its ylbenzene (HMB). This catalytic reaction is in competi- unity, such as in the reaction of RhCl3‚xH2O with 5 tion with ring opening of the HMDB ligand to give (µ- HMDB, causing a ring contraction to give [(η -C5Me5)- 3 12 H)2Os3(CO)9(µ-η -CH(C6Me5)) (1) and (µ-H)Os3(CO)9(µ3- RhCl2]2. However, the coordination chemistry of HMDB 2 t η -C C(C4Me4Et)) (2). with metal clusters has received little attention. We now The coordination chemistry of strained hydrocarbons report that Os3(CO)10(NCMe)2 not only catalyzes the has fascinated chemists striving to understand the conversion of HMDB to HMB but also causes unusual - - details of structure and reactivity.1 In particular, ben- C H and C C bond activations of the HMDB ligand to zene is rich with high-energy strained isomers, such as form unique cluster complexes. Dewar benzene, prismane, and benzvalene, which in- Treatment of Os3(CO)10(NCMe)2 with HMDB (4-fold) terconvert through complex and mysterious rearrange- at -
Oct. 7, Hydrogen-Transfer Annulations Forming Heterocycles by John
Hydrogen-Transfer Annulations Forming Heterocycles Samuel John Thompson Dong Group – UT Austin Wednesday – October 7th, 2015 Literature Review This review brought to you by Angewandte. 560 ACCOUNT Minireviews A. Nandakumar,E.Balaraman et al. Cp*Ir Complex-Catalyzed Hydrogen Transfer Reactions Directed toward International Edition:DOI:10.1002/anie.201503247 Synthetic Methods German Edition:DOI:10.1002/ange.201503247 Environmentally Benign Organic Synthesis Cp*IrKen-ichi Complex-Catalyzed Hydrogen Transfer Reactions Fujita, Ryohei Yamaguchi* Transition-Metal-Catalyzed Hydrogen-Transfer Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan Fax +81(75)7536634; E-mail: [email protected]; E-mail: [email protected] Annulations:Access to Heterocyclic Scaffolds Received 1 October 2004 Avanashiappan Nandakumar,* Siba Prasad Midya, Vinod Gokulkrishna Landge, and Ekambaram Balaraman* The stability of organoiridium complexes was advanta- Abstract: Catalytic activity of Cp*Ir complexes toward hydrogen geous for the studies on stoichiometric reactions in detail; annulations ·heterocycles ·hydrogen transfer · transfer reactions are discussed. Three different types of reactions thus the oxidative addition reaction, which is one of the synthetic methods ·transition metal catalysis have been developed. The first is Oppenauer-type oxidation of alco- hols. This reaction proceeds under quite mild conditions (room tem- most fundamental and important process in organo- perature in acetone) catalyzed by [Cp*IrCl2]2/K2CO3, and both metallic chemistry, has been studied using Vaska’s com- primary and secondary alcohols can be used as substrates. Introduc- 2 he ability of hydrogen-transfer transition-metal catalysts,whichen- plex IrCl(CO)(PPh3)2. -
Bond Distances and Bond Orders in Binuclear Metal Complexes of the First Row Transition Metals Titanium Through Zinc
Metal-Metal (MM) Bond Distances and Bond Orders in Binuclear Metal Complexes of the First Row Transition Metals Titanium Through Zinc Richard H. Duncan Lyngdoh*,a, Henry F. Schaefer III*,b and R. Bruce King*,b a Department of Chemistry, North-Eastern Hill University, Shillong 793022, India B Centre for Computational Quantum Chemistry, University of Georgia, Athens GA 30602 ABSTRACT: This survey of metal-metal (MM) bond distances in binuclear complexes of the first row 3d-block elements reviews experimental and computational research on a wide range of such systems. The metals surveyed are titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, and zinc, representing the only comprehensive presentation of such results to date. Factors impacting MM bond lengths that are discussed here include (a) n+ the formal MM bond order, (b) size of the metal ion present in the bimetallic core (M2) , (c) the metal oxidation state, (d) effects of ligand basicity, coordination mode and number, and (e) steric effects of bulky ligands. Correlations between experimental and computational findings are examined wherever possible, often yielding good agreement for MM bond lengths. The formal bond order provides a key basis for assessing experimental and computationally derived MM bond lengths. The effects of change in the metal upon MM bond length ranges in binuclear complexes suggest trends for single, double, triple, and quadruple MM bonds which are related to the available information on metal atomic radii. It emerges that while specific factors for a limited range of complexes are found to have their expected impact in many cases, the assessment of the net effect of these factors is challenging. -
Inorganic Syntheses
INORGANIC SYNTHESES Volume 27 .................... ................ Board of Directors JOHN P. FACKLER, JR. Texas A&M University BODlE E. DOUGLAS University of Pittsburgh SMITH L. HOLT, JR. Oklahoma State Uniuersity JAY H. WORRELL University of South Florida RUSSELL N. GRIMES University of Virginia ROBERT J. ANGELIC1 Iowa State University Future Volumes 28 ROBERT J. ANGELIC1 Iowa State University 29 RUSSELL N. GRIMES University of Virginia 30 LEONARD V. INTERRANTE Rensselaer Polytechnic Institute 31 ALLEN H. COWLEY University of Texas, Austin 32 MARCETTA Y. DARENSBOURG Texas A&M University International Associates MARTIN A. BENNETT Australian National University, Canberra FAUSTO CALDERAZZO University of Pisa E. 0. FISCHER Technical University. Munich JACK LEWIS Cambridge University LAMBERTO MALATESTA University of Milan RENE POILBLANC University of Toulouse HERBERT W. ROESKY University of Gottingen F. G. A. STONE University of Bristol GEOFFREY WILKINSON Imperial College of Science and Technology. London AKlO YAMAMOTO Tokyo Institute 01 Technology. Yokohama Editor-in-Chief ALVIN P. GINSBERG INORGANIC SYNTHESES Volume 27 A Wiley-Interscience Publication JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore A NOTE TO THE READER This book has been electronically reproduced from digital idormation stored at John Wiley h Sons, Inc. We are phased that the use of this new technology will enable us to keep works of enduring scholarly value in print as long as there is a reasonable demand for them. The content of this book is identical to previous printings. Published by John Wiley & Sons, Inc. Copyright $? 1990 Inorganic Syntheses, Inc. All rights reserved. Published simultaneously in Canada. Reproduction or translation of any part of this work beyond that permitted by Section 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. -
MCSCF Study of S1 and S2 Photochemical Reactions of Benzene
J. Am. Chem. Soc, 1993,11S, 673-682 673 for correcting for the change in charge distribution, and the present known experimental data. In calculating AGo(soln) for the neutral approach represents the most accurate method of obtaining an radicals from eq 8, the solution free energies are partitioned as estimate of Eo(S).The resulting values of Eo(s)were -1.19, -1.73, the sum of hydrogen-bonding (AGo(HB)) and non-hydrogen- -1.05, and -0.94 V for methylamine, ethylamine, dimethylamine, bonding (AGo(NHB)) terms, and the latter is treated as a constant and trimethylamine, respectively. Likewise, utilizing the values which depends on the number of CH2units in the molecule. It of AGO(,) derived above, one can estimate that Eo(I)has values was argued that the difference in AGo(soln) between a-carbon of about -1.5, -1.9, -1.5, and -1.4 V for the same amines, re- radicals, R'R2NCR3H', and the parent molecules, R1R?NCR3H2, spectively. The large negative values of Eo(I)confirm the strong is less than 2 kJ mol-' and can be neglected. For the charged reductive power of these R1R2NCR3H'radicals. Previous esti- species, the difference between trimethylaminium ((CH,),N'+) mates of Eo(])in aqueous solution have been in the region of -1.0 and trimethylammonium ((CH3),NH+) could be derived from V.@ Equilibrium measurements of these quantities in water will experimental estimates of AGO(so1n) of the two species. The be very difficult because of the transitory nature of both the increase in magnitude of the solution free energy of (CH3),N'+ radicals and the iminium products. -
Coversheet for Thesis in Sussex Research Online
A University of Sussex DPhil thesis Available online via Sussex Research Online: http://sro.sussex.ac.uk/ This thesis is protected by copyright which belongs to the author. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Please visit Sussex Research Online for more information and further details University of Sussex Investigation of The Sn-P Bond and Related Studies Submitted for the degree of DPhil September 2010 Steven Mark Wilcock I hereby declare that the studies described in this thesis are the sole work of the author, and have not been previously submitted, either in the same or any other form, for a degree to this or any other university. Steven Mark Wilcock Acknowledgements First and foremost I would like to thank Gerry Lawless for all his help and advice over the past four years, without which none of this would have been possible. I wish him the best of luck in America and feel sure the department will be a poorer place for his absence. I’d also like to thank John Nixon whose insights both in and out of group meetings were invaluable and with whom, if all goes to plan, I shall hopefully be able to collaborate further. Also deserving a special mention is Martyn Coles, if only for the sheer number of roles he’s played in my university career (personal tutor, MChem supervisor, 2nd DPhil supervisor, Christmas bowling rival, etc…), truly a man for all seasons. -
INORGANIC SYNTHESES Volume 23 Board of Directors
INORGANIC SYNTHESES Volume 23 Board of Directors DUWARD F. SHRIVER Norrhwesrern University HENRY F. HOLZCLAW, JR. University of Nebraska BODIE E. DOUGLAS University of Pirrsburgh JAY H. WORRELL University of Sourh Florida JOHN P. FACKLER, JR. Texas A&M University SMITH L. HOLT, JR. Oklahoma State University Future Volumes 24 JEAN’NE SHREEVE University of Idaho 25 HERBERT D. KAESZ University of California, Los Angeles 26 HARRY R. ALLCOCK Pennsylvania State University 27 STEVEN D. ITTEL E. I. du Ponr de Nemours and Co. 28 ALVIN P. GINSBERG Bell Laboratories 29 ROBERT J. ANGELIC1 Iowa Srare University International Associates MARTIN A. BENNETT Australian National University FAUSTO CALDEWO University of Pisa E. 0. FISCHER Technische Universirar Miinchen SACK LEWIS Cambridge University LAMBERTO MALATESTA University of Milan RENE POILBLANC University of Toulouse HERBERT ROESKY University of Goningen F. G. A. STONE University of Brisrol GEOFFREY WILKINSON Imperial College of Science and Technology AKIO YAMAMOTO Tokyo Kogyo Daigaku (TokyoInstirure of Technology) Editor-in-Chief STANLEY KIRSCHNER Deportment of Chemistry Wayne State Universily Detroit, Michigan INORGANIC SYNTHESES Volume 23 A Wiley-Interscience Publication JOHN WILEY tk SONS New York Chichester Briskne Toronto Singapore Published by John Wiley & Sons, Inc. Copyright 0 1985 by Inorganic Syntheses, Inc. All rights reserved. Published simultaneously in Canada. Reproduction or translation of any part of this work beyond that permitted by Section 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. Requests for permission or further information should be addressed to the Permissions Department, John Wiley & Sons, Inc. Library of Congress Caralog Number: 39-23015 ISBN 0-471-81873-9 Printed in the United States of America 10 9 8 7 6 5 4 3 2 I HARRYR. -
Inorganic Syntheses
INORGANIC SYNTHESES Volume 31 Board of Directors BODlE E. DOUGLAS University of Pittsburgh. HERBERT D. KAESZ University of Calijorina, Los Angeles DARYLE H. BUSCH University of Kansas JAY H. WORRELL Uniuersity of South Florida RUSSELL N. GRIMES University of Virginia ROBERT J. ANGELIC1 Iowa State Uniersity DONALD W. MURPHY AT & T Bell Laboratories LEONARD V. INTERRANTE Rensselar Polytechnic Institute ALAN H. COWLEY University of Texas, Austin Future Volumes 32 MARCETTA Y. DARENSBOURG Texas A&M University 33 DIMITRI COUCOUVANIS Northwestern University 34 TOBIN MARKS Northwestern University 35 RICHARD J. LAGOW University of Texas, Austin International Associates MARTIN A. BENNETT Australian National University, Canberra FAUSTO CALDERAZZO University of Pisa E. 0. FISCHER Technical University, Munich JACK LEWIS Cambridge University LAMBERTO MALATESTA University of Milan RENE POILBLANC University of Toulouse HERBERT W. ROESKY University of Gdttingen F. G. A. STONE Baylor University GEOFFREY WILKINSON Imperial College of Science, Technology and Medicine, London AKlO YAMAMOTO Tokyo Institute of Technology, Yokohama Editor-in-Chief ALAN H. COWLEY ....................The University of Texas at Austin............ INORGANIC SYNTHESES Volume 31 A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York Chichester Brisbane Toronto Singapore Weinheim This text is printed on acid-free paper. Published by John Wiley & Sons, Inc. Copyright 0 1997 by Inorganic Syntheses, Inc. All rights reserved. Published simultaneously in Canada. Reproduction or translation of any part of this work beyond that permitted by Section 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. Requests for permission or further information should be addressed to the Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012. -
Iridium Halides. I
5970 Acknowledgment. The authors acknowledge the help of Professor M. Rettig on the section of the Dis- generous support of this research by the National cussion dealing with pseudocontact shifts is acknowl- Science Foundation through Grant GP 5498. The edged. Pentamethylcyclopentadienylrhodium and -iridium Halides. I. Synthesis and Properties' J. W. Kang, K. Moseley, and P. M. MaitW Contribution from the Department of Chemistry, McMaster University, Hamilton, Ontario, Canada. Received April 15, 1969 Abstract: Details of the reactions of hexamethyl(Dewar benzene), HMDB (hexamethylbicyclo[2.2.0]hexadiene) (l), and of 1-(1-chloroethy1)pentamethylcyclopentadiene (4a) with RhCI3.3HrO and IrC13.5H20to give the penta- methylcyclopentadienyl complexes, (C3Me3MC12)2(9, and proposals for the mechanisms of these reactions are presented. The pentamethylcyclopentadienyl-metal bond in 5 is very strong, but reactions readily proceed at the halogens. Adducts of the type C3MesRhClsL (L = p-toluidine, pyridine, triphenylphosphine) are described as well as their reactions to form C3MesRhMenPPh3and CSMe3RhMeIPPh3.The synthesis of CSMeSIr(C0)2is also reported. n 1967 one of us, in connection with some work on Results and Discussion I the complexes derived from 2-butyne and palladium Formation of Dichloro(pentamethylcyclopentadieny1)- chloride, began an investigation of the reactions of hexa- rhodium and -iridium Complexes from HMDB and Re- methyl(Dewar benzene) (HMDB, hexamethylbicyclo- lated Compounds. The Dewar benzene (1) reacted [2.2.0]hexadiene) (1) toward transition metal halides. readily with RhC13.3H20in methanol at 65" under ni- This led, in the first instance, to the preparation of hexa- trogen to give a nearly quantitative yield (based on methyl(Dewar benzene)palladium chloride (2, M = RhC13.3HzO) of red crystals, together with a substantial PdClz),3 and later to that of the platinum analog (2, M amount of hexamethylbenzene (HMB). -
Durham E-Theses
Durham E-Theses The photochemistry of highly uorinated pyridines Middleton, Roderick How to cite: Middleton, Roderick (1977) The photochemistry of highly uorinated pyridines, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/8331/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk UNIVERSITY OF DURHAM A THESIS entitled THE PHOTOCHEMISTRY OF HIGHLY FLUORINATED PYRIDINES Submitted by RODERICK MIDDLETON, B.Sc.(DUNELM) (Van Mlldert College) The copyright of this thesis rests with the author. No quotation from it should be published without his prior written consent and information derived from it should be acknowledged. A candidate for the degree of Doctor of Philosophy . 1977 To My Mother MEMORANDUM This work was carried out at the University of Durham between October 1973 and October 1976. It is the original work of the author unless indicated by reference and has no been submitted for any other degree. -
ACS Style Guide
➤ ➤ ➤ ➤ ➤ The ACS Style Guide ➤ ➤ ➤ ➤ ➤ THIRD EDITION The ACS Style Guide Effective Communication of Scientific Information Anne M. Coghill Lorrin R. Garson Editors AMERICAN CHEMICAL SOCIETY Washington, DC OXFORD UNIVERSITY PRESS New York Oxford 2006 Oxford University Press Oxford New York Athens Auckland Bangkok Bogotá Buenos Aires Calcutta Cape Town Chennai Dar es Salaam Delhi Florence Hong Kong Istanbul Karachi Kuala Lumpur Madrid Melbourne Mexico City Mumbai Nairobi Paris São Paulo Singapore Taipei Tokyo Toronto Warsaw and associated companies in Berlin Idaban Copyright © 2006 by the American Chemical Society, Washington, DC Developed and distributed in partnership by the American Chemical Society and Oxford University Press Published by Oxford University Press, Inc. 198 Madison Avenue, New York, NY 10016 Oxford is a registered trademark of Oxford University Press All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the American Chemical Society. Library of Congress Cataloging-in-Publication Data The ACS style guide : effective communication of scientific information.—3rd ed. / Anne M. Coghill [and] Lorrin R. Garson, editors. p. cm. Includes bibliographical references and index. ISBN-13: 978-0-8412-3999-9 (cloth : alk. paper) 1. Chemical literature—Authorship—Handbooks, manuals, etc. 2. Scientific literature— Authorship—Handbooks, manuals, etc. 3. English language—Style—Handbooks, manuals, etc. 4. Authorship—Style manuals. I. Coghill, Anne M. II. Garson, Lorrin R. III. American Chemical Society QD8.5.A25 2006 808'.06654—dc22 2006040668 1 3 5 7 9 8 6 4 2 Printed in the United States of America on acid-free paper ➤ ➤ ➤ ➤ ➤ Contents Foreword. -
SEM IV MCHEMET402 Organic Photochemistry – 3 Photochemistry of Aromatic Compounds
SEM IV MCHEMET402 Organic Photochemistry – 3 Photochemistry of Aromatic Compounds Dr Jayanta Maity Welcome to the online course on, Organic Photochemistry. This part is concerning the Photochemistry of Aromatic Compounds. Aromatic Compounds are PI electron rich compounds. So, their Photochemistry is reaching, PI-PI-Star excitation processes. If you take Benzene itself, it has absorption in the range of, 180 to 200 Nanometers, one set of bands, 200 to 220, another set of bands, from 220 to 250, another set of bands. All of them are PI-PI-Star excitation band, corresponding to electronic excitation, going from S0 to S1, and S2 states as the, wavelength decreases, the energy increases, corresponding to the excitation. The primary Photochemical process of Benzene, and its derivatives can be, classified as follows. From the, first excited Singlet state, which is a PI-PI-Star state, one can expect intermediate, which are Zwitter ionic in nature. And, the Zwitter ionic intermediate, once they are formed, it goes to the final product. There is a definite evidence, for the involvement of Zwitter ionic intermediate, which are done by trapping experiment. The first excited Singlet state, which is a PI-PI-Star excited state, can also go through a funnel mechanism, which is a concerted mechanism, to go to the product, without the involvement of any kind of intermediate. Finally, Triplet excited state, PI-PI-Star state, can also go through an intermediate stage, which is a Diradical state, resulting in the product formation. We will see examples, of each one of this case, in the coming slides.